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Abstract: In this paper, we discussed the fuzzy Bayesian estimation method for the Kumaraswamy distribution (KD) parameters and
the reliability function based on the progressive type-II fuzzy order statistics. The Bayesian estimators have been derived by Monte
Carlo Integration (MCI), Markov Chain Monte Carlo (MCMC), and Tierney-Kadane (TK). These estimators are compared with the
exact Bayesian estimators, via an intensive Monte Carlo simulation. The simulation results indicated that the Monte Carlo Integration
and Markov Chain Monte Carlo methods provide better estimators and outperform the other estimators. Finally, two real datasets are
provided to illustrate the results.
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1 Introduction

The two-parameter Kumaraswamy distribution on [0,1] was proposed by Kumaraswamy [1] and represented as KD(a., f3).
The probability density function (pdf) and cumulative distribution function (cdf) of the Kumaraswamy distribution are
provided, respectively, by:

frep)=apx® 1 (1-2%P~" 0<x <108 >0, (1

FluaB)=1-1-x90<x<1, a,f>0. 2

Therefore, the reliability function is given by
Rxa,B)=(1-xP;0<x<1, a,p>0 3)

According to Kumaraswamy and Ponnambalam [1,2], this distribution can reproduce the results of the beta distribution.
In addition, it can be used to approximate a variety of distributions, including uniform, triangular, or nearly any single
model distribution, depending on the parameters chosen. Jones [3] has examined in detail the properties of the
Kumaraswamy distribution.

Recently, many authors have become aware of the progressive type-II censoring schemes. The most popular type-I and
type-II censoring techniques restrict the experimenter’s freedom by preventing them from removing units before ending
the experiment. To overcome this restriction, a more general censoring system is known as the progressive type-II
censoring scheme; see Balakrishnan and Aggarwala [4]. The progressive type-II censored life test is described as
follows: Under this censoring scheme, n units are placed on test at time zero m failures to be observed. Suppose n units
are placed on a life test, and the experimenter decides beforehand the quantity m, the number of failures to be observed.
Now, at the time of the first failure, R; of the remaining n — 1 surviving units are randomly removed from the
experiment. At the time of the second failure, R, of the remaining n — R; — 2 units are randomly removed from the
experiment. Finally, at the time of the mth failure, all the remaining surviving units R, =n —m — 2;”;1' R; are removed
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from the experiment. Therefore, a progressive type-II censoring scheme consists of m, and Rj,R»,..,R;, such that
n=m+Y" R, The m failure times obtained from a progressive type-II censoring scheme will be denoted by
X1,X5,...,X,. Thus, the likelihood function for the progressive type-scheming scheme with a predetermined number of
random removal units (R, Ry, .., R,;) can be written as follows:

7 R;
L(6]X) = CITZ, f (xp) T2 (1= Fxp))™, 4)

where

m—1

C=n(n—R —1)(n—R —Ry—2)...(n— Z (Ri+1)).

i—1
If RRk=Ry=...=R,_1 =0, then R, = n—m which corresponds to the type-II censoring sample, and if
Ry =Ry =...=R,, =0, then n = m, which corresponds to the complete sample; see Wu [5].

The progressive censoring system has recently been the subject of numerous authors’ analyses. Gholizadeh et al. [6]
have examined the Kumaraswamy distribution under progressively type-II censored data. Feroze and El-Batal [7]
computed the maximum likelihood estimate and the asymptotic variance-covariance matrix for the two parameters of the
Kumaraswamy distribution under progressive type-II censoring with random removals. Eldin et al. [8] studied the
parameter estimations for the Kumaraswamy distribution under general progressive type-II censoring. Erick et al. [9]
studied the parameter estimations for the Kumaraswamy distribution using progressive type-II censoring, using the
maximum likelihood and Bayesian methods. El-Sagheer[10] employed a progressively type-II censoring scheme to
estimate test units from the Kumaraswamy distribution. They applied the EM method to get the maximum likelihood
estimates for the parameters. Furthermore, Sultana et al. [11] thoroughly examined Bayesian inference for the
Kumaraswamy distribution under hybrid censored samples. Among the most recent studies on progressive censoring
include, but are not limited to, Sultana et al [12], Tu and Gui [13], Ghafouri and. Rastogi [14], and Kohansal and
Bakouch [15].

Only precise data can be used in the previous studies to estimate the parameters of various lifetime distributions
under progressive type-II censoring. However, experiments don’t give precise knowledge in real-world situations. For
instance, it is impossible to identify a person’s reaction time to a particular stimulus during a psychological experience;
instead, the psychologist used the following imprecise data to estimate it: About 25 to 35 seconds are needed for the
reaction time. The fuzzy idea must be incorporated into statistical approaches to address the data’s lack of precision. In
these situations, the imperfection of the given data might be modeled using fuzzy numbers, see Dubois [16].

In recent years, many papers have extended the statistical methods to analyze fuzzy data for many distributions.
Denceux [17] demonstrated how the EM algorithm may be applied to statistical problems using fuzzy data for parametric
statistical models. Pak et al. [18,19,20,21,22] carried out several studies to create inferential methods when the available
data is in the form of fuzzy numbers. Makhdoom et al. [23] used a type-II censoring scheme to estimate the exponential
distribution’s parameter. Khoolenjani and Shahsanaie [24] have addressed various approaches to find the exponential
mean parameter under type-II censoring from fuzzy data. Shafiq [25] studied Bayesian and classical inferences for the
Pareto distribution of lifetime fuzzy data. Chaturvedi et al. [26] introduced the classical and Bayesian approaches for
estimating the parameters of the Rayleigh distribution based on type-II progressively hybrid censored fuzzy lifetime
data. AL-Sultany [27] and Mabrouk [28] have established inferences for inverse Rayleigh and inverse Lindley
distributions, respectively. Maswadah [29,30] derived the Bayes inference for fuzzy data based on progressive type-II
and dual generalized order statistics. Moreover, Ghosh [31], Seham and Amira Younis [32], and Alharbi and Kamel [33]
for the censored sample of fuzzy numbers obtained different classical and Bayes estimates.

The rest of this paper is planned as follows: Section 1 presents the maximum likelihood estimates for the
Kumaraswamy distribution parameters based on a progressive type-II censoring scheme from fuzzy lifetime data. In
Section 2, the Bayes estimates of the parameters «, 3, and the reliability function R(t) are obtained by using the
approximation forms of exact Bayes, Tierney-Kadane, Monte Carlo Integration, as well as the Markov Chain Monte
Carlo technique under the squared error loss function. Monte Carlo simulation results are presented in Section 3, which
compares the different estimation methods. Numerical examples are presented in Section 4. Finally, we make some
concluding remarks in Section 5.

