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Abstract: In recent papers, new sets of Sheffer and Brenke polynomialsbased on higher order Bell numbers have been studied, and
several integer sequences related to them have been introduced. In the article other types of Sheffer polynomials are considered, by
introducing two sets of Euler-type polynomials.

Keywords: Sheffer polynomials, combinatorial analysis, Bernoulli numbers, Euler-type polynomials

1 Introduction

In recent articles [5,12], the present authors have studied
new sets of Sheffer [14] and Brenke [4] polynomials
related to higher order Bell numbers. Furthermore,
several integer sequences associated with the considered
polynomials sequences, both of exponential and
logarithmic type, have been highlighted.
It is worth to note that exponential and logarithmic
polynomials have been recently studied in the
multivariate case [9,10,11].
In this article we show new sets of Sheffer polynomials,
by introducing two families of Euler-type polynomials.

2 Sheffer polynomials

The Sheffer polynomials{sn(x)} are introduced [14] by
means of the exponential generating function [15] of the
type:

A(t)exp(xH(t)) =
∞

∑
n=0

sn(x)
tn

n!
, (1)

where

A(t) = ∑∞
n=0an

tn
n! , (a0 6= 0) ,

H(t) = ∑∞
n=0hn

tn
n! , (h0 = 0) .

(2)

According to a different characterization (see [13, p. 18]),
the same polynomial sequence can be defined by means of

the pair(g(t), f (t)), whereg(t) is an invertible series and
f (t) is a delta series:

g(t) = ∑∞
n=0gn

tn
n! , (g0 6= 0) ,

f (t) = ∑∞
n=0 fn tn

n! , ( f0 = 0, f1 6= 0) .
(3)

Denoting byf−1(t) the compositional inverse off (t) (i.e.
such that f

(

f−1(t)
)

= f−1 ( f (t)) = t), the exponential
generating function of the sequence{sn(x)} is given by

1
g[ f−1(t)]

exp
(

x f−1(t)
)

=
∞

∑
n=0

sn(x)
tn

n!
, (4)

so that
A(t) = 1

g[ f−1(t)]
, H(t) = f−1(t) . (5)

Wheng(t)≡ 1, the Sheffer sequence corresponding to the
pair (1, f (t)) is called the associated Sheffer sequence
{σn(x)} for f (t), and its exponential generating function
is given by

exp
(

x f−1(t)
)

=
∞

∑
n=0

σn(x)
tn

n!
. (6)

A list of known Sheffer polynomial sequences and their
associated ones can be found in [2,3].

3 Euler-type polynomials

Here we introduce a Sheffer polynomial set connected
with the classical Euler polynomials.
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Assuming:

A(t) =
1

cosht
, H(t) = sinht , (1)

we consider the Euler-type polynomialsẼn(x), defined by
the generating function

G(t,x) = 1
cosht exp[x sinht] = ∑∞

k=0 Ẽk(x)
tk
k! . (2)

Note that the Euler numbers are recovered, since we have:

G(t,0) =
2

et +e−t =
∞

∑
k=0

Ẽk(0)
tk

k!
, (3)

so thatẼn(0) = En.
In what follows, we use the expansions

sinht = ∑∞
k=0

t2k+1

(2k+1)! = ∑∞
k=0

(

1+(−1)k+1

2

)

tk
k! , (4)

cosht = ∑∞
k=0

t2k

(2k)! = ∑∞
k=0

(

1+(−1)k

2

)

tk
k! . (5)

Theorem 1.- For any k≥ 0, the polynomials̃Ek(x) satisfy
the differential identity:

Ẽ′
k(x) = ∑k

h=0

(k
h

)

(

1+(−1)k−h+1

2

)

Ẽh(x) . (6)

Proof. - We write equation (2) in the form

exp[x sinht] = cosht
∞

∑
k=0

Ẽk(x)
tk

k!
,

by differentiating with respect tox, we find

sinht exp[x sinht] = cosht ∑∞
k=1 Ẽ′

k(x)
tk
k! ,

i.e.,

sinht G(t,x) = sinht ∑∞
k=0 Ẽk(x)

tk
k! = ∑∞

k=1 Ẽ′
k(x)

tk
k! .

Therefore, by using equation (4), we have

sinht G(t,x) = ∑∞
k=0 ∑k

h=0

(k
h

)

(

1+(−1)k−h+1

2

)

Ẽh(x)
tk
k! = ∑∞

k=1 Ẽ′
k(x)

tk
k! .

