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Abstract: We give the exact analytical description for the dynamics of an atom coupled to field 

mode in dissipative cavity by using the master equation. The effects of thermal photon (n≠0) on 

entanglement and coherence loss are achievement. It is found that the field is inhibited from going 

into a pure state and coherence is lost faster than in the case of zero temperature (n=0).  
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1  Introduction 

   One of the simplest models that describe the 

interaction of quantized radiation field with matter is 

the Jaynes-Cumming (JC) model [1]. It has been 

successfully used to describe many physical systems 

[2,3] in cavity electrodynamics. When amplitude 

damping is taken, the exact solutions for the 

standard JC model [4] and for a dispersive JC model 

(in which, the far-off resonance limit for atom-field 

interaction is considered) [5,6], can be obtained 

under certain conditions. 

  In recent years attention has been focused on 

investigating open quantum systems because of their 

important role in building quantum computers and 

processing quantum information [7-9]. 

  The entanglement between atomic and the field 

subsystems is one of the most interesting aspects of 

the dynamics of JC model. The quantum 

entanglement is emerged by the development of 

statistical correlations between the two subsystems, 

as a result of interaction. Many papers have focused 

on properties of entanglement [10-18] for the 

standard JC model without damping or with 

damping to reservoirs at zero temperature [5,19-21] 

or with phase damping cavity [22]. Also, 

entanglement generation and entropy growth due to 

essential decoherence in the JC model have been 

studied [23]. These studies used Shannon and von 

Neumman entropies and its variants to deal with 

these aspects. These entropies have been used 

successfully as quantifiers of entanglement, 

however, there are other information quantifiers. 

One of these quantifiers is the Fisher Information 

measure [24] that has been employed in many 

different aspects [25]. It has been recently used in 

the field of dynamics of a trapped ion in a laser field 

[26] as indicator to the quantum-classical limit. 

    In this article, we study the effect of thermal 

photon due to finite cavity temperature on an atom 

interacting with a single mode of the field. 

Specifically, we consider single-frequency photons 

of the cavity to be far from resonance with the 

atomic transition, i.e., the dispersive case. In section 

2, the master equation is solved for any initial cavity 

field by using superoperator method. In section 3, 

we use partial entropies for the atom and the field, 

the total entropy and atomic quantum Fisher 

information to study the coherence properties and 

quantify entanglement. Concluding remarks are 

presented in section 4. 
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2 Dispersive regime in the presence of 

dissipation 
   The Hamiltonian of a two-level atom interacting 

with a single-mode quantized field under the 

rotating wave approximation (RWA) is given by 
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where  0   is the transition frequency between the 

excited and ground states of the atom,  

 z  ee  ggis the population inversion 

operator, where the symbols eg   refer to the 

excited (ground) state of the atom,      and      

are the raising and lowering operators and     is the 

frequency of the cavity field whose creation 

(annihilation) operator is  â


 ( â  ) that satisfy the 

commutator relation  â,â   1  , the parameter  

   is the atom-field coupling constant, with the 

detuning parameter    0  .   The dispersive 

limit of a one-photon process is obtained when the 

interaction Hamiltonian  ĤI   can be considered as a 

small perturbation in the following regime  

||
  n 1   for any "relevant" photon number  

n   [5,27,28]. Under this condition, we get an 

effective interaction Hamiltonian in the form 
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   In the interaction picture and in the dispersive 

approximation, the master equation that governs the 

dynamics of a two-level atom interacting with an 

electromagnetic field in cavity and coupled to a 

reservoir at non-zero temperature [29] is given by 
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                                                                               (3)   

Where    is the decay rate, n   the average number 

of thermal photons of the reservoir. This model has 

been solved for the case when  n  0   in [5,6] and 

for the case   0   in [6]. But here this model is 

studied for (  0,  n  0  ) in a generalization of 

earlier investigations. This is done to study the 

effects of black body photons on this system [30]. 

   The density operator can be cast as follows: 

|||||||| )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ ggtegtgeteett       

                                                                               (4)                                                                                            

   Equations of motion for each one of the matrix 

elements in (4) can be obtained from the master 

equation (3). As an example, the diagonal term  

 t   as done, for instance in [6] into the form: 

 t
t

 2nÎ  L 1  L 2  M  N  0.   #   
                                                                                        

                                                                                       (5) 

with the superoperators 

L 1  2n  1ââ, L 2  2nââ ,

M   ââ , N   ââ,   2n  1  i,

and  Î   is the identity operator. The superoperators  

L 1 ,L 2 ,M   and  N   obeying the commutation 

relations displayed in ref [6] 
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  From the above equation, we can write the formal 

solution of (5) as 

 t  exp2ntexp L 1  L 2  M  N t  0.   #   

                                                                             (6) 

