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Abstract: In recent papers, new sets of Sheffer and Brenke polynoréded on higher order Bell numbers have been studied, and
several integer sequences related to them have been iogdin the article other types of Sheffer polynomials anesatered, by

introducing two sets of Euler-type polynomials.
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1 Introduction

In recent articles,12], the present authors have studied

the pair(g(t), f(t)), whereg(t) is an invertible series and
f(t) is a delta series:

5 t
new sets of Shefferl{] and Brenke 4] polynomials 9(t) = Xn—oUniy - (9o #0),
related to higher order Bell numbers. Furthermore, o tn )
several integer sequences associated with the considerddt) = Zn=o fy - (fo=0,f17#0).

polynomials sequences,
logarithmic type, have been highlighted.

both of exponential andDenoting byf~1(t) the compositional inverse dfit) (i.e.

such thatf (f~1(t)) = f~1(f(t)) =t), the exponential

It is worth to note that exponential and logarithmic generating function of the sequeni@(x)} is given by

polynomials have been
multivariate cased, 10,11].

recently studied in

In this article we show new sets of Sheffer polynomials,

by introducing two families of Euler-type polynomials.

2 Sheffer polynomials

The Sheffer polynomialgs,(x)} are introduced14] by
means of the exponential generating functi@g] [of the

type:

[ee] tn

A(t) exp(xH(t)) = Zosn(X) o (1)
where
Al =3roanl, (20#0), "
Ht) =Snomb .  (ho=0).

According to a different characterization (sé8[p. 18]),

S P 0) = 5 005 @
so that
AD =gk HD=10). ®

glfto)”
Wheng(t) = 1, the Sheffer sequence corresponding to the
pair (1,f(t)) is called the associated Sheffer sequence
{on(x)} for f(t), and its exponential generating function
is given by

exp(xf(t)) = ioan(x)% . (6)

A list of known Sheffer polynomial sequences and their
associated ones can be found2n3.

3 Euler-type polynomials

Here we introduce a Sheffer polynomial set connected

the same polynomial sequence can be defined by means efith the classical Euler polynomials.
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Assuming: Proof. - Differentiatings(t,x) with respect tda, we have
1 9G(tx) _ _ sinht G(t,%)
Alt) = —— H(t) = sinht 1 ot cosft
)= —  H(t)=sinht, (1) ©)

. +xcosh G(t,X) = T, En(X) A .
we consider the Euler-type polynomiais(x), defined by (%) = Zre1 B gy

the generating function that is,
- tn
G(t,X) = s EXPX SINh] = 37 Ek(x)% : (2)  xcosh G(t,x) —tanht G(t,x) z Eni1(x)
Note that the Euler numbers are recovered, since we hav%utting
2 © . tk . 22k(22k 1)BZk ok—1
G(t,0) = Tt k;Ek(O)H, () tanht=3, —Fpr—t
. 1 1 k+1\ 2K+1(ok+1_1)pg K
so thatEn(0) = Ep. . =i o( ) ) ( K+ T LS i@ = 2k ok k' ;
In what follows, we use the expansions we find
. 2k+1 1+ (—1)KFLY\ ¢k o ~ tk
sinht = 312 o £k+1 = Yk-o ( + 2> ) i (4) XEk:o(H(z 2 ) Yi-oEk(X) 7
S Tl TP B(X) = T B (X)
1=K tk Yk=0Tk g 2k=0FEk n—0 Ek+1(X) 7 »
COSIt =5 o tam = ko ( 2 ) K= ®) and therefore

=~ 0 = k=h ~ k
Theorem 1.- For any k> 0, the polynomial&g(x) satisfy S ko Exr1(X )w =3k 0 Zh 0( ) (&) XEp(x) L-.
the differential identity: .
—Sovio(f 8) T nEn(X )k| ;

~ K K 14+(—1 k—h+1\ ~
E(X) = ¥h-o (h) (%) En(x). (6) so that the recurrence relatia8) follows.
. _ _ We recall that a polynomial s¢pn(x)} is called quasi-
Proof. - We write equatior?) in the form monomial if and only if there exist two operatd?sandM
such that

tk R
K P(pn(x)) = npr-1(x)

M (pn(X) = pns1(®),  (n=1,2,...).

_ _ . Pis called thederivativeoperator andil themultiplication
sinht exp[x sinht] = cosht ¥’ 1 E/(X) i , operator, as they act in the same way of classical operators
on monomials.

exp[x sinht] = cosht g Ex(X)
K=0 (10)

by differentiating with respect t, we find

€., This definitiorj traces back to a paper by .J._F. Steffensen
sinht G(t,x) = sinht T oEk( ) =y lEk( ) ) [16], recently improved by G. Dattolid] and widely used

in several applications (see e.d@,§] and the references
Therefore, by using equatiod)( we have therein).

