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Abstract: The reconstruction from sparse- or few-view projectionsrie of important problems in computed tomography limited by
the availability or feasibility of a large number of projeets. Working with a small number of projections provideswaeér radiation
dose and a fast scan time, however an error associated witp#rse-view reconstruction increases significantlyasyphace sparsity
increases that may cause the reconstruction process tgelivEhe iterative reconstruction-re-projection (IRR)aithm which uses
filtered back projection (FBP) reconstruction has been @isethe sparse-view computed tomography applications dversl years.
The IRR-TV method has been developed as a higher perfornateraative to the IRR method by adding the total variatioN)(
minimization. Here, we propose an algebraic iterative mstmiction-re-projection (AIRR) algorithm with the shiearegularization.
The AIRR coupled with the shearlet regularization in imapac attains a better estimation in the projection spaceyihded a
higher performance based on subjective and objectivetgumaétrics.

Keywords: lterative Reconstruction-Reprojection, Sparse-View @Eéhstruction, Algebraic Computed Tomography.

1 Introduction caused by a bad detector bins is another reason causing
. . the limited number of angles. Thus, a reasonably low

Computed Tomography (CT) is used for medical h;mper of angular views will be made available for the

diagnostics, non-destructive testing, airport baggaggeconstruction algorithm which is expected to produce

screening and also considered for cargo inspection fofnages whose quality is suitable for the analyses they are
determining treats, such as explosives and Spec'aécquired for.

Nuclear Materials (SNM)1, 2, 3,4]. For medical, security
or industrial applications of CT a limited number of views The reconstruction under the sparse-view always
is an option for whether reducing the radiation dose orcauses artifacts which are more noticeable when the
screening time, and the cost in either case. In thefiltered back-projection method is used. The traditional
applications such as non-destructive testing andRR algorithm p,6] strives to extrapolate missing
inspection of large objects, the scanning of objects carprojections by going back and forth between projections
take up to minutes for only one projection. When the and the image domain. Candes et &I, [proposed the
neutron source is used rather than the photon, thd=T-TV method that reconstructs the sparse gradient
scanning will take on a long time even for small objects,images accurately from the Fourier transform (FT)
such as passenger luggage, because of the large numbgamples by using minimization. The IRR-TV
of neutrons required for producing the quality images forreconstruction method8] separates the reconstruction
the analyses. process in the image and the projection domains and
There are also various practical reasons behind thapplies the total variation (TV) in image domain to obtain
insufficient data acquisition. Such constraints are due tdhe sparse-view projections. Although the IRR-TV
the imaging component, geometry modeling, or ionizingmethod has a higher performance compared to the
radiation exposure. Gaps present in the projection datdraditional IRR method, the number of iterations is
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strictly controlled for avoiding the divergence point whic Xinhui Duan et. al. in §] used the total variation (TV)
takes place very soon, i.e., after just few iterations. minimization to improve the IRR accuracy by adding the

In this paper, we propose an algebraic iterative TV minimization layer to the framework. The TV-based
reconstruction-reprojection (AIRR) algorithm with the modelis described as below:
shearlet regularization. Shearlets have already proged it
potential for image denoisin@[10] and they are efficient mnTV(f) & Mf=p, (5)
in representing edges of various orientations, strength an
scales, that is those that constitute the object shape an
describe textures, and thus the inclusion of their
regularization promises a better performance for the
above problem.

The paper is organized as follows. In Section 2, the TV(f) = \/(fw_ f1y)?+ (fy = fy-1)% (6)
background information is provided. The proposed
algebraic iterative reconstruction-reprojection metfi®d whereTV (f) is the total variation of the 2D imagé,
presented in Section 3. In Section 4, we demonstratd he complete process is described then by equafipn (
results; Conclusions are drawn in Section 5.