We present the likelihood function formula under the progressive type-II censoring scheme. To drive the Bayesian
estimates of KD parameters. Now, assume that n independent units are put on a test and that the lifetime distribution of
each unit is given by f(x; 0). Consider the problem where, under a progressive type-II censoring scheme, failure times are
not observed precisely, and only partial information about them is available, so we can represent them as fuzzy numbers
%i = (ai,ci,bi),i=1,...,m and its corresponding membership functions (U, , ls,, - .-, ts, ). Let ey < ey < <y
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denote the ordered values of the means of these fuzzy numbers. The lifetime of R; surviving units, which are removed
from the test after the ith failure, can be encoded as fuzzy numbers, Z = (Z},22,...,2n) Where Zi = (Z;,,Zn, . .. ,Ziri) , for
i=1,...,m with the membership functions as follows:

0 z<c, .
5., — - ..., R;
I’LZ,] {1 Z>Ci, ]7 sy AN

The fuzzy data w = (%1,%2,...,%m,%1,22,..-,2m) is the set of observed lifetimes. Then the corresponding likelihood
function for observed data w can be obtained using Zadeh’s definition of the probability of a fuzzy event, see Zadeh [34],
as

Lo (w0, B) =TIy [ f () s, (¥)ax T2 TT)L S F (2) sy (2)dz
_ amﬁmeﬁii:]Rilog(lfc(i))H;nZI [x%=1(1 —x%)(B= )Nf,-(x)dx
Then, using the expression (5), the observed data log-likelihood function L(w; a, ) = logL, (w; o, ) can be calculated

as follows:
L(w; 0, B) = m(loga+ logP) + X1 log [ x* ' (1 — x*)P =1 i (x)dx

&)

6
+BY, Rilog(1—ct). ©
Maximizing (6) for  and 3, we obtain
L(W; lagx (1 =) 11y 1—x®)(B-1) +(x)d
L(g:, =2 _BY" R ] ca Ty —(B—1)x foa)il)(ljia)ﬁf()lg:;(x);x) Hz(x)dx
IL(w:a, Jx* Mg (1—x*) (1-x*) B~ g, (x)dx
(‘gﬁa ﬁ) — +Zm IR log( )+Z fxa’l(lfxa)(ﬁ’l)y;i(x)dx

We can find the MLEs for the unknown parameters & and 8 using an iterative finite difference method.

2 Fuzzy Bayesian Estimation

2.1 Exact Bayes (EB)

In this section, we derive the exact Bayes estimates for the KD parameters o, 3, and the reliability function based on the
progressive type-II censored fuzzy data. We assume the prior distributions of &, 8 are Gamma (a, b) and Gamma (c, d),
respectively; thus, we have

m(a) = a )Oc“ le=@b 4 b >0,

nz(ﬁ)—rd—ﬁ “le=dB ¢,d >0

Thus, the joint prior density on o and 8 is given by
P((X,ﬁ) o aaflﬁcflefbafdﬁ. (7)

Based on the likelihood function (5) and the joint prior (7). Therefore, the joint posterior of (@, 3) can be expressed as
follows:
7 (o, BIw) = ke "tV Blmte=Dexp—qb — Bld — Y| Rilog(1 — ¢;*)]]J11 ®)
where
Ty =TI [ (1= 5P ps(x)dx
We can derive the exact Bayes estimators of a functlon g(a, B) of the unknown parameters o, 3, and reliability R(t) under
the squared error loss function as follows:

R m+a—1gm+c—1 dad
g(“)B) :E(g(a5ﬁ)| ) fO ﬁigaﬁr)f; lﬁmfc I¢Jlip;:;dﬁ(x ﬁ) (9)

~ " 1(Xﬁm+alm+cljdd
R(t) = E(g(on B)w) = E((1 1) ) = DLt o et (10)

Using Simpson’s rule method for solving the above two equations, the exact Bayes estimators of @, 8, and reliability R(t)
can be obtained.
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2.2 Tierney-Kadane Approximation (TK)

The Bayes estimate of g(a, ) in Eq. (9) for any function of ¢, f3, and R(t) can be written in the following expression.

. B)e(@h)
§ (o B) = E(g(a, B) ) = Blse i mrecdd (11)
where,
Q(a,B) = (m+a—1)logar-+ (m-+c—1)logh — ab— Bld — X1, Rilog (1 — ;%)
+ X log [x* (1 —x)P ! iz (x) d,
H((X,ﬁ)z
and

H* (0, ) = H (@, B) + R

Then, the expression in (11) can be written as follows:

J5 s ™ @B dadp
(a ﬁ) f f enH(ocﬁ)dadﬁ (]2)

According to Tierney-Kadane [35], the Bayes estimate of the function g(o, ) can be obtained by approximating Eq. (12)
as follows:

5 detY* 1/2 x [ Ax A% A N 13
§(aB) = |45 | Cexpnln (@ p7) — H (@.B)]), (13)
where (6{*, B *)and (ﬁc, ﬁ) maximize H*(a, B) and H(c, ), respectively, and X* and X are the negatives of the inverse

Hessian of H*(¢t, ) and H(a, B) at ( ﬁ*)and (Oc ﬁ) respectively.
As a result, Appendix A contains the derivatives of H*(«, ) and H(«, ). From the second derivative of H(c, 3), the

determinant of the negative of the inverse Hessian of H (¢, ) at & and B is given by detX = (Hy Hy — Hpp?)~
Similarly, from the second derivative of H*(¢t, ), the determinant of the negative of the inverse Hessian of H*(a, f3) at

o and B is given by detZ* = (H| * H3, — H;‘22)7l
Thus, we can find the Bayes estimates for the parameters o and 8, and R(t) from (13).

2.3 Monte Carlo Integration (MCI)

The Monte Carlo Integration method is useful for obtaining solutions to problems involving integration that are too
complicated to solve analytically or with other numerical techniques. Consider 7(0) is the prior function and L(8|X) is
the likelihood function, then the Bayes estimate of the parameter 6 is given by

[ OL(61X)(0)d8

Xl TL6IX)7(0)d6
_ Jhi(8]X)q(0)d6
— Jha(8]X)q(8)d6

where h; (6]X) = % hy (0|1X) = %, and ¢ (0) be an important sampling distribution.