Y. Ben Cheikh [] proved that every polynomial set is

H ™ k k
sinht G(t,X) = 31’03 ho o( ) quasi-monomial under the action of suitable derivative

(1+(—1) )Eh( )L =52 El(x ) (7) and multiplication operators. In particular, in the same
2 K Zk=1"k ' article (Corollary 3.2), the following result is proved
and puttinggy(x) = 0, equation§) follows. Theorem 3.- Let (pn(x)) denote a Boas-Buck polynomial
L. . set, i.e. a set defined by the generating function
Theorem 2.- For any k> 0, the polynomial&g(x) satisfy - N
the following recurrence relation: A W(XH(t)) = z Pn(X v , (11)
~ _1yk=h ~
Exi1() = 3o (1) K%) X= kah} Ea¥) ) here
where Alt) =3nodnt", (80 #0),
12)
14 (=1 k+1 2k+1 2k+1_1 Bk 1 " - .
Tk:( 7 ) ( k+1) - WO =Snoft".  (h#0 n),
with ¢(t) not a polynomial, and lastly
are the coefficients of the McLaurin expansion of the w
_ Ao+l i
functiontanht, and B are the Bernoulli numbers. b= n;h”t ’ (ho #0). (13)
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Leto € A(-) the lowering operator defined by
o(l)=0, o(")= % X1 (n=1,2...Y14)
Put

o 1(x") = @ X" (n=0,1,2,...). (15)

Yh
Denoting, as before, by(ff) the compositional inverse of
H(t), the Boas-Buck polynomial set{pn(x)} is
guasi-monomial under the action of the operators

5 _ Alf(o)]

P=1f(0), M = ALF(0) +xDyH'[f(0)]o"t, (16)

whereprimedenotes the ordinary derivatives with respect upper limit [“

tot.

Theorem 5.- The Euler-type polynomial§En(x)} satisfy
the differential equation

{ |02 =D+ 570 (V) D]

o pyk___(20! pak+il E oy g (20)
ko~ 1) Fnz ki Px n(X) = NEn(x),

i.e.

(XDZ— DX 5% oo~ on

- h)! ~ o
( ki/hz) Z% DL Eq(X) = NEq(X).

Note that, for any fixed n, the Cauchy product of series
expansions in equatior2Q) reduces to a finite sum, with
%1] when it is applied to a polynomial of
degree n, because the successive addends vanish.

Note that in our case we are dealing with a ShefferRemarkThe first few Euler-type polynomials are as

polynomial set, so that since we havgt) = €, the
operatoro defined by equatioril@) simply reduces to the

derivative operatoDy. Furthermore, we have:
At
Al) = g s %:—tanrt,
2K+l L 1+<,1)k+1 1
HO =siht =320 gy (= (F2) ity
H’(t) = cosht, f(t)=H1(t) = log(t+ V12 +1),

so that we have the theorem

Theorem 4.- The Euler-type polynomial sefEn(x)} is
quasi-monomial under the action of the operators

=log(Dx+ /DZ+1) a7
M = — tanh(settsiniDy) + xsettsiniDy,
(by settsinht=log(t+ vt2+ 1) we denote the inverse of
the function sinh),
ie.

5 ) 2k)!
P= Zk:o(_l)km Dk,

M = —\/@+x\/l+ D2

= (XDZ — Dy +x)(1+D2)~1/2,

(18)

M = (xDZ — Dy +X) 3o (1) D.

(x)
There is no problem about the convergence of the abov%(x)
series, since they reduce to finite sums when applied t054(x)

polynomials.

According to the results of monomiality principlé]]
the quasi-monomial polynomial§pn(x)} satisfy the
differential equation

NP pr(X) = N pn(X).
In the present case, we have

(19)

follows:
Eo(x) =1
E1(X) =x
Ex(x) =x*—1
Es(x) =x3—2x
Ea(x) =x* -2 +5
Es(X) = x°+ 16x
Es(X) = X 6+ 5x* +31x% — 61
E7(x) = x + 145 4 56x3 — 272
Eg(x) =3+ 28x° 4 126¢* — 692¢* - 1385
Eo(x) = x°+48x" 4- 336 — 1280¢ 4- 7936«
E1o(x) = x10+ 75x@ + 882¢ — 1490¢* + 2526 x> — 50521
4 Circular Euler-type polynomials
Assuming:
1 .
Alt) = — H(t) = sint 1
0= g (t) = sint, 1)

we consider the circular Euler-type polynomiafs(x),
defined by the generating function

G(t,x) = Seo& G . )

RemarkThe first few circular Euler-type polynomials are
as follows:

2 exp[xsint] =

S(x) =1
Si(x) =x
S(x)=x2+1
X34 2x
x*+ 22 +5
S(x) = x5+ 16x
S(x) = x — 5+ 31 + 61
Sy(x) = X7 — 14 + 563 + 272.
Sp(x) = x8— 28x8 + 126¢* + 692 + 1385
S(x) = x9 48x7 4336 + 1280¢ + 7936«
Sio(x) = x10 — 75x8 + 882x8 + 1490¢* 4- 2526 x* + 50521
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RemarkTherefore, we can write a table of circular Euler- [10]F. Qi, Integral representations for multivariate
type numbers: logarithmic potentials, J. Comput. Appl.
~ ~ Math. 336 (2018), 54-62; available on line at
S(0)=1 $(0)=1 https://doi.org/10.1016/j.cam.2017.11.047.
$(0)=5 $(0) =61 [11] F. Qi, On multivariate logarithmic polynomials and the
$(0) = 1385 S10(0) =50521 properties|ndag. Math.336 (2018), (in press); available on
N line at https://doi.org/10.1016/j.indag.2018.04.002.
Si+1(0) =0, Vk>0. [12] P.E. Ricci, P. Natalini, G. Bretti Sheffer and
Brenke polynomials associated with  generalized