ITV(f)

af

Wheref is the reconstructed image from projectipn

Here, we review the iterative reconstruction-reprojactio using filtered back projection method. The IRR.JFTV
method performs much better than its traditional

(IRR) method. The IRR method works as a reconstruction :

method that in order to estimate the missing angular. counterpart, under the strictly controlled number of
projection it alternate between projection and mage'terat'OnS

spaces and it is mathematically equivalent to the

Gerchberg-Papoulis algorithm that iterates in the Fourier

domain and converges for band-limiting signal4,fL2]. 3AIRR

The IRR method includes three steps:

nd wherep is the sparse-view projection data, dvids a
Mmeasurement matrix.

f=f-d

(7)
2 Methods

_ _ In the proposed AIRR method the reconstruction is
g'(r,0) =h(r)* p'(r,0), (1) formulated as a linear problem for two different models: a
noise-free model described by equati& &nd the noisy
_ o model given by equatiorsj.
f'(r,0) = g'(xcos(6) +ysin(0))de, 2
0 Af =h. (8)
Prep (1 6) =
, (3) Af+n=h. (9)
/f'(rcos(e)—tsin(e),rsin(e)+tcos(6))dt.
—L

Whereb € RN is the projection dataf € RM is the
reconstruction result, and € RN*M is the system
geometry matrix. The AIRR algorithm includes three
processes in each iteration:

In the above equationsg'(r,0) is the filtered
projection data for reconstruction in tlg step andn(r)
is the filter in FBP process in the time-domae(r, 6)

is the reprojection data computed froitt® which is the 1.Iterative Algebraic Reconstruction.
(i — 1), reconstructed image. The error propagation

introduced in the backprojection and reprojection 2.Shearlet-based denoising.
iterations is the main disadvantage of the IRR method.

[5], authors combinined equatiof)(and equation3) into 3.Reprojection

one step in projection space to reduce the interpolation

error as follows:

1 _ i i . . .
Prép (1. 6) = 2Lsin(Bm)g/ (1, 0)+ 3.1 Iterative Algebraic Reconstruction

Lcos(6—6—6m) (I’ 9) (4)
/ /LCOS 666 SN(O— e)drde Instead of traditional FBP method, we use simultaneous
algebraic reconstruction technique (SART)3[15 by
where 6, = cos™%(I/L) and L is the radius of the introducing a stopping criteria. The convergence of the
reconstructed region. This method is computationallySART algorithm was proved irlB,15].
intense, and the divergence is observed after fewlhe reconstruction off is performed by iterating
iterations. according to the following:
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k1 — K A CVATW (b — AFX) (10)

whereV = diag(1/yN,a j), for j = 1,..,M and
W = diag(1/ 3™ aj) for i = 1,...,N. Also C is the
exponential weighting matrix used to moderate the errors
corresponding to the large valuestnff14,16].

C =diag(co,C1,...,¢;) when ¢ =e BBl (11)

We use the projection values as an estimateid].
Algebraic reconstruction is performed with the
non-negativity constraintf(x,y) = 0 for f(x,y) < O,
whenf = 9 if the iteration stops dt =q.

The discrepancy principle criteria is used for the
stopping condition by finding the smalldssuch that

IWH2(b—Af4)|2 <15 (12)

wheret can be found experimentally.

3.2 Discrete Shearlet-Based Denoising _ o _ _
Fig. 1. Original phantom and its shearlet transformation

The discrete shearlet transformation (DST) was presentefefficients (first scale with four different directions).

in [17,18,19,20]. Let yast(X) denote the shearlet basis

functions or simply shearlets. The continuous shearlet

transformation (CST) of imag(x) is defined in both time and frequency spaces is exploited as a mother

wavelet fory(wy) in the shearlet transformation.