(7)

and puttingẼ′
0(x) = 0, equation (6) follows.

Theorem 2.- For any k≥ 0, the polynomials̃Ek(x) satisfy
the following recurrence relation:

Ẽk+1(x) = ∑k
h=0

(k
h

)

[(

1+(−1)k−h

2

)

x− τk−h

]

Ẽh(x) , (8)

where

τk =

(

1+(−1)k+1

2

)

2k+1
(

2k+1−1
)

Bk+1

k+1

are the coefficients of the McLaurin expansion of the

functiontanht , and Bk are the Bernoulli numbers.

Proof. - DifferentiatingG(t,x) with respect tot , we have
∂G(t,x)

∂ t =− sinht
cosht G(t,x)

+x cosht G(t,x) = ∑∞
n=1 Ẽn(x) tn−1

(n−1)! .
(9)

that is,

x cosht G(t,x)− tanht G(t,x) =
∞

∑
n=0

Ẽn+1(x)
tn

n!
.

Putting

tanht = ∑∞
k=1

22k(22k−1)B2k

(2k)! t2k−1

= ∑∞
k=0

(

1+(−1)k+1

2

)

2k+1(2k+1−1)Bk+1
k+1

tk
k! = ∑∞

k=0 τk
tk
k! ,

we find

x ∑∞
k=0

(

1+(−1)k

2

)

tk
k! ∑∞

k=0 Ẽk(x)
tk
k!

−∑∞
k=0 τk

tk
k! ∑∞

k=0 Ẽk(x) = ∑∞
n=0 Ẽk+1(x)

tk
k! ,

and therefore

∑∞
k=0 Ẽk+1(x)

tk
k! = ∑∞

k=0 ∑k
h=0

(k
h

)

(

1+(−1)k−h

2

)

xẼh(x)
tk
k!

−∑∞
k=0 ∑k

h=0

(k
h

)

τk−hẼh(x)
tk
k! ,

so that the recurrence relation (8) follows.
We recall that a polynomial set{pn(x)} is called quasi-

monomial if and only if there exist two operatorsP̂ andM̂
such that

P̂(pn(x)) = npn−1(x)

M̂ (pn(x)) = pn+1(x) , (n= 1,2, . . .).
(10)

P̂ is called thederivativeoperator andM̂ themultiplication
operator, as they act in the same way of classical operators
on monomials.
This definition traces back to a paper by J.F. Steffensen
[16], recently improved by G. Dattoli [6] and widely used
in several applications (see e.g. [7,8] and the references
therein).
Y. Ben Cheikh [1] proved that every polynomial set is
quasi-monomial under the action of suitable derivative
and multiplication operators. In particular, in the same
article (Corollary 3.2), the following result is proved

Theorem 3.- Let (pn(x)) denote a Boas-Buck polynomial
set, i.e. a set defined by the generating function

A(t)ψ(xH(t)) =
∞

∑
n=0

pn(x)
tn

n!
, (11)

where

A(t) = ∑∞
n=0 ãntn , (ã0 6= 0) ,

ψ(t) = ∑∞
n=0 γ̃ntn , (γ̃n 6= 0 ∀n) ,

(12)

with ψ(t) not a polynomial, and lastly

H(t) =
∞

∑
n=0

h̃n tn+1 , (h̃0 6= 0) . (13)
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Let σ ∈ Λ (−) the lowering operator defined by

σ(1) = 0, σ(xn) =
γ̃n−1

γ̃n
xn−1 , (n= 1,2, . . .).(14)

Put

σ−1(xn) =
γ̃n+1

γ̃n
xn+1 (n= 0,1,2, . . .). (15)

Denoting, as before, by f(t) the compositional inverse of
H(t), the Boas-Buck polynomial set{pn(x)} is
quasi-monomial under the action of the operators

P̂= f (σ) , M̂ =
A′[ f (σ)]

A[ f (σ)]
+ xDxH

′[ f (σ)]σ−1 , (16)

whereprimedenotes the ordinary derivatives with respect
to t.

Note that in our case we are dealing with a Sheffer
polynomial set, so that since we haveψ(t) = et , the
operatorσ defined by equation (14) simply reduces to the
derivative operatorDx. Furthermore, we have:

A(t) = 1
cosht ,

A′(t)
A(t) =− tanht ,

H(t) = sinht = ∑∞
k=0

t2k+1

(2k+1)! ,
(

h̃k =
(

1+(−1)k+1

2

)

1
(2k+1)!