   We can factorize the exponential in Eq (13) as 

 

 t  e2nt0te1tL 2e2tM 3tN e4tL 1 0,
                                                                                       (7) 

 t  e2nt0te1tL 2e3tM 2tN e4tL 1 0.    
                                                                              (8)                                                                              

  For the initial conditions  m0  0  for  

m  0. .4,  the solution for the     s given by [30]: 

1t  4t  1
2n

N t

1  N t 
,

2t  1
   it  ln1  N t   3

t,

0t  2nt  ln1  N t , N t  n1  e2t .   #   

                                                                             (9) 

  For the off diagonal operators   t   and   t , 

the master equations are given by 

 t
t

 2n  iÎ  L 1  L 2  Ĵ 0,   #   
  (10)                                      
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where 
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  We get the solution of off diagonal elements in the 

form 
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The corresponding functions  
 that satisfy  

m
 0  0 are given by [30]: 
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where 

  2  42n2  n , 1
    , 2

    

eqs. (6) and (11) give the exact solutions for the 

density matrix elements. 

In the following section we apply these time-

dependent analytical solutions for the matrix 

elements for a specified initial cavity field to 

calculate the time evolution of some properties of 

this model especially coherence and entanglement 

through different quantifiers. 

 

3 Temporal evolution of information 

quantifiers 

   In this section we study the effect of black body 

photons of the reservoir on entropies and atomic 

quantum Fisher information when the atom is 

prepared in a coherent superposition of its states and 

the cavity mode in coherent state. Thus, the initial 

state of the system may be expressed as follows: 
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then the two subsystems start to interact at t=0. The 

elements (6) and (11) of the density operator are 

initially ,)0(ˆ 2||    c   0  c2
||  , 

   cc)0(ˆ and  0  cc
||.   

Therefore, the matrix elements of the density 

operator are given as [30]: 
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  The asymptotic values as  t    for the off 

diagonal elements  t  t  vanish, but the 

asymptotic value for the diagonal elements are given 

by: 

t   
c2

n 
n0


n

n  1

n

nn   #   

  

                                                                           (16)           

which is the density operator for the thermal state as 

would be expected. In what follows we investigate 

the effects of damping on the system in which both 

the atom and cavity field mode start from pure state, 

we use the entropy and atomic quantum Fisher 

information to exhibit these effects. 

 

3.1 Atomic quantum Fisher information 

  Fisher information has two basic roles to play in 

theory. First, it is a measure of the ability to estimate 

a parameter; this makes it a corner stone of the field 

of statistical studies called parameter estimation 

[31]. Second, it is a measure of the state of disorder 

of a system or phenomenon, that makes it a corner 

stone of physical theory [24,26]. Here we use 

quantum Fisher information to quantify 

entanglement. Suppose that     is a parameter, it is 

often useful to express the log-likelihood derivative 

in terms of the symmetric logarithmic derivative or 

quantum score of    , denoted by  //   defined as  

                             ///                                   (17)      

where     denotes Jordan product, i.e., 
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2

1
//////                                   (18) 

/ denoting the ordinary derivative of  with 

respect to  .   

Quantum Fisher information is given by [31] 

           
I  tr//

2 .   #   
                       (19) 

  In this article , we replace the parameter     with 

time  t  and use QFI to indicate entanglement for 

atomic state. Atomic QFI can be defined 

accordingly as 

It  trAtA//t
2 t   #   

                                    (20) 

   We present in the following section the evolution 

of the atomic QFI I(t) with the scaled time t   for 

different values of the dissipation constant   and 

mean number of the thermal photons n  to show how 

the atomic QFI gives results compatible with atomic 

entropy. 

 

3.2 Total entropy and reduced entropies of 

bipartite systems 

   Total entropy S(t) quantify the entanglement 

between the field-atom system and the environment. 

It can be expressed in terms of eigenvalues  it   of 

the density operator     as 

St  
i0



it lnit.
                                (21)                                              

   We use the reduced quantum entropy to see what 

happen to coherence properties of the atom and field 

. The entropy of the subsystems can be defined 

through their respective reduced density matrix  

AFt  TrFAt   as [10,11] 

 SAF  TrAF AF ln AF.                 (22)                                                  

    
   For the entropy of general two-component system, 

one has the Araki-Lieb theorem [32]:  

|SA  SF |  S  SA  SF.   An immediate 

consequence of this inequality is that if the total 

system is in a pure state, then the component 

systems have equal entropies. Since we have 

assumed the atom and the field to be initially in a 

disentangled pure state , then the total entropy of the 

system is zero when the damping is ignored, but 

when damping is considered, entropy is non-zero, so 

the reduced entropies of the two subsystems are not 

identical. This means that to measure the correlation 

properties of the atom and field we use entropies of 

the subsystems. The eigenvalues of the reduced 

atom density operator   At   are given by  

1,2
A  1

2
1  

A  
A 2  4  

A 2 . (23)  

                                                                

   Then the atomic entropy is given by 

SA  
i1

2

i
A lni

A.