Let 6y,...,0y be a sample from ¢ (0). Then
N Ly b (6]X)
~ N &i=1

E[0|X1,Xs,...,Xy) &~ YV hn(6x) (14)
Based on the Monte Carlo Integration approximation technique (14), we can find the Bayesian estimators from the joint
posterior density function for o and 3, which is given by

(o, Blw) = Ka(”’*“’”ﬁ""“’” exp[—ab—Bd— Y, Rilog (1 —c;*)]]
Py (1= x )P ()

The normalizing constant in this case is k.
Consequently, the conditional marginal densities for o and 8 can be written as

f(OCWaﬁO):KlOC’"”*' expl[—ab — Pold — XL | Rilog(1 —c¢;%)]]
I S (1 — )P~ pg(x)dx]
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1 (Bl 0tg) = Ko™ .exp [~Bld — L1 Riog(1 — )]
iy e (1 =0

We assume that ¢(0) is the gamma density function with the hyperparameters a and b for the conditional posterior density
for a, and the gamma density function with the hyperparameters ¢ and d for the conditional posterior density for . As a
result, we can determine the Bayes estimators for @ and . Additionally, we use the mean of the generated samples from
the posterior densities to determine the Bayes estimates of R(t).

2.4 Markov Chain Monte Carlo (MCMC)

The MCMC technique is a general simulation method for sampling from posterior distributions and computing the Bayes
estimators for each parameter. The conditional posterior distributions of o and 3 are obtained from (8), which cannot
be reduced analytically to well-known distributions. So, we use the Markov Chain Monte Carlo method to simulate the
sample from the posterior distribution 7 (¥ |w) to calculate the Bayes estimate of ¥ (¢, 3). Using a Metropolis-Hastings,
see Hastings [36]. We carry out the Metropolis-Hastings algorithm in the following steps:

Stepl: Start with an initial guess value ()
Step2: Set j=1 and generate a new candidate parameter value 9* from proposal density ¢ (19(') |19(0)) .
Step3: Evaluate the acceptance probability as

* i—1)\ . ﬂ(ﬁ*‘w)q(ﬁoil)‘ﬁ*)
P(ﬁ ,19(] )) mln{ﬂ(ﬂ(j])W)q(ls*ﬁ(jl))al .

Step4: Generate u from a uniform (0,1) distribution.

Step5: If u < p(9*,9U~1), accept the proposal and set 91) = 9% else, setd) = 901,

Step6: Set j=j+1.

Step7: Repeat steps 2-6, N times and obtain 9(/), RU) (1), j=1,2,...,N.

Step8: Obtain the Bayes estimates of the parameter d(a, 3) and R(t) under the squared loss function as the mean of
generated samples from the posterior densities, i.e.

8 = Ex(9)7) = § XY, 00
R() = Ex (R()|7) = % X)L RY) (1),

3 Simulation Study

In this section, we present some experimental results based on a Monte Carlo simulation study to compare the performance
of the Bayes method based on the other four methods based on the progressive type-II censored fuzzy lifetime data. The
estimators’ performance has been compared based on the estimate and mean squared error (MSE). For this purpose,

MSE(6%) = T, (0 677,

in this case, M is the number of replications and 6* is the point estimate for the unknown parameter 6. The performance
of these estimates and the MSE values for each parameter have been evaluated using Monte Carlo simulations with 1000
replications for each sample size under the squared error loss function. The general fuzzy information system, shown in
Fig. 1, was used to fuzzify each realization of X, see Maswadah [29], and encode the simulation data of size m with the
appropriate membership functions:

1, x < hor x> mh, h=0.05
e () =< &8 ih<x < (i+1)h, i=1(1)(m—2).
mx - (m—1)h <x <mh

The progressively type-II censored samples from the KD were generated using the method proposed by Balakrishnan
and Sandhu [37]. In the simulation study, we generated several data sets for samples from the KD of sizes, namely n =
25, 50, 75, and 100, with 1000 replications. These samples have been generated with the true values of three different
values of a=(1.001, 2.007) and two different values of B =(2.007, 3.083) based on progressive type-II fuzzy censored
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Fig. 1: Simulation data of size m is encoded using the general fuzzy information system.

data with uncensored levels m equal to [n/2] and [3n/4]. The hyperparameters (a, b, ¢, d) are taken for informative prior
means so that exactly equal to the true values of (a; ) are taken as follows: (1.5, 3.9, 1.8, 2.2), (1.8, 2.2, 1.8, 2.2), (1.5,
3.9,2.71,1.9), and (1.8, 2.2, 2.71, 1.9). To compute the Bayes estimates using the MCMC algorithm, using the number
of iterations N = 10000, the ML estimates for unknown parameters & and 3 have been used as initial values for running
the MCMC algorithm and choosing the gamma distribution as a proposal distribution. Tables [1-4] provide the results of
the simulation. Based on these estimations, some of the points have been summarized in the following main points:

1.The estimated MSE values for the parameter «, increase as the value of a,increases and decrease as the value of the
parameter 3 increases, and vice versa for the parameter 3.

2.The estimated MSE values decrease as the hyperparameters of the informative prior increase and vice versa.

3.For the parameters o and 3, in general, the estimated MSE values based on the MCMC and the Monte Carlo
Integration methods are smaller than those based on the other methods.

4.The estimated MSE values of all the parameters decrease as the sample size n increases.

5.For the reliability function, the estimated MSE values decrease as the value of lifetime t increases and decrease as the
value of o and f increases.

6.The MSE values for the reliability function based on the Tierney-Kadane approximation and Monte Carlo Integration
methods are smaller than those based on the other methods.

4 Data Analysis

In this section, we analyze two real data sets, representing the monthly water capacity of the Shasta Reservoir in California,
USA, to illustrate the procedures developed in this paper.

The first dataset was reported by Query Monthly CDEC Senser Values [38] and included February 1991-2010.

The second dataset found in Kohansal [39], is related to the monthly water capacity of the Shasta Reservoir in California,
USA, between August and December from 1975 to 2016. These datasets are good fit for the Kumaraswamy distribution.
However, determining the lifetime of the Shasta Reservoir dataset could not provide an exact result. Therefore, such a
dataset could be presented as imprecise numbers. Assume that the membership functions are used for the imprecision of
the failure times based on fuzzy numbers x; = (x;, 4;), where h; = 0.05x; for i = 1(1)n, with the membership functions:

b (15)

lmh) o p<x<x i=1,..n.
w7 X < x < xi+h
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Table (1): The estimates and MSEs values for the parameter &, based on Bayes methods
for ¢ = 1,2 and B = 2,3 based on the progressive type-1I censored
samples at (m =n/2,3n/4).

