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Abstract: In this paper, we draw attention to consider that the quantumentanglement measurement should be implemented as a key
part during manufacturing the quantum processors and quantum micro-controllers. This paper aims to harness the complete power of
quantum mechanics by the crossover between entanglement measurements and quantum gates to propose a novel quantum computer
algorithms and protocols. One of these measurements that weapply is concurrence, used to measure entanglement in a two-qubit
system to solve the problem under scrutiny in n-dimensionalvector space. The general algorithm to reshape many of the existing
quantum algorithms, and to propose a novel quantum algorithms and protocols based on entanglement measurement is proposed in this
paper.
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1 Introduction

Quantum computations are done using quantum
algorithms. They are faster comparing with the classical
algorithms, e.g. and Grover algorithm [1,2], Shor
algorithm [3,4], Deutsch-Jozsa algorithm [5,6] and etc[7,
8]. This high speed owing back to astonishing phenomena
in quantum mechanics which are superposition and
entanglement. Quantum entanglement is a unique
microscopic physical phenomenon that occurs when two
qubits or more are interact in ways such that the quantum
state of each qubit cannot be described independently of
the others, even when the qubits are separated by a vast
distance. This phenomenon is called ”spooky action at a
distance” by A. Einstein, B. Podolsky and N. Rosen[9].
Entanglement is a pivotal issue in quantum information
and quantum computation theory and it is under
continuous research [10,11,12,13,14,15,16,17]. This
amazing phenomenon was controversial between A.
Einstein and N. Bohr what was known as the EPR
paradox. Finally quantum mechanics verified itself
experimentally when set of experiments of quantum

entanglement were done successfully [18,19,20].
Entanglement is an area of extremely hot research by the
communities of atomic physics and quantum information
processing [21], with crucial utilization in many
applications, for instance quantum teleportation [22,23],
satellite-based quantum key distribution [24,25], and
quantum Internet [26].

In this paper, we propose a novel generalized
algorithm to crossover between the quantum evolutions
using quantum gates and entanglement measurement to
harness the complete power of quantum parallelism and
entanglement to enhance the efficiency and the speed of
quantum computations.

2 Two Entangled Qubits and Entanglement
Measurements

2.1 Two Entangled Qubits

The maximally entangled states of two qubits is called
Bell states 1√

2
(|00〉 ± |11〉) or 1√

2
(|01〉 ± |10〉) [21,27].
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Bell states can be generated by quantum circuit depicted
in Fig. 1, and used in many applications such as an
unknown qubit teleportation and quantum key distribution
[29,30].

x H •

y

Fig. 1: Quantum circuit which produces the Bell states [21].

The quantum circuit shown in Fig.2 produces
two-qubit entangled normalized system(α|01〉 ± β |10〉)
if the control qubit|x〉 is in a normalized superposition
state and produces separable qubits if it is state in|0〉 or
|1〉.

|x〉 •

|1〉

Fig. 2: A quantum circuit which produces entangled states if
the control qubit|x〉 is in a normalized superposition state and
produces separable states if the control qubit|x〉 in a deterministic
state|0〉 or |1〉 .

2.2 Two qubits Entanglement Measurement

Entanglement measurements [28,31] are used to reveal if
there is an entanglement into quantum systems which are
governed by n-dimension Hilbert space such thatn > 1.
There are plenty of entanglement measurements defined
based on different considerations such as concurrence,
negativity, quantum discord, witness and so on [33,32].
Concurrence measurement [31,32] is considered one of
the most popular measurements of entanglement
quantification of bipartite system, and can be defined as
follows:

C = |〈φ |σy ⊗σy|φ†〉|,
whereσy =−i|1〉〈0|+ i|0〉〈1|, andi =

√
−1.

Also, the concurrence of the states1√
2
(|00〉± |11〉) is

calculated theoretically as follows [34]:

C = 2|αβ |, (1)

where 0≤C ≤ 1.

2.3 The Proposed Operator

Definition 3.1. Consider two arbitrary indexed qubitsi
and j in k-qubit quantum register, such that the
i− indexed qubit is called the test qubit andj − indexed
qubit is called the detection qubit.
Definition 3.2. A measuring device of entanglementDi, j
measures the concurrence between the test and detection
qubits.
Definition 3.3. For arbitrary two-qubit system, an
operatorMz is the operator which is applyingCNOT gate
on the test qubit and the detection qubit, then the device
Di, j measures the entanglement in between.

|xi〉 • D

|x j〉 D

Fig. 3: Quantum circuit for the proposedMz operator.

The circuit of the proposed operatorMz is depicted in
Fig. 3. The aim of the proposed operatorMz is to check
whether a test qubit is in a superposition state or not. In
other words, the operatorMz, firstly, appliesCNOT gate
on the test qubit as the control qubit and the detection
qubit as a target qubit, and then measures the
entanglement in between. It is worth noting that the
entanglement will happen if and only if the test qubit is in
a superposition. For further elaboration, let’s examine a
system |κ〉 of two-qubits one of which is in a
superposition. The system can be described as follows:

|κ〉= (α|0〉+β |1〉)⊗|1〉, (2)

where α and β are complex numbers called the
probability amplitudes and relation|α|2+ |β |2 = 1.

So, when CNOT is applied on the system described in
Eq. (2), the effect can be illustrated as follows:

|κ∗〉=CNOT |κ〉= α|01〉+β |10〉, (3)

where the second qubit is entangled with the first qubit. So,
for the given bipartite quantum state|κ∗〉 , the amount of
entanglement is determined according to the concurrence
relation given by Eq.(1). Some suggestions to implement
the deviceDi, j are depicted in [34,35,36].