SHy(a,st) = '/Rz F()Wast(t —x)dx (13) Beside its localization properties Meyer wavelet filters
are directly described in the frequency space by
wherese R, a€ R, andt € R? define the orientation, ¥(w) = Wi(w)¥(wy/wy) with w = [awy] , ¥i(w)
scale, and location in the spatial domain, respectively andeing Fourier transform of the wavelet function and
f(x) € R2is a two dimensional reconstructed image. Y5(wy) is a compactly supported bump function
Shearlets are shaped by dilating, shearing and Fig. 1 shows the shearlet transformation subbands
translating the mother shearlgj s; € R?, as below: coefficients with four different directions in the first seal
applied to SheppLogan phantom image (in the remainder
simply called phantompH].
Wast(X) =| detKas |~1/2 (K 2(x—1)) (14) A. L. Cunha et. al. in24], have achieved a very good
performance of image denoising by thresholding in the
contourlet coefficients. We adopt the thresholding method

a/as a 0 1s in [24], for the shearlet shrinkage in shearlet-based
Kas= <O \/5> =BS= < > ( > (15) denoisting step. The threshold is calculated as in equation

0ya)\01 (16
whereSis an anisotropic scaling matrix with a scaling 2
parameteia > 0 , andB is a shear matrix with a factor T = — (16)
s< R BandSare both invertible matrices, withetS= 1. . oﬁj‘n
The shearlet mother functiony is a composite '
wavelet which fulfills admissibility conditions1f,21]. Whereoi?- n represents tha — th coefficient variance

The Meyer wavelet with a good localization ability in at thei — th shearing direction subband in the-th scale,
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Initial ;
While HWl/Z(b_Afk)HZ <15
il — ko A CIVATW (b — AfK);
end
f = fkt.
S:'¢(a7s7t) = <f,7 Wa,s,t> ;
SHy = Shrinkage(SHy (a,s,t), Ta) ;
f= Yast S—|¢ Yast ;

AneNf = b )
f=1;
(a) (b) goto Initial.

Algorithm 1: AIRR Algorithm
Fig. 2: (a) Original views; (b) Angular interpolation of a) for
updating the geometry matrix in reprojection phase.

in [8]. The distance is calculated according to equation
(19.
and ai?j is the variance of noise in — th shearing
direction at scalg. afj is estimated as follows: First, the | | )
variances for a few normalized noise images are being .. (Ex:l Sy—1(Frina (X, Y) = X(x,y))
calculated and then we average all the estimates to get an - ZI ZI (X(X,Y))2
X 2 . . . x=12y=1 )
estimate forg?,. The variances of the signal in each
subband are calculated by using the maximum likelihood  \yhereX is the originall x | phantom andiing is the

estimator applied on all the coefficients in a squarereconstructed imageistance metric is the ratio of all
neighboring area. After thresholding the coefficients, Wesquared differences between the reconstructed and the

Y2 (19)

reconstruct backx) € R? : original phantom image to the sum of the squared pixel
values in the phantom image. We validate our proposed
f = Z gﬁ|¢ Wast (17) AIRR method for the fan-beam sparse-view
dst reconstruction in two different models, i.e., noise-fred a

noisy projectionsl in our experiments is 256 and we use
three scales and four directions in the shearlet-based
denoising step. For noise-free and noisy cases, we use the
models defined in equatio®)(and equationg). Noisen

in equation 9) is defined as an AWG noise withh = 10.

In the re-projection step, since we are dealing with the"Ve use 20 fan-beam projections as inputs. The noise is
sparse-view angles, we reprojdcback to the projection added to the fan-beam projections. This system settings
space using the updated geometry ma#isince all the has been selected same to those used for experiments in
geometry space parameters are known, in each iteratiokBl- ) .

we are modifying the geometry matrix and double the  Fig. 3 shows the comparison between the performance

number of angels we had in the first sparse-view problemof the proposed AIRR method, and the IRR and IRR-TV

If we define the sparse-view problem with @: 360  methods. Compared to the IRR method, the IRR-TV has

angles wheral is a step size, then we reprojettback ~ shown a better performance due to the smoothing

into the projection space using @2 : 360 angles with properties of the TV term that delays the diyergence. The
Anew (Fig. 2). proposed AIRR method shows a slightly better

performance and since the geometry matrix is updated in
., the reprojection step, the result does not diverge as fast as
Anenf =D (18)  for other two methods. Fig4 shows the performance
. _comparison of the methods in the noisy projection model.