Methods Exact Bayes Monte-Carlo Markov Chain Tierney-
Integration Monte Kadane
Carlo
n m [ B Orp MSE et MSE Oicmc MSE Ok MSE
25 12 1.001 2.007 | 0.8424 | 0.0332 | 0.9489 [ 0.0271 0.9520 | 0.0206 | 0.8701 0.0205
3.083 | 09102 | 0.0232 1.0116 | 0.0217 | 0.9701 0.0162 | 0.9406 | 0.0095
2.007 | 2.007 1.5028 | 0.2890 1.9312 | 0.0851 1.8684 | 0.0882 1.5174 | 0.2787
3.083 1.5483 | 0.2534 1.9520 | 0.0662 1.9074 | 0.0725 1.5237 | 0.2625
18 1.001 2.007 | 0.8792 | 0.0256 | 0.9514 | 0.0250 [ 0.9701 0.0162 1.0169 | 0.0146
3.083 | 0.9383 | 0.0184 1.0028 | 0.0217 | 0.9702 | 0.0150 | 0.9561 0.0072
2.007 | 2.007 1.6016 | 0.2184 1.9380 | 0.0782 1.8947 | 0.0757 1.5950 | 0.2282
3.083 1.6016 | 0.2126 1.9581 | 0.0596 1.9287 | 0.0601 1.5690 | 0.2348
50 25 1.00I | 2.007 | 0.9770 | 0.0093 | 0.9576 | 0.0167 | 0.9754 | 0.0119 | 0.9906 | 0.0034
3.083 1.0305 | 0.0064 | 0.9938 [ 0.0139 | 0.9862 [ 0.0086 1.0497 | 0.0070
2.007 | 2.007 1.7447 | 0.1222 1.9619 | 0.0494 1.9315 0.0489 1.6669 | 0.1489
3.083 1.7351 0.1139 1.9728 | 0.0376 1.9588 | 0.0420 1.6524 | 0.1492
37 1.00I | 2.007 | 0.9770 | 0.0093 | 0.9651 | 0.0156 | 0.9750 | 0.0106 1.1129 | 0.0246
3.083 1.0225 | 0.0088 1.0063 | 0.0124 | 0.9797 | 0.0083 1.0658 | 0.0094
2.007 | 2.007 1.8064 | 0.1021 1.9732 | 0.0483 1.9567 | 0.0423 1.8098 | 0.0997
3.083 1.7874 | 0.0933 1.9825 | 0.0358 1.9793 | 0.0324 1.7806 | 0.0954
75 37 1.00I | 2.007 1.0352 | 0.0101 | 0.9636 | 0.0133 | 0.9846 | 0.0084 1.0500 | 0.0059
3.083 1.0844 | 0.0081 1.0043 | 0.0103 1.0031 0.0071 1.1007 | 0.0143
2.007 | 2.007 1.8348 | 0.0816 1.9798 | 0.0397 1.9724 | 0.0345 1.7350 | 0.1121
3.083 1.8224 | 0.0701 1.9869 | 0.0298 1.9771 0.0281 1.7235 | 0.1075
56 1.001 2.007 1.0352 | 0.0101 09642 | 0.0112 | 0.9882 [ 0.0070 1.1285 [ 0.0255
3.083 1.0844 | 0.0807 1.0126 | 0.0787 | 0.9960 | 0.0054 1.1028 | 0.0152
2.007 | 2.007 1.8540 | 0.0691 1.9784 | 0.0338 1.9630 | 0.0334 1.8611 | 0.0674
3.083 1.8408 | 0.0623 1.9854 | 0.0247 1.9861 0.0214 1.8417 | 0.0618
100 | 50 1.001 2.007 1.0621 0.0124 | 0.9583 | 0.0105 | 0.9922 [ 0.0062 1.0865 | 0.0109
3.083 1.1128 | 0.0114 | 0.9954 | 0.0083 1.0026 | 0.0046 1.0964 | 0.0164
2.007 | 2.007 1.8748 | 0.0671 1.9742 | 0.0312 1.9610 | 0.0311 1.7750 | 0.0926
3.083 1.8634 | 0.0563 1.9813 | 0.0237 1.9903 | 0.0222 1.7670 | 0.0863
75 1.001 2.007 1.1306 | 0.0173 | 0.9627 | 0.0086 | 0.9924 [ 0.0055 1.1459 [ 0.0291
3.083 1.0874 | 0.0086 1.0076 | 0.0061 1.0018 | 0.0043 1.1287 | 0.0208
2.007 | 2.007 1.9083 | 0.0501 1.9798 | 0.0242 1.9774 | 0.0236 1.9183 | 0.0499
3.083 1.8940 | 0.0437 1.9864 | 0.0177 1.9835 | 0.0174 1.9002 | 0.0435
Table (2): The estimates and MSEs values for the parameter 3, based on Bayes methods
for ¢ = 1,2 and B = 2,3 based on the progressive type-II censored
samples at (m =n/2,3n/4).
Methods Exact Bayes Monte-Carlo Markov Chain Tierney-
Integration Monte Kadane
