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Abstract: The reconstruction from sparse- or few-view projections isone of important problems in computed tomography limited by
the availability or feasibility of a large number of projections. Working with a small number of projections provides a lower radiation
dose and a fast scan time, however an error associated with the sparse-view reconstruction increases significantly as the space sparsity
increases that may cause the reconstruction process to diverge. The iterative reconstruction-re-projection (IRR) algorithm which uses
filtered back projection (FBP) reconstruction has been usedfor the sparse-view computed tomography applications for several years.
The IRR-TV method has been developed as a higher performancealternative to the IRR method by adding the total variation (TV)
minimization. Here, we propose an algebraic iterative reconstruction-re-projection (AIRR) algorithm with the shearlet regularization.
The AIRR coupled with the shearlet regularization in image space attains a better estimation in the projection space andyielded a
higher performance based on subjective and objective quality metrics.
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1 Introduction

Computed Tomography (CT) is used for medical
diagnostics, non-destructive testing, airport baggage
screening and also considered for cargo inspection for
determining treats, such as explosives and Special
Nuclear Materials (SNM) [1,2,3,4]. For medical, security
or industrial applications of CT a limited number of views
is an option for whether reducing the radiation dose or
screening time, and the cost in either case. In the
applications such as non-destructive testing and
inspection of large objects, the scanning of objects can
take up to minutes for only one projection. When the
neutron source is used rather than the photon, the
scanning will take on a long time even for small objects,
such as passenger luggage, because of the large number
of neutrons required for producing the quality images for
the analyses.

There are also various practical reasons behind the
insufficient data acquisition. Such constraints are due to
the imaging component, geometry modeling, or ionizing
radiation exposure. Gaps present in the projection data

caused by a bad detector bins is another reason causing
the limited number of angles. Thus, a reasonably low
number of angular views will be made available for the
reconstruction algorithm which is expected to produce
images whose quality is suitable for the analyses they are
acquired for.

The reconstruction under the sparse-view always
causes artifacts which are more noticeable when the
filtered back-projection method is used. The traditional
IRR algorithm [5,6] strives to extrapolate missing
projections by going back and forth between projections
and the image domain. Candes et al. [7], proposed the
FT-TV method that reconstructs the sparse gradient
images accurately from the Fourier transform (FT)
samples by using minimization. The IRR-TV
reconstruction method [8] separates the reconstruction
process in the image and the projection domains and
applies the total variation (TV) in image domain to obtain
the sparse-view projections. Although the IRR-TV
method has a higher performance compared to the
traditional IRR method, the number of iterations is
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strictly controlled for avoiding the divergence point which
takes place very soon, i.e., after just few iterations.

In this paper, we propose an algebraic iterative
reconstruction-reprojection (AIRR) algorithm with the
shearlet regularization. Shearlets have already proved its
potential for image denoising [9,10] and they are efficient
in representing edges of various orientations, strength and
scales, that is those that constitute the object shape and
describe textures, and thus the inclusion of their
regularization promises a better performance for the
above problem.

The paper is organized as follows. In Section 2, the
background information is provided. The proposed
algebraic iterative reconstruction-reprojection methodis
presented in Section 3. In Section 4, we demonstrate
results; Conclusions are drawn in Section 5.

2 Methods

Here, we review the iterative reconstruction-reprojection
(IRR) method. The IRR method works as a reconstruction
method that in order to estimate the missing angular
projection it alternate between projection and image
spaces and it is mathematically equivalent to the
Gerchberg-Papoulis algorithm that iterates in the Fourier
domain and converges for band-limiting signals [11,12].
The IRR method includes three steps:

gi(r,θ ) = h(r)∗ pi(r,θ ), (1)

f i(r,θ ) =
∫ 2π

0
gi(xcos(θ )+ ysin(θ ))dθ , (2)

pi+1
rep (r,θ ) =

∫ L

−L
f i(rcos(θ )− tsin(θ ),rsin(θ )+ tcos(θ ))dt.