A pseudo-code of the proposed AIRR method iSThe |RR-TV shows the better quality in the first three
depicted here. iterations, but it is not stable and starts diverging afeev f
iterations. The AIRR method has outperformed the
IRR-TV in the presence of noise as well.

Fig. 5 includes the phantom sparse-view
reconstruction results for the noise-free case. The AIRR
reconstruction in Fig5 (a) has a better contrast compared
For comparison of the proposed method and the referenc® IRR-TV. There are few visible artifacts in the presence
methods we use the distance between the reconstructesf noise as observed in Fi@. In order to quantify the
images and the original phantom image as it was definedjuality of the structural representation and measure the

3.3 Reprojection

4 Numerical Results
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Table 1: Structural similarity indices for all the methods in noisy
and noise-free cases.

—+—IRR Noise-Free Noisy
. —#+ —IRRTV Method Projections _Projections
—& ~ Proposed Proposed (AIRR) 0.6769 0.6169
el e IRR-TV 0.6692 0.5670
T e IRR 0.6004 0.5275
A ///
a D45F PP
E ES\\ \_‘*H—‘————vf——""'_"—'*ﬂd—
£ w
=] 0.4-\\\
\\x Where v; and v, are constants that stabilize the
03| \@7:%=~*x7+_7*7—+—f*~—+———* division with weak denominator angdy and py are the
T local means andoy and oy are the local standard
03t e_““}“e——e___@__{, deviations. Tablel represents the structural similarity
indices. The SSIM indices for the AIRR method are best
05 ! ‘ ‘ ) . . . . ) in both noisy and noise-free cases. Since we are using
1 2 3 4 5 G 7 g 9 10

Shearlet-based denoising in our framework, the
computational complexity of our method is at a cost of
O(n?log(n)) for an x nimage. Finally, the running time
consumed by either AIRR or IRR-TV or IRR is
proportional to the iteration numbers.

Future work could include the new adaptive techniques
for updating the geometry matrix in reprojection phase to
increase the image resolution and contrast in each loop and
also could include the different regularization techngue
for better reconstruction in complex scenarios including

lterations

Fig. 3: Performance comparison of the IRR, IRR-TV, and the
proposed AIRR in terms of the distance metric in different
iterations for the noise-free case.

07 I . S

. P medical applications.

. \\\\“«—,_ _FWFF,.V—”""
065+ T
TN 5 Conclusion

0B+ \\\

05| %:i‘@b‘i_ﬁk_fﬂk—a*——+~~*"* The paper has introduced an efficient method for solving
S s TR o the sparse-view CT reconstruction problem. The practical
£ utilization of the method comes from its ability to satisfy

045 the application requirements such as a low scan time and

o4l :;::ng radiation doses. The proposed algebraic iterative

e — Py reconstruction-reprojection algorithm with  shearlet
03l roposed

regularization attains a better estimation in the progecti

03l space, and as a result contributes greatly to the quality of
reconstruction in terms of the distance metric, calculated
based on the distance to the original image, and based on
the structural content, the performance of proposed
method is higher than that for the IRR-TV, which was
introduced to improve the quality of the traditional IRR
Fig. 4: Performance comparison of the IRR, IRR-TV, and AIRR method.

in terms of the distance metric for different iterations faisy

projections case (AWG witly = 10).

2 3 4 5 3 7 g 9 10
lterations
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phantom image, we calculate the structural similarity
(SSIM) index R6] as a standard metric. The overall
structural similarity index can be measured as follows:

(2Uxy + V1) (205 + V2)
(KZ + U7 +V1)(0F + 07 + Vo)

SSIM(x,y) = (20)
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(b)

(c)

(d)

Fig. 5 (a) Original phantom image. (b) The AIRR Fig. 6: (a) Original phantom image. (b) The AIRR
reconstruction, (c) IRR-TV reconstruction, and (d) IRR reconstruction, (c) IRR-TV reconstruction, and (d) IRR
reconstruction; from the noise-free sparse-view propecti reconstruction; from the noisy sparse-view noisy pro@wi
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