3 The proposed Algorithm

In this section, we propose a quantum algorithm that uses
concurrence measurement as an essential step in quantum
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algorithms and protocols. In other words, the proposed
algorithm shows how to use the proposed operatorMz to
create an entanglement between two separable qubits, and
then use concurrence measurement to solve the problem
in hand.

Suppose an− qubit quantum system|φ〉 hasN ≤ 2n

eigen-states is given or is initialized to have the complete
superposition in the first step for the algorithm in hand. If
there is a specific functionf , as a black box, required to
be tested if it is satisfied in|φ〉 or not. Suppose that there
is a given oracleU f of size 22n+1x22n+1, as a black box,
can test this function on the quantum system|φ〉. The
abstract problem is:

Quantum system of N states: is given or initialized in the
quantum algorithm or protocol.
Given: A function f:[N]→ {0,1}.
Given: The oracleU f (any existing or a novel algorithm
or protocol).
Goal: UseU f , Mz and the Concurrence equation, Eq. (1)
or Eq. (5), to solve the problem being studied.

In order to achieve this goal, extra two qubits are added to
the whole system. The first qubit is defined as the test
qubit and the other is defined as the detection qubit. Such
that, if the system|φ〉 satisfies the functionf then the test
qubit is translated to the normalized stateα|0〉+β |1〉 and
the entanglement is revealed between the test and the
detection qubit whenMz is applied, and the concurrence
value is 0< C ≤ 1 depending on the number of states in
the system|φ〉 are satisfying the given functionf . But if
there are no states in the system|φ〉 satisfied, then the
state of the test qubit is unchanged and the entanglement
is missed between the test and detection qubits,C = 0,
when the operatorMz is applied between the test qubit
and the detection qubit. The algorithm is proposed in the
following steps:

1.Register Preparation: Concatenate the given, or
initialize, quantum system|φ〉 of n qubits with the
extra two qubits, the test qubit and the detection qubit,
which are initialized in the state|1〉 as

|ψ0〉= |φ〉⊗ |11〉.
2.Apply the oracleU f on|φ〉 and the test qubit: Applying

the oracleU f will mark the solutions satisfy the given
condition f .

|ψ1〉=U⊗n+1
f |φ ,1〉⊗ I|1〉,

whereI is 2x2 Identity operator.
3.Apply the OperatorMz on the test qubit and the

detection qubit. The effect ofMz on |ψ1〉 can be
viewed as:

(i) Apply the CNOT gate between the test qubit
and the detection qubit.

|ψ2〉=Cnot
ψn+1ψn+2

|ψ1〉

(ii) Measure the entanglement between the test
qubit and the detection qubit. If there is entanglement
measured, 0< C ≤ 1, then the test qubitψn+1 is
considered in a superposition state and the functionf
is satisfied, otherwise the test qubitψn+1 is not in a
superposition state and the functionf is not satisfied.

4.Find the solution of the problem under scrutiny using
Eq. (1), (4) and/or (5) according to the problem in
hand.

4 Analysis of the Proposed Algorithm

In this section, we discuss the proposed algorithm with the
suggested operator introduced in section 2.3. We analyze
the proposed algorithm assuming that the given oracle is
a black boxU f , which is trying to test if a given function
f is satisfied on a given quantum system|φ〉 hasN ≤ 2n.
Suppose that the number of states in|φ〉 which satisfy the
condition f arem0 and the number of those which are not
m1, then

N = m0+m1 (4)

Then according to 2nd step of the proposed algorithm, after
applying the oracleU f , the state of the test qubit can be
described as follows:

|ψn+1
1 〉= α|0〉+β |1〉,

wherem0 = N|α|2, m1 = N|β |2, iff there arem0 > 0
states in the quantum system|φ〉 satisfy the functionf .
But on the other hand, the state of the test qubit is:

|ψn+1
1 〉= |1〉,

iff there are no states,m0 = 0, satisfy the functionf .

The 3rd step of the proposed algorithm pertains
applying Mz, there are a two nested sub-steps are
executed:
(i) If there is am0 > 0 states in the quantum system|φ〉
satisfy the functionf , the CNOT gate is applied between
the test qubit|ψn+1

1 〉 and the detection qubit|ψn+2
1 〉, there

state will be:

|ψn+1,n+2
2 〉 =CNOT (αn+1|01〉+βn+1|11〉)

= αn+1|0,1⊕CNOT(0)〉
+βn+1|1,1⊕CNOT(1)〉
= αn+1|01〉+βn+1|10〉.

This will produce a measurable entanglement between
the test and the detection qubits in the sub-step (ii), and the
concurrence between those qubits according to Eq.(1) and
Eq.(4) is:

C = 2

√

m0(N −m0)

N
. (5)

Or:
(i) If there is no states,m0 = 0, in the quantum system|φ〉
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satisfy the functionf , the effect of the CNOT gate when
applied on the test qubit and the detection qubit is as
follows:

|ψn+1,n+2
2 〉 =CNOT (|11〉)

= |1,1⊕CNOT(1)〉= |10〉.

This will not produce a measurable entanglement
between the test and detection qubits in the sub-step (ii),
and the concurrence between those qubits isC = 0
because the state|10〉 is a separable state.

5 Perspective

In this paper, we have tried to promote a future vision for
the establishment of the novel fastest quantum algorithms.
The proposed algorithm in this paper will give the
potential to reshape the existing quantum algorithms and
to propose novel quantum algorithms based on
entanglement measurement. The proposed algorithm
makes the computations of quantum algorithms fastest
than its competitors which are only using unitary
evolutions. This algorithm can be used to solve
applications such as testing junta variables and learning
Boolean functions and plenty of other algorithms in
quantum computation and machine learning.
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