Carlo
n m o B Bes MSE Buci MSE Bucmc MSE Brx MSE
25 12 1.001 2.007 1.4297 | 0.3956 1.7774 | 0.1959 1.6217 | 0.2239 1.6243 | 0.2536
3.083 | 2.1468 | 0.9638 | 2.6935 | 03713 | 2.4242 | 0.5648 | 2.1294 | 1.0723
2.007 | 2.007 1.4085 | 0.4001 1.7778 | 0.1944 1.6349 | 0.2165 1.8408 | 0.1140
3.083 1.9254 1.4317 | 2.6566 | 0.4450 | 2.4305 | 0.5535 | 2.5605 | 0.3996
18 1.001 2.007 1.6217 | 0.2370 1.8547 | 0.1535 1.7627 | 0.1368 1.7936 | 0.1883
3.083 | 2.4335 | 0.5470 | 2.8135 | 0.3061 2.6174 | 03690 | 2.4125 | 0.7182
2.007 | 2.007 1.5431 | 0.2816 1.8570 | 0.1516 1.7399 | 0.1548 1.9170 | 0.1194
3.083 | 2.1632 | 0.9717 | 27900 | 0.3396 | 2.5859 | 0.3964 | 2.7118 | 0.3124
50 25 1.001 2.007 1.7837 | 0.1543 1.9155 | 0.1155 1.8194 | 0.1118 1.9068 | 0.1683
3.083 | 2.7109 | 0.2295 | 2.8715 | 0.2132 | 2.7244 | 0.2823 | 2.5779 | 0.5570
2.007 | 2.007 1.6478 | 0.2150 1.9185 | 0.1142 1.8137 | 0.1244 | 2.0353 | 0.1304
3.083 | 2.3328 | 0.7184 | 2.8949 | 0.2544 | 2.7264 | 0.2827 | 2.8871 | 0.2464
37 1.00I | 2.007 1.9309 | 0.1233 1.9483 | 0.0942 1.8761 0.0880 | 2.0497 | 0.1762
3.083 | 29310 | 0.1963 | 2.9564 | 0.1915 | 2.8313 | 0.2039 | 2.8898 | 0.3898
2.007 | 2.007 1.7562 | 0.1623 1.9522 | 0.0932 1.8899 | 0.0817 | 2.0871 0.1446
3.083 | 2.5566 | 0.4538 | 2.9603 | 0.2090 | 2.8417 | 0.1952 | 3.0394 | 0.2585
75 37 1.00I | 2.007 1.9452 | 0.1251 1.9464 | 0.0940 1.8801 0.0892 | 2.0337 | 0.1718
3.083 | 24973 | 0.5611 29525 | 0.1915 | 2.8397 | 0.2112 | 2.8857 | 0.3772
2.007 | 2.007 1.7626 | 0.1627 1.9507 | 0.0932 1.8702 | 0.0897 | 2.0768 | 0.1429
3.083 | 2.5692 | 0.4448 | 2.9579 | 0.2091 2.8440 | 0.1962 | 3.0052 | 0.2543
56 1.00I | 2.007 | 2.0237 | 0.1109 1.9674 | 0.0650 1.9032 | 0.0661 2.0825 | 0.1509
3.083 | 3.1269 | 0.1870 [ 3.0592 | 0.1790 | 2.9273 | 0.1316 | 3.0231 | 0.3426
2.007 | 2.007 1.8146 | 0.1280 1.9725 | 0.0643 1.9313 | 0.0636 | 2.0895 | 0.1258
3.083 | 2.6921 0.3284 | 3.0024 | 0.1463 | 2.9031 0.1391 3.1009 | 0.2485
100 | 50 1.001 2.007 | 2.0217 | 0.1182 1.9557 | 0.0646 1.9074 | 0.0651 2.0849 [ 0.1612
3.083 | 2.6587 | 0.4029 | 3.0059 | 0.1743 | 2.8798 | 0.1754 | 3.0492 | 0.3126
2.007 | 2.007 1.8128 | 0.1358 1.9611 | 0.0640 1.9139 | 0.0686 | 2.0660 | 0.1236
3.083 | 2.6780 | 0.3483 | 2.9827 | 0.1462 | 2.918] 0.1602 | 3.0285 | 0.2469
75 1.001 2.007 | 2.0983 | 0.1092 1.9952 | 0.0582 1.9410 | 0.0469 | 2.1286 | 0.1423
3.083 | 3.2729 | 0.2141 3.0313 | 0.1247 | 2.9593 | 0.1057 | 3.1447 | 0.3050
2.007 | 2.007 1.8774 | 0.0983 | 2.0008 | 0.0578 1.9399 | 0.0468 | 2.1127 | 0.1159
3.083 | 2.8104 | 0.2402 | 3.0508 | 0.1315 | 2.9583 | 0.1103 | 3.1686 | 0.2387
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Table (3): The estimates and MSEs values for the reliability, based on Bayes methods
for @ = 1,2 and 8 = 2,3at t = 0.5 based on the progressive type-1I censored
samples at (m =n/2,3n/4).