)

,

H ′(t) = cosht , f (t) = H−1(t) = log(t +
√

t2+1) ,

so that we have the theorem

Theorem 4.- The Euler-type polynomial set{Ẽn(x)} is
quasi-monomial under the action of the operators

P̂= log(Dx+
√

D2
x +1)

M̂ =− tanh(settsinhDx)+ xsettsinhDx ,
(17)

(by settsinht= log(t+
√

t2+1) we denote the inverse of
the function sinht),
i.e.

P̂= ∑∞
k=0(−1)k (2k)!

4k(k!)2(2k+1) D2k+1
x ,

M̂ =− Dx√
1+D2

x

+x
√

1+D2
x

= (xD2
x −Dx+x)(1+D2

x)
−1/2 ,

M̂ = (xD2
x −Dx+x)∑∞

k=0

(−1/2
k

)

D2k
x .

(18)

There is no problem about the convergence of the above
series, since they reduce to finite sums when applied to
polynomials.

According to the results of monomiality principle [6],
the quasi-monomial polynomials{pn(x)} satisfy the
differential equation

M̂P̂ pn(x) = n pn(x) . (19)

In the present case, we have

Theorem 5.- The Euler-type polynomials{Ẽn(x)} satisfy
the differential equation
{[

(xD2
x −Dx+ x)∑∞

k=0

(−1/2
k

)

D2k
x

]

∑∞
k=0(−1)k (2k)!

4k(k!)2(2k+1)
D2k+1

x

}

Ẽn(x) = nẼn(x) ,
(20)

i.e.

(xD2
x −Dx+ x)∑

[ n−1
2 ]

k=0 ∑k
h=0(−1)h

(−1/2
k−h

) (2h)!
4h(h!)2(2h+1)

D2k+1
x Ẽn(x) = nẼn(x) .

(21)

Note that, for any fixed n, the Cauchy product of series
expansions in equation (20) reduces to a finite sum, with
upper limit

[

n−1
2

]

, when it is applied to a polynomial of
degree n, because the successive addends vanish.

Remark.The first few Euler-type polynomials are as
follows:

Ẽ0(x) = 1
Ẽ1(x) = x
Ẽ2(x) = x2−1
Ẽ3(x) = x3−2x
Ẽ4(x) = x4−2x2+5
Ẽ5(x) = x5+16x
Ẽ6(x) = x6+5x4+31x2−61
Ẽ7(x) = x7+14x5+56x3−272x
Ẽ8(x) = x8+28x6+126x4−692x2+1385
Ẽ9(x) = x9+48x7+336x5−1280x3+7936x
Ẽ10(x) = x10+75x8+882x6−1490x4+25261x2−50521

4 Circular Euler-type polynomials

Assuming:

A(t) =
1

cost
, H(t) = sint , (1)

we consider the circular Euler-type polynomialsS̃n(x),
defined by the generating function

G(t,x) = 1
cost exp[x sint] = ∑∞

k=0 S̃k(x)
tk
k! . (2)

Remark.The first few circular Euler-type polynomials are
as follows:

S̃0(x) = 1
S̃1(x) = x
S̃2(x) = x2+1
S̃3(x) = x3+2x
S̃4(x) = x4+2x2+5
S̃5(x) = x5+16x
S̃6(x) = x6−5x4+31x2+61
S̃7(x) = x7−14x5+56x3+272x.
S̃8(x) = x8−28x6+126x4+692x2+1385
S̃9(x) = x9−48x7+336x5+1280x3+7936x
S̃10(x) = x10−75x8+882x6+1490x4+25261x2+50521
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Remark.Therefore, we can write a table of circular Euler-
type numbers:

S̃0(0) = 1 S̃2(0) = 1
S̃4(0) = 5 S̃6(0) = 61
S̃8(0) = 1385 S̃10(0) = 50521

S̃2k+1(0) = 0, ∀ k≥ 0.

Note that the Euler numbers (in absolute value) appear,
since we have:

S̃2k(0) = |Ẽ2k| . (3)

Taking into account the relations between the hyperbolic
and circular functions:

sinh(ix) = i sinx, cosh(ix) = cosx,

the following relation between the polynomialsS̃k(x) and
Ẽk(x) follows:

S̃k(ix) = ikẼk(x) . (4)
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