(3)

In the above equations,gi(r,θ ) is the filtered
projection data for reconstruction in theith step andh(r)
is the filter in FBP process in the time-domain.pi

rep(r,θ )
is the reprojection data computed fromf i−1 which is the
(i − 1)th reconstructed image. The error propagation
introduced in the backprojection and reprojection
iterations is the main disadvantage of the IRR method.
[5], authors combinined equation (2) and equation (3) into
one step in projection space to reduce the interpolation
error as follows:

pi+1
rep (r,θ ) = 2Lsin(θm)g

i(r,θ )+
∫ π

0

∫ Lcos(θ−θ́−θm)

Lcos(θ−θ́+θm)

gi(ŕ, θ́ )
sin(θ − θ́)

dŕdθ́ .
(4)

where θm = cos−1(l/L) and L is the radius of the
reconstructed region. This method is computationally
intense, and the divergence is observed after few
iterations.

Xinhui Duan et. al. in [8] used the total variation (TV)
minimization to improve the IRR accuracy by adding the
TV minimization layer to the framework. The TV-based
model is described as below:

minTV ( f ) st. M f = p, (5)

wherep is the sparse-view projection data, andM is a
measurement matrix.

TV ( f ) =
√

( fx,y − fx−1,y)2+( fx,y − fx,y−1)2, (6)

whereTV ( f ) is the total variation of the 2D image,f .
The complete process is described then by equation (7).

f̂ = f̂ − d
∂TV ( f̂ )

∂ f̂
. (7)

Where f̂ is the reconstructed image from projectionp
using filtered back projection method. The IRR+TV
method performs much better than its traditional
counterpart, under the strictly controlled number of
iterations.

3 AIRR

In the proposed AIRR method the reconstruction is
formulated as a linear problem for two different models: a
noise-free model described by equation (8) and the noisy
model given by equation (9).

A f = b. (8)

A f + n = b. (9)

Whereb ∈ RN is the projection data,f ∈ RM is the
reconstruction result, andA ∈ RN×M is the system
geometry matrix. The AIRR algorithm includes three
processes in each iteration:

1.Iterative Algebraic Reconstruction.

2.Shearlet-based denoising.

3.Reprojection

3.1 Iterative Algebraic Reconstruction

Instead of traditional FBP method, we use simultaneous
algebraic reconstruction technique (SART) [13,15] by
introducing a stopping criteria. The convergence of the
SART algorithm was proved in [13,15].
The reconstruction of f is performed by iterating
according to the following:
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f k+1 = f k +λkC
−1VATW (b−A f k) (10)

where V = diag(1/∑N
i=1 ai, j), for j = 1, ...,M and

W = diag(1/∑M
j=1ai, j) for i = 1, ...,N. Also C is the

exponential weighting matrix used to moderate the errors
corresponding to the large values ofb [14,16].

C = diag(c0,c1, ...,ci) when ci = e−E[bi] (11)

We use the projection values as an estimate forE[bi].
Algebraic reconstruction is performed with the
non-negativity constraint,f́ (x,y) = 0 for f́ (x,y) < 0,
when f́ = f q if the iteration stops atk = q.

The discrepancy principle criteria is used for the
stopping condition by finding the smallestk such that

‖W 1/2(b−A f k)‖2 ≤ τδ (12)

whereτ can be found experimentally.

3.2 Discrete Shearlet-Based Denoising

The discrete shearlet transformation (DST) was presented
in [17,18,19,20]. Let ψa,s,t(x) denote the shearlet basis
functions or simply shearlets. The continuous shearlet
transformation (CST) of imagef (x) is defined in

SHϕ(a,s, t) =
∫

R2
f́ (x)ψa,s,t(t − x)dx (13)

wheres ∈ R , a ∈ R , andt ∈ R2 define the orientation,
scale, and location in the spatial domain, respectively and
f́ (x) ∈ R2 is a two dimensional reconstructed image.