Methods Exact Bayes Monte-Carlo Markov Chain Tierney-
Integration Monte Kadane
Carlo

o B Res MSE Rucr MSE | Rycuc | MSE Rk MSE
25 | 12 | 1.001 | 2.007 | 0.3265 | 0.0093 | 0.3039 | 0.0086 | 0.3590 | 0.0150 | 0.2276 | 0.0031
3.083 | 0.2083 | 0.0105 | 0.1753 | 0.0049 | 0.2279 | 0.0141 | 0.1310 | 0.0011
2.007 | 2.007 | 05706 | 0.0041 | 0.6062 | 0.0059 | 0.5870 | 0.0038 | 04511 | 0.0172
3083 | 04592 | 0.0064 | 0.4743 | 0.0082 | 04712 | 0.0067 | 0.3276 | 0.0113
18 | 1.001 | 2.007 | 0.2969 | 0.0054 | 0.2876 | 0.0059 | 0.3159 | 0.0071 | 0.2295 | 0.0031
3.083 | 0.1788 | 0.0057 | 0.1631 | 0.0039 | 0.1963 | 0.0078 | 0.1291 | 0.0012
2.007 | 2.007 | 05554 | 0.0040 | 0.5930 | 0.0043 | 0.5612 | 0.0034 | 0.4706 | 0.0132
3.083 | 04353 | 0.0045 | 04572 | 0.0058 | 0.4417 | 0.0040 | 0.3394 | 0.0094
50 | 25 | 1.001 | 2.007 | 0.2924 | 0.0045 | 0.2746 | 0.0040 | 0.3132 | 0.0065 | 0.2053 | 0.0041
3083 | 0.1693 | 0.0042 | 0.1548 | 0.0024 | 0.1866 | 0.0061 | 0.1048 | 0.0010
2.007 | 2.007 | 0.5680 | 0.0030 | 0.5822 | 0.0031 | 0.5751 | 0.0028 | 0.4643 | 0.0131
3.083 | 04400 | 0.0038 | 0.4432 | 0.0041 | 0.4486 | 0.0036 | 0.3342 | 0.0092
37 | 1.001 | 2.007 | 0.2757 | 0.0029 | 0.2678 | 0.0031 | 0.2882 | 0.0035 | 0.2199 | 0.0029
3083 | 0.1514 | 0.0024 | 0.1468 | 0.0019 | 0.1668 | 0.0035 | 0.1101 | 0.0009
2.007 | 2.007 | 05608 | 0.0027 | 0.5769 | 0.0025 | 0.5584 | 0.0023 | 0.4961 | 0.0076
3083 | 04269 | 0.0028 | 0.4352 | 0.0032 | 0.4318 | 0.0026 | 0.3585 | 0.0057
75 | 37 | 1.001 | 2.007 | 0.2790 | 0.0031 | 0.2680 | 0.0031 | 0.2924 | 0.0035 | 0.2041 | 0.0040
3083 | 0.1535 | 0.0026 | 0.1471 | 0.0019 | 0.1699 | 0.0039 | 0.0981 | 0.0012
2.007 | 2.007 | 0.5670 | 0.0024 | 0.5769 | 0.0025 | 0.5739 | 0.0020 | 0.4758 | 0.0103
3.083 | 04330 | 0.0028 | 0.4353 | 0.0032 | 0.4416 | 0.0029 | 0.3422 | 0.0074
56 | 1.001 | 2.007 | 0.2681 | 0.0021 | 0.2629 | 0.0021 | 0.2752 | 0.0021 | 02217 | 0.0025
3.083 | 0.1420 | 0.0015 | 0.1373 | 0.0014 | 0.1504 | 0.0019 | 0.1062 | 0.0009
2.007 | 2.007 | 0.5603 | 0.0019 | 0.5733 | 0.0017 | 0.5619 | 0.0018 | 0.5086 | 0.0052
3083 | 04224 | 0.0020 | 0.4295 | 0.0022 | 0.4266 | 0.0020 | 0.3676 | 0.0042
100 | 50 | 1.001 | 2.007 | 0.2723 | 0.0023 | 0.2648 | 0.0022 | 0.2825 | 0.0026 | 0.2082 | 0.0034
3.083 | 0.1453 | 0.0018 | 0.1419 | 0.0015 | 0.1555 | 0.0024 | 0.1310 | 0.0011
2.007 | 2.007 | 05658 | 0.0019 | 0.5749 | 0.0017 | 0.5676 | 0.0018 | 0.4873 | 0.0078
3083 | 04284 | 0.0022 | 04316 | 0.0023 | 0.4342 | 0.0022 | 0.3510 | 0.0059
75 | 1.001 | 2.007 | 0.2636 | 0.0016 | 0.2578 | 0.0018 | 0.2675 | 0.0016 | 0.2241 | 0.0020
3.083 | 0.1358 | 0.0011 | 0.1384 | 0.0010 | 0.1412 | 0.0012 | 0.1291 | 0.0012
2.007 | 2.007 | 0.5625 | 0.0016 | 0.5688 | 0.0015 | 0.5607 | 0.0015 | 0.5191 | 0.0037
3.083 | 04213 | 0.0016 | 04237 | 0.0019 | 0.4242 | 0.0015 | 0.3753 | 0.0031

Table (4): The estimates and MSEs values for the reliability, based on Bayes methods
for @ = 1,2 and B = 2,3att = 0.7 based on the progressive type-1I censored
samples at (m =n/2,3n/4).

Methods Exact Bayes Monte-Carlo Markov Chain Tierney-
Integration Monte Kadane
Carlo
n m ] B Rep MSE Rycr MSE Ryieme MSE Rrx MSE
25 12 1.001 2.007 | 0.1730 | 0.0087 | 0.1311 0.0048 | 0.2089 | 0.0162 | 0.0965 0.0010

3.083 | 0.0884 | 0.0050 | 0.0496 | 0.0011 0.1053 | 0.0073 | 0.0408 | 4.5E-04
2.007 | 2.007 | 0.3254 | 0.0072 | 0.3145 | 0.0086 | 0.3650 | 0.0141 | 0.2205 0.0043
3.083 | 0.2156 | 0.0103 | 0.1795 | 0.0063 | 0.2372 | 0.0144 | 0.1222 0.0013
18 1.001 2.007 | 0.1443 | 0.0045 | 0.1186 | 0.0030 | 0.1667 | 0.0075 | 0.0898 | 9.5E-04
3.083 | 0.0667 | 0.0024 | 0.0440 | 0.0009 | 0.0803 | 0.0037 | 0.0358 | 3.1E-04
2.007 | 2.007 | 0.3010 | 0.0046 | 0.2981 | 0.0059 | 0.3259 | 0.0072 | 0.2198 0.0044
3.083 | 0.1866 | 0.0057 | 0.1642 | 0.0041 0.2027 | 0.0075 | 0.1153 0.0013
50 25 1.001 2.007 | 0.1344 | 0.0034 | 0.1088 | 0.0019 | 0.1562 | 0.0058 | 0.0713 | 9.9E-04
3.083 | 0.0573 | 0.0015 | 0.0394 | 0.0005 | 0.0699 | 0.0025 | 0.0240 1.1E-04
2.007 | 2.007 | 0.3000 | 0.0041 | 0.2848 | 0.0040 | 0.3228 | 0.0063 | 0.2072 0.0049
3.083 | 0.1788 | 0.0044 | 0.1521 | 0.0026 | 0.1944 | 0.0059 | 0.1071 0.0013
37 1.001 2.007 | 0.1184 | 0.0019 | 0.1038 | 0.0014 | 0.1323 | 0.0028 | 0.0739 | 9.0E-04
3.083 | 0.0457 | 0.0008 | 0.0360 | 0.0004 | 0.0558 | 0.0013 | 0.0234 1.1E-04
2.007 | 2.007 | 0.2847 | 0.0028 | 0.2782 | 0.0032 | 0.2950 | 0.0031 0.2189 0.0037
3.083 | 0.1603 | 0.0025 | 0.1454 | 0.0020 | 0.1734 | 0.0034 | O.I111 0.0011

75 37 1.001 2.007 | 0.1198 | 0.0020 | 0.1040 | 0.0014 | 0.1342 | 0.0031 | 0.0661 0.0011

3.083 | 0.0462 | 0.0008 | 0.0361 | 0.0004 | 0.0567 | 0.0014 | 0.0195 1.1E-04
2.007 | 2.007 | 0.2886 | 0.0030 | 0.2782 | 0.0032 | 0.3072 | 0.0040 | 0.2074 0.0046
3.083 | 0.1633 | 0.0028 | 0.1454 | 0.0020 | 0.1784 | 0.0039 | 0.1047 0.0013
56 1.001 2.007 | 0.1100 | 0.0013 | 0.0998 | 0.0009 | 0.1178 | 0.0015 | 0.0720 | 8.7E-04
3.083 | 0.0393 | 0.0004 | 0.0319 | 0.0002 | 0.0447 | 0.0006 | 0.0204 1.0E-04
2.007 | 2.007 | 0.2778 | 0.0020 | 0.2732 | 0.0021 0.2866 | 0.0022 | 0.2239 0.0028
3.083 | 0.1509 | 0.0016 | 0.1400 | 0.0013 | 0.1599 | 0.0020 | 0.1116 0.0010
100 | 50 1.001 2.007 | 0.1125 | 0.0014 | 0.1011 0.0010 | 0.1227 | 0.0019 | 0.0657 0.0011