                                   (24)                            

   The reduced field operator   Ft   has infinite 

number of eigenvalues  i
F

 , so numerical 

computations are to be used to calculate the 

eigenvalues of the reduced field density operator. 

Therefore, the field entropy may be expressed in 

terms of the eigenvalues  i
F

  as, 

SF  
i0



i
F lni

F

                                                  (25)  

 

4 Numerical results and discussion 
   We take the initial atomic state   

 
2

1
.,.,2/   cceig  and the field to be 

initially prepared in coherent state with    0.1,    

0.5 , 1.  We present in Figs. 1,2,3 the time evolution 

of the atomic quantum Fisher information  I(t)  

(normalized to unity) and the atomic reduced 

entropy  SA   with scaled time  t   for the 

dissipation parameter    0.05   and the mean 

number of thermal photons  n  0,0.5,1.   Since it 

has been indicated [26] that the QFI increases 

strongly by increasing the coherent parameter  ,   

therefore, we use the normalized QFI by relating  

I(t)  to I(0).    Thus we use the ratio  It/I0  in 

the following discussion. 

4.1 Too-weak field (   0.1,0.5 ) 

   In Fig. 1 we display QFI and  SA   for  

  0.1,  0.05   and  n  0,0.5,1  

respectively. At zero temperature (i.e.,  n  0  ) Fig. 

1 (a,b) display QFI and atomic entropy, we observe 

that they oscillate near the values  1  and  0 

respectively, after a long time both curves tend to 
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stationary behavior. Increasing  n   to the value  

0.5,   we notice in Fig. 1(c,d) drops down and decay 

to an almost zero value after  t   =40, while the 

atomic entropy increases monotonically until it 

reaches its stationary value of  ln2   at almost the 

same time. When the thermal photons number 

increased to 1, it is observed that the QFI decays 

faster to almost zero, while  SA   reaches the value  

ln2   faster than the earlier case (see Fig. 1e,f). 

   Comparing Fig. 2 (   0.5 ) with Fig. 1, we find 

that at  n  0   the amplitude of the oscillations in 

QFI curve ( Fig. 2(a)) is increased, but about steady 

value less than the equivalent one in Fig. 1 due to 

higher  I(0) in this case due to increase of   and the 

atomic entropy oscillates about a value greater than 

that in Fig. 1due to the effect of the parameter    . 

The effect of thermal photons have made the 

number of oscillations decrease and QFI,  SA   tend 

to steady values faster than the equivalent cases in 

Fig. 1 as indicated in Figs(2c-f) for the values  

n  0.5  and  1. 

a  
 

b  

c  

 

d  
 

e  
 

f  

Figure 1:  Time evolution of QFI and SA for    =0.1,    =0.05 

  and n  =0,0.5,1 respectively 

 

a  
 

b  
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c  
 

d  
 

e  
 

f  
Figure 2: The same as Fig. 1 but for    =0.5 

 

 

4.2 Not too-weak field 

   In this case we take    1   and we keep the rest 

the parameters as before in the previous cases. What 

happen when we increase    to 1 ?.  At  n  0  , we 

have the same number of oscillations but with small 

amplitudes. We note that the QFI has its minima 

near zero, while  SA   has its maxima near  ln2  . 

Increasing n  leads to decreasing in the number of 

oscillations, QFI and  SA   tend to zero and  ln2   

respectively faster than in their equivalent cases 

Figs. 1,2. Therefore by increasing the number of the 

photons in the cavity field, it is found that 

information is lost faster as indicated by QFI, and 

decoherence becomes prominent as shown from the 

atomic entropy. These effects become more 

pronounced when this increase is accompanied with 

increase in the temperature by an increase in the 

thermal photons. 

a  
 

b  
 

c  
 

d  
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e  
 

f  

Figure 3: The same as Fig. 1 but for    =1 

 

5. Conclusions 
   In conclusion, we have solved the master equation 

for a quantized cavity mode for non-zero 

temperature by using superoperator techniques. The 

effects of thermal photons on Fisher information and 

atomic entropy dynamic for a dispersive JC model 

are investigated. It is found that, the thermal photons 

as well as the cavity field photons participate in the 

loss of information. The QFI finally tends to zero 

and information is lost completely as time develops. 

Further, the atomic coherence is lost faster than in 

the case of zero temperature on combining strong 

cavity field with higher temperature. 
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