Shearlets are shaped by dilating, shearing and
translating the mother shearletψa,s,t ∈ R2, as below:

ψa,s,t(x) =| detKa,s |−1/2 ψ(K−1
a,s (x− t)) (14)

Ka,s =

(

a
√

as
0
√

a

)

= BS =

(

a 0
0
√

a

)(

1 s
0 1

)

(15)

whereS is an anisotropic scaling matrix with a scaling
parametera > 0 , andB is a shear matrix with a factor
s ∈ R. B andS are both invertible matrices, withdetS = 1.

The shearlet mother functionψ is a composite
wavelet which fulfills admissibility conditions [14,21].
The Meyer wavelet with a good localization ability in

Fig. 1: Original phantom and its shearlet transformation
coefficients (first scale with four different directions).

both time and frequency spaces is exploited as a mother
wavelet forψ(ωx) in the shearlet transformation.

Beside its localization properties Meyer wavelet filters
are directly described in the frequency space by
Ψ(ω) = Ψ1(ωx)Ψ2(ωy/ωx) with ω = [ωxωy] , Ψ1(ωx)
being Fourier transform of the wavelet function and
Ψ2(ωy) is a compactly supported bump function
Ψ2(ωy) = 0↔ ωy /∈ [−1,1] [22,23].

Fig. 1 shows the shearlet transformation subbands
coefficients with four different directions in the first scale,
applied to SheppLogan phantom image (in the remainder
simply called phantom) [25].

A. L. Cunha et. al. in [24], have achieved a very good
performance of image denoising by thresholding in the
contourlet coefficients. We adopt the thresholding method
in [24], for the shearlet shrinkage in shearlet-based
denoisting step. The threshold is calculated as in equation
(16)

Ti, j =
σ2

i, j

σ2
i, j,n

(16)

whereσ2
i, j,n represents then− th coefficient variance

at thei− th shearing direction subband in thej− th scale,

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2010 A. P. Yazdanpanah et al.: Algebraic iterative reconstruction-reprojection

Fig. 2: (a) Original views; (b) Angular interpolation of a) for
updating the geometry matrix in reprojection phase.

and σ2
i, j is the variance of noise ini − th shearing

direction at scalej. σ2
i, j is estimated as follows: First, the

variances for a few normalized noise images are being
calculated and then we average all the estimates to get an
estimate forσ2

i, j . The variances of the signal in each
subband are calculated by using the maximum likelihood
estimator applied on all the coefficients in a square
neighboring area. After thresholding the coefficients, we
reconstruct back(x) ∈ R2 :

f́ = ∑
a,s,t

ˆSHϕψa,s,t (17)

3.3 Reprojection

In the re-projection step, since we are dealing with the
sparse-view angles, we reprojectf́ back to the projection
space using the updated geometry matrixA. Since all the
geometry space parameters are known, in each iteration
we are modifying the geometry matrix and double the
number of angels we had in the first sparse-view problem.
If we define the sparse-view problem with 0 :d : 360
angles whered is a step size, then we reprojectf́ back
into the projection space using 0 :d/2 : 360 angles with
Anew (Fig. 2).

Anew f́ = b́ (18)

A pseudo-code of the proposed AIRR method is
depicted here.

4 Numerical Results

For comparison of the proposed method and the reference
methods we use the distance between the reconstructed
images and the original phantom image as it was defined

Initial ;

While ‖W 1/2(b−A f k)‖2 ≤ τδ
f k+1 = f k +λkC−1VATW (b−A f k);

end
f́ = f k+1 ;
SHϕ (a,s, t) = 〈 f́ ,ψa,s,t〉 ;

ˆSHϕ = Shrinkage(SHϕ (a,s, t),Tα ) ;
f́ = ∑a,s,t

ˆSHϕ ψa,s,t ;

Anew f́ = b́ ;
f = f́ ;
goto Initial.

Algorithm 1: AIRR Algorithm

in [8]. The distance is calculated according to equation
(19).