3.083 | 0.0406 | 0.0005 | 0.0337 | 0.0003 | 0.0473 | 0.0008 | 0.0178 1.2E-04
2.007 | 2.007 | 0.2823 | 0.0023 | 0.2750 | 0.0022 | 0.2939 | 0.0028 | 0.2123 0.0038
3.083 | 0.1550 | 0.0019 | 0.1416 | 0.0014 | 0.1668 | 0.0026 | 0.1063 0.0011

75 1.001 2.007 | 0.1043 | 0.0009 | 0.0964 | 0.0008 | 0.1096 | 0.0010 | 0.0710 | 7.9E-04
3.083 | 0.0350 | 0.0003 | 0.0319 | 0.0002 | 0.0388 | 0.0003 | 0.0187 | 9.8E-05
2.007 | 2.007 | 0.2736 | 0.0016 | 0.2681 | 0.0018 | 0.2795 | 0.0016 | 0.2261 0.0024
3.083 | 0.1448 | 0.0012 | 0.1355 | 0.0011 0.1524 | 0.0014 | 0.1118 0.0008
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Table (5):The estimates (é,)and MSEs values for the parameters o, 8, and R(7) at t=0.8, 0.82
based on the Bayes methods under progressive type-II censoring from the first Shasta Reservoir dataset.

The first Shasta Reservoir dataset
Methods Exact Bayes Monte-Carlo Markov Chain Monte | Tierney-
Integration Carlo Kadane
m Par. Okp MSE Oucr MSE Ovcmc MSE Ork MSE

n/2 o 4.4403 | 6.19E-01 4.1138 2.12E-01 | 4.1748 | 2.72E-01 | 4.3123 | 4.14E-01
B 2.4314 | 5.89E-01 1.9990 1.12E-01 2.0910 1.82E-01 23860 | 5.21E-01
3n/4 o 4.4089 | 1.40E-01 | 4.2572 4.95E-02 | 4.2799 | 6.01E-02 | 4.3965 1.39E-02
B 27971 1.52E-01 2.5602 | 2.36E-02 | 2.5859 | 3.21E-02 | 2.7395 1.11E-01
n/2 R(r1) | 0.3382 | 1.60E-03 0.3110 | 4.52E-03 | 0.3322 | 2.12E-03 | 0.2180 | 2.65E-02
R(12) | 0.2884 | 1.92E-03 0.2661 437E-03 | 0.2825 | 2.47E-03 | 0.1773 | 2.40E-02
3n/4 | R(t1) | 0.2828 | 4.96E-06 | 0.2630 | 4.81E-04 | 0.2834 | 2.50E-06 | 0.2052 | 6.36E-03
R(12) | 0.2349 | 1.13E-05 0.2174 | 4.34E-04 | 0.2356 | 6.95E-06 | 0.1645 | 5.43E-03

Assuming that the informative prior with hyper-parameteris a = 36, b =8, ¢ = 6, and d = 2, we compute the Bayes
estimates in the first dataset. For the reliability characteristic, we use times t = 0.80 and 0.82. Additionally, in the second
dataset, we assume that the hyper-parameter informative prioris a=12,b =4, c =7, and d = 2, and we take t = 0.52 and
0.61 for the reliability characteristic. In the MCMC algorithm, we generate 10,000 samples from the posterior densities,
and we consider the MLEs of the parameters as initial values of a, . Also, we choose the gamma distribution as a
proposal distribution. To have low autocorrelation between the generated samples.

We estimated the unknown parameters o, 3, and R(¢) using the above methods. The results listed in Tables [5, 6]
showed that, for both parameters o, 8, the Bayes estimators based on Markov Chain Monte Carlo and Monte Carlo
Integration techniques had the smallest MSE values when compared to the estimators based on the exact Bayes and
Tierney-Kadane approximation methods. Also, the reliability estimators based on the Markov Chain Monte Carlo and
exact Bayes had the smallest MSE values compared to the estimators based on the other approaches. Additionally, we
observe that the reliability estimated by the estimating methods decreases with time t.

Plotting of the MCMC estimates for a, 3, and R(r) under a progressive type-II censoring scheme with uncensored levels
m equal to [3n/4] based on fuzzy lifetime data. Both the histograms of estimates and the convergence of estimates graph
are displayed in Figs. (2, 3).

In Fig. 2, the trace plot shows the iterations for posterior densities of a, 8, and R(¢) with time t = 0.80 and 0.82,
respectively. All the trace plots are scattered around the mean and converge very well. Furthermore, in the histogram
plots of the marginal posterior density estimate for ¢, 8, and R(¢), we observe that the data distribution for « is almost
symmetrical. The data distributions for 3, and R(r) are positively quite skewed with a right tail.

In Fig. 3, the trace plot shows the iterations for posterior densities of a, 8, and R(¢) with time t = 0.52 and 0.61,
respectively. All the trace plots are scattered around the mean and converge very well. Also, the histogram plots of the
marginal posterior density estimate for ¢, 3, and R(¢) show that all the data distributions are almost symmetrical.

Trace plot of
Trace plot of & Trace plot of R(t1)
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Rit2)
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Fig. 2: MCMC plots for the first Shasta Reservoir dataset were established for the parameters «, 3, and R(¢) with t = (0.80,0.82).
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Table (6):The estimates (6, )and MSEs values for the parameters c, 3, and R(r) at r = 0.52,0.61
based on the Bayes methods under progressive type-1I censoring from the first Shasta Reservoir dataset.