Note that the Euler numbers (in absolute value) appear,

since we have:

ézk(o) — |E2k| ) (3) http://www.vijnanaparishadofindia.org/jnanabha/vobi4v-
no-2-2017

Taking into account the relations between the hyperbolid13] S-M. RomanThe Umbral CalculusAcademic Press, New

and circular functions: York, 1984, _ _
[14] I.M. Sheffer, Some properties of polynomials sets afoze

type, Duke Math. J.5 (1939), 590-622; available online at
https://projecteuclid.org/euclid.dmj/1077491414

[15] H.M. Srivastava, H.L. Manochd Treatise on Generating
Functions Halsted Press (Ellis Horwood Limited,

Bell numbers, Jnanabha, Vijnana Parishad of
India, 47 (No2-2017), 337-352; available on line at

sinh(ix) =i sinx, coshix) = cosx,

the following relation between the ponnomié@(x) and
Ex(x) follows:

é((ix) _ ikEk(X). (4) Chichester), John Wiley and Sons, New York, Chichester,
Brisbane and Toronto, 1984.
[16] J.F. Steffensen, The poweroid, an extension of the
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References 333-366; available online at doi:10.1007/BF02392231,

https://projecteuclid.org/euclid.acta/1485888329.
[1] Y.B. Cheikh, Some results on quasi-monomialppl. Math.

Comput, 141 (2003), 63—76.

[2] R.P. Boas, R.C. Buck, Polynomials defined by generating
relations, Amer. Math. Monthly 63 (1958), 626-632; G. Bretti is a researcher
available online at https://www.jstor.org/stable/23805 at the National Researh

[3] R.P. Boas, R.C. BuckPolynomial Expansions of Analytic Council (I.LA.C.) in Rome,
Functions Springer-Verlag, Berlin, Gottingen, Heidelberg, Italy. She works by many
New York, 1958. years in Numerical Analysis,

[4] W.C. Brenke, On generating functions of polynomial Special functions, Matrix
systemsAmer. Math. Monthly52 (1945), 297-301, available functions, Integral  and
online at https://www:.jstor.org/stable/2305289. discrete transforms, Ordinary

[5] G. Bretti, P. Natalini, P.E. Ricci, A new set of SheffeelB and partial differential
polynomials and logarithmic number§eorgian Math. J. equations Asymptotic
2018, (to appear). analysis, Eigenvalue problems.

[6] G. Dattoli, Hermite-Bessel and Laguerre-Bessel fuorcdi A ' '
by-product of the monomiality principle, itkdvanced Special
Functions and Applications (Proceedings of the Melfi

School on Advanced Topics in Mathematics and Physics;
Melfi, 9-12 May, 1999) (D. Cocolicchio, G. Dattoli and H.M.
Srivastava, Editors), Aracne Editrice, Rome, 2000, pp-147
164.

[7] G. Dattoli, P.E. Ricci, H.M. Srivastava, Editors), Adwzed
Special Functions and Related Topics in Probability and in
Differential Equations, (Proceedings of the Melfi School on
Advanced Topics in Mathematics and Physics; Melfi, June
24-29, 2001), in:Applied Mathematics and Computation
141, (No. 1) (2003), 1-230. ?

[8] G. Dattoli, B. Germano, M.R. Martinelli and P.E. Ricci,
Monomiality and partial differential equationsMath.
Comput. Modelling50 (2009), 1332-1337; available online
at https://doi.org/10.1016/j.mcm.2009.06.013.

[9] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Some properties
and an application of multivariate exponential polynosjal
HAL archives(2018); available online at https://hal.archives-
ouvertes.fr/hal-01745173.

Eigenvalue problems.

P. Natalini is professor
and researcher at the
RomaTre University.
He works by many years in
Numerical Analysis, Special
functions, Matrix functions,
Integral and discrete
transforms, Ordinary and
partial differential equations,
Asymptotic analysis,

(@© 2018 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theo, No. 2, 51-55 (2018) www.naturalspublishing.com/Journals.asp NS 2 55

P. E. Ricci is professor
and researcher at the
UniNettuno International
Telematic University
in Rome, being retired from
Rome University Sapienza
by more than nine years.
He works by many years in
Numerical Analysis, Special
functions, Matrix functions,
Integral and discrete transforms, Ordinary and partial
differential equations, Asymptotic analysis, Eigenvalue
problems.

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Sheffer polynomials
	Euler-type polynomials
	Circular Euler-type polynomials