Distance = (
∑l

x=1 ∑l
y=1( f f inal(x,y)−X(x,y))2

∑l
x=1 ∑l

y=1(X(x,y))2
)1/2 (19)

whereX is the originall × l phantom andf f inal is the
reconstructed image.Distance metric is the ratio of all
squared differences between the reconstructed and the
original phantom image to the sum of the squared pixel
values in the phantom image. We validate our proposed
AIRR method for the fan-beam sparse-view
reconstruction in two different models, i.e., noise-free and
noisy projections.l in our experiments is 256 and we use
three scales and four directions in the shearlet-based
denoising step. For noise-free and noisy cases, we use the
models defined in equation (8) and equation (9). Noisen
in equation (9) is defined as an AWG noise withσ = 10.
We use 20 fan-beam projections as inputs. The noise is
added to the fan-beam projections. This system settings
has been selected same to those used for experiments in
[8].

Fig. 3 shows the comparison between the performance
of the proposed AIRR method, and the IRR and IRR-TV
methods. Compared to the IRR method, the IRR-TV has
shown a better performance due to the smoothing
properties of the TV term that delays the divergence. The
proposed AIRR method shows a slightly better
performance and since the geometry matrix is updated in
the reprojection step, the result does not diverge as fast as
for other two methods. Fig.4 shows the performance
comparison of the methods in the noisy projection model.
The IRR-TV shows the better quality in the first three
iterations, but it is not stable and starts diverging after few
iterations. The AIRR method has outperformed the
IRR-TV in the presence of noise as well.

Fig. 5 includes the phantom sparse-view
reconstruction results for the noise-free case. The AIRR
reconstruction in Fig.5 (a) has a better contrast compared
to IRR-TV. There are few visible artifacts in the presence
of noise as observed in Fig.6. In order to quantify the
quality of the structural representation and measure the
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Fig. 3: Performance comparison of the IRR, IRR-TV, and the
proposed AIRR in terms of the distance metric in different
iterations for the noise-free case.

Fig. 4: Performance comparison of the IRR, IRR-TV, and AIRR
in terms of the distance metric for different iterations fornoisy
projections case (AWG withσ = 10).

similarity between the reconstruction results and original
phantom image, we calculate the structural similarity
(SSIM) index [26] as a standard metric. The overall
structural similarity index can be measured as follows:

SSIM(x,y) =
(2µxµy + v1)(2σxy + v2)

(µ2
x + µ2

y + v1)(σ2
x +σ2

y + v2)
(20)

Table 1: Structural similarity indices for all the methods in noisy
and noise-free cases.

Method
Noise-Free
Projections

Noisy
Projections

Proposed (AIRR) 0.6769 0.6169
IRR-TV 0.6692 0.5670
IRR 0.6004 0.5275

Where v1 and v2 are constants that stabilize the
division with weak denominator andµx and µy are the
local means andσx and σy are the local standard
deviations. Table1 represents the structural similarity
indices. The SSIM indices for the AIRR method are best
in both noisy and noise-free cases. Since we are using
Shearlet-based denoising in our framework, the
computational complexity of our method is at a cost of
O(n2log(n)) for a n× n image. Finally, the running time
consumed by either AIRR or IRR-TV or IRR is
proportional to the iteration numbers.

Future work could include the new adaptive techniques
for updating the geometry matrix in reprojection phase to
increase the image resolution and contrast in each loop and
also could include the different regularization techniques
for better reconstruction in complex scenarios including
medical applications.

5 Conclusion

The paper has introduced an efficient method for solving
the sparse-view CT reconstruction problem. The practical
utilization of the method comes from its ability to satisfy
the application requirements such as a low scan time and
radiation doses. The proposed algebraic iterative
reconstruction-reprojection algorithm with shearlet
regularization attains a better estimation in the projection
space, and as a result contributes greatly to the quality of
reconstruction in terms of the distance metric, calculated
based on the distance to the original image, and based on
the structural content, the performance of proposed
method is higher than that for the IRR-TV, which was
introduced to improve the quality of the traditional IRR
method.
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Fig. 5: (a) Original phantom image. (b) The AIRR
reconstruction, (c) IRR-TV reconstruction, and (d) IRR
reconstruction; from the noise-free sparse-view projections.

Fig. 6: (a) Original phantom image. (b) The AIRR
reconstruction, (c) IRR-TV reconstruction, and (d) IRR
reconstruction; from the noisy sparse-view noisy projections.
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