The second Shasta Reservoir dataset

Methods Exact Bayes Monte-Carlo Markov Chain Monte | Tierney-
Integration Carlo Kadane
m Par. Op MSE Ovicr MSE Ovicmc MSE Ork MSE
n/2 o 2.8524 | 3.50E-02 | 2.7202 [ 3.02E-03 | 2.7311 | 4.34E-03 | 2.8268 | 2.61E-02

B 3.0747 1.83E-01 2.8260 | 3.22E-02 | 2.8675 | 4.88E-02 | 3.0516 1.64E-01
3n/4 ] 3.0277 | 7.81E-03 | 2.9553 | 2.55E-04 | 2.9651 | 6.63E-04 | 3.0025 4.0E-03

B 3.0646 | 5.03E-02 | 2.9498 1.20E-02 | 2.9780 1.89E-02 | 3.0291 3.56E-02
t

n/2 R(11) | 0.6014 | 2.18E-07 | 0.5806 | 4.16E-04 | 0.6013 1.05E-07 | 0.5044 | 9.33E-03
R(r2) | 0.4323 | 3.46E-05 | 0.4144 | 5.68E-04 | 0.4318 | 4.14E-05 | 0.3324 1.12E-02
3n/4 | R(t1) | 0.6374 | 4.32E-07 | 0.6271 1.20E-04 | 0.6375 | 3.29E-07 | 0.5835 | 2.98E-03
R(12) | 0.4667 | 5.99E-06 | 0.4557 1.82E-04 | 0.4666 | 6.52E-06 | 0.4051 | 4.10E-03
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Fig. 3: MCMC plots for the first Shasta Reservoir dataset were established for the parameters o, 3, and R(¢) with r = (0.52,0.61).

5 Conclusions

This paper provides the Bayesian inference for the Kumaraswamy distribution based on the progressive type-II censoring
fuzzy data. We obtained the MLE for the unknown parameters of the Kumaraswamy distribution. Under the symmetric
(squared error) loss function, the MSE values based on the Bayes method for the parameters ¢, 8, and R(7) have been
compared to the exact Bayes estimators using the Monte Carlo Integration, Markov Chain Monte Carlo, and
Tierney-Kadane approximation methods. In comparison to the estimators of ¢, [ based on the exact Bayes and
Tierney-Kadane approximation methods, the simulation results showed that the Bayes estimators for the parameters ¢, 3
based on Markov Chain Monte Carlo and Monte Carlo Integration methods have the minimum MSE values.

We also found that the reliability estimators based on the Monte Carlo Integration and Tierney-Kadane approximation
methods have the smallest MSE values compared to the estimators based on the other methods. Numerical examples
were conducted to examine and compare the performance of the proposed methods. Also, we recommend using Bayes
estimators obtained by approximation Bayes methods under the squared loss function to provide the best estimate of the
parameters and the reliability function of the Kumaraswamy distribution.

Appendix A:

H (0,B) = L[(m+a— 1)loga+ (m-+c— 1)logB — ab— Bld— X1, Rilog(1 — c& )
+¥7, log [x*~1(1 —x“)B"u;(x)dx]

Therefore, at & and B can be obtained by solving the following two equations:

_ 9H(@p) _ 1 | mia <lyloseq S 1= (B Dx(1—x®) e og(1—2®) B po(x)dx
Hy =5 —z['"g —b-BY Rt + L X T (1) () dx )

_ 0H(aB) 1 [mte—1 m . m X og(1—x*) (1—x*) B~ g (x)dx
Hy= =555 = [ +[3 —d+Y"  Rilog(1 fcg)) +Y, T T (1) P s

The second derivative for H and H* will be obtained as follows:
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In the following, we will derive the second derivatives for H and H*

az m a _ _
Hy = I;E;z‘ﬁ) ;[ ma L _BYS R, [C()(logC(,)) (I=cfiy) ' (c ?‘)logc())z(l—cg)) 2]
+ym {fxa 2 lOgX) (=B D)1 pe(odx [(B=1)2% " (logn)2(1—x*) P21y, p(x )dx}

i=1 fx“*‘(lfxo‘)ﬁ*‘u;(x)dx Jxemt(1 x“)ﬁ () dx 5
—ym L(B=1)2* " (logx)*(1—x*) B Dy p(x)dx _ xm f[lf(ﬁfl)x“(lfx“)"]xo"]logx(lfxo‘)(ﬁ")u;(x)dx}
i=1 Jxo (1= )P~ () dx i=1 Jxo =T (1=x)P =1 p(x)dx

where I;; = 1 — (B — 1)x¥(1 —x%)~!
Ly =1+4+x%(1—x*"1.

9*H(a, m-+c— n [x% 1 (1—x*)BD(10g(1-x +(x)dx
Hy = H<aﬁ>:%[_+_21+zi I (}xa 31 x(g)ﬁng( )))u()
_yn {fx“*‘u—x“)w*”zogx(l X () f
X T (1) () dx :

92H(a, cof. logc =11 _x\B=11p0(1—x®)] —(x)d

Hip = Tef = |- Ei R i

-y [ ogx(1—x*)P 2 pp(x)dx _ yon [(B=1)x** 1 (1-x*)P2log (1-x®)logaptz(x)dx
T T (1=x)P T p(x)dx = T T(1=x®) T () dx

m | [logxlz pz(x x)dx [ x* 1 (1—x@) (B! log(l —x*) pz(x)dx
= (2 11— pe(x)dv)”

By = [1— (B — 1)x(1 —x%)~ a1 (1 —x@) 61,

H* (., B) = 3 [log(g (e, B)) + Q(et, B)]
forg( ,B) =0 then,

H* (o, B) = 3 [logo+Q(at, B)]

3

Similarly, for
H* (a,B) = L[(m+a)loga+ (m+c — 1)logP — ab — Bld — X", Rilog (1 fcg))]
HX g [x (1 —x)P ! pp(x)d]
Similarly, the derivatives of H* (o, B) respectively. Finally, we compute the Bayes estimator of the reliability function
R(t) under the square loss function. In this case, g (a, ) = (1 — to‘)ﬁ then,
Hy, (0 B) = H (e, p) + Blosi=r).

Now for the reliability estimator, we compute (&*, B*) by solving the following two nonlinear equations:

aH;;(t) __ 0H _ Pt%logt
Jda — Jda  n(1-t%)’

aHR([) _ JdH + log(1—1%)
B~ IB n

and, from the second derivative of Hp . ( ,B), the determinant of the negative of the inverse Hessian of Hy . ( ,B) at

(6, B*) is given by
" . -1
detX fHR(t)IZZ) ,

R(t) — (Hy

ko *Hy

R(r)22
where . B} ,
H;S([)” _ aaRzm _ ﬁ;(l(g%; [1+1%(1 40{)71]
H;;(r)lz = H;;(r)Ql = aazgg%) - nt(olclffé)

H;(t)ZZ =0.
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