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Abstract: In this paper, we investigate an inclusive innovative fourth-order nonlinear Kadomtsev-Petviashvili-like model, a three-

dimensional nonlinear partial differential equation. The focus is on utilizing the Lie symmetry method to derive exact solutions that

demonstrate significant advancements in the model. Initially, a systematic approach is employed to compute the Lie point symmetries of

the equation. These symmetries play a crucial role in identifying a diverse range of group invariant results for the model. The obtained

solutions encompass logarithmic, exponential, and hyperbolic functions, as well as elliptic integral functions, with the latter being the

most general solutions. Additionally, several noteworthy algebraic function solutions are also discovered. This research distinguishes

itself by presenting a wealth of results that exhibit substantial variation. Furthermore, the dynamics of the solutions are thoroughly

explored through diagrammatic analysis using computer software. Towards the conclusion, Ibragimov’s theorem is applied to construct

various conservation laws for the underlying model. This technique yields a multitude of conservation laws, which are subsequently

discussed and highlighted.

Keywords: Nonlinear (3+1)-Dimensional Kadomtsev-Petviashvili-like equation; Lie Symmetry Analysis; Group-invariant and Exact

Solutions; Innovation Support.

1 Introduction

Nonlinear partial differential equations (NLNPADEs)
remain the subject of much research that is done today.
This is due to their unquestionable role in attempting to
model natural and man-made relationships between
physical quantities. In recent times, significant inroads
have been made in coming up with algorithms for
handling NLNPADEs, with much credit due to the
advancement of computers and their computational
power. Nevertheless, great minds have had to lay the
theoretical foundations upon which these technologies are
built.

Lately, many researchers who have a keen interest in
the nonlinear physical phenomena have delved into
examining exact solutions of NLNPADEs due to their
relevance in analyzing the outcome of any given model.
Therefore, it is germane that the research into closed-form

solutions to NLNPADEs serves a very crucial purpose in
observing certain physical circumstances. Besides, the
diversity of solutions of NLNPADEs occupies an
essential position in a variety of areas of sciences
inclusive of optical fibres, chemical physics,
geochemistry, biology, hydrodynamics, chemical
kinematics, meteorology, heat flow, plasma physics
together with electromagnetic theory. Given the
aforementioned and for emphasis, having realized that
sizable scientists have contemplated nonlinear science as
the most outstanding borderline for fundamental
cognition of nature, we present some pertinent models
that include an investigation in [1] was carried out on the
modified as well as generalized Zakharov-Kuznetsov
model, delineating the ion-acoustic meandering solitary
waves resident in a magneto-plasma and possessive of
electron-positron-ion observable in the autochthonous
universe. This model was utilized in representing
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dust-magneto-acoustic, and ion-acoustic, together with
dust-ion-acoustic waves in the laboratory dusty plasmas.
Additionally, the bright solitons, alongside their various
interaction attribute related to the coupled Fokas-Lenells
system was studied in reference [2].

Femtosecond optical pulses embedded in a
double-refractive optical fibre, modeled into an
NLNPADE, was further investigated. Moreover, the
Boussinesq-Burgers-type system recounting shallow
water waves and also emerging near ocean beaches and
lakes was given attention in the paper [3]. We can
continue with the list, but we mention a few. See more,
e.g., in [4–16].

Now, having established the fact that no general
technique in achieving various exact traveling wave
results of NLNPADEs has been found, researchers have
come up with some sound, effective, and efficient
techniques so that the seemingly nagging problem could
be nibbed in the bud. Some of these techniques include
bifurcation technique [17], Painlevé expansion [18],
homotopy perturbation technique [19], tanh-coth
approach [20], extended homoclinic test approach [21],
Cole-Hopf transformation technique [22], Adomian
decomposition approach [23], Bäcklund
transformation [24], Lie symmetry analysis [25, 26],
F-expansion technique [27], rational expansion
technique [28], tan-cot technique [29], Hirota
technique [30], Darboux transformation [31],
tanh-function technique [32], the (G′/G)−expansion
technique [33], sine-Gordon equation expansion
technique [34], generalized unified technique [35],
exponential function technique [36], and so on and so
forth.

Take for example, Sophus Lie (1842-1899), with his
quintessential work on Lie Algebras [25, 26] is essentially
a unified approach for the treatment of a wide class of
differential equations (DEs). More recent methods of
solving DEs include Hirota’s bilinear method [37],
simplest equation method [38], multiple exponential
function method [39], Kudryashov’s method [40],
extended simplest equation approach [41], just to mention
a few. Since the inception of Kadomtsev and
Petviashvili’s hierarchy of equations a little more than
half a century ago, dozens of research papers have
emerged, each exploring an aspect of this rich domain of
equations, see for example, [42–48]. Basically, the
standard Kadomtsev-Petviashvili model (KPm) is given
as [49]:

(ut + 6uux + uxxx)x + uyy = 0. (1)

The KPm is established as a common generalization
of the well-recognized Korteweg-de Vries equation
(KdVe). In the KdVe, waves are stringently
unidimensional. Nonetheless, in the KP model, this
stringency is slackened. Both the KdVe as well as the
KPm are completely integrable. The KP hierarchy has an
infinite number of bilinear equations [50]. These

hierarchies contain the extended form:

(ut − 6u ux + uxxx)x + a utt + b uty − uyy = 0, (2)

where a 6= 0, b 6= 0.
In particular, this model furnishes an extension of the

KPm (1). We remark that its KPm extended version
(eKPmm) emerges in [51] as non-integrable which is an
example revealing the extent to which Hirota’s technique
can be applied with regards to systems that are not
integrable. In addition, as asserted in [51], the eKPmm
model is non-integrable due to the reason that it possesses
no three-soliton solution unless we have a = b2/12
contingent upon the fact that it is transformable to (1).
Therefore, upon introducing the additional terms
presented as a utt alongside b uty engenders the extended
model to be non-integrable in comparison with various
other extended KPm where the added terms do not
suppress or terminate as it were, the integrability property
of the equation (see for example [52]). Moreover, it is
from this hierarchy that we also obtained the B-type KP
equations, BKP in short. Additionally, there are other
derived varieties of models of KP referred as the extended
KP-Like equation (exKp-Likeq) that reads [53]:

wtx+3wxwxx+3ww2
x+

3

2
w3wx+

3

2
w2wxx+wyy = 0,

(3)
where w = w(t, x, y).

Some researchers have examined exKp-Likeq (3),
intending to achieve some solutions to the model. For
instance, the authors in [53] studied (3) via the
generalized bilinear differential equation related to KP
type given as [30]

(

DtttDxxx +D4
xxx +D2

yyy

)

f · f =

2ftxf − 2ftfx + 6f2
xx + 2ffyy − 2f2

y = 0,
(4)

to seek various results in polynomial structures.
Eventually, nine classes of rational solutions were secured
through the use of Maple symbolic computation.

Moreover, we have the three dimensional KP-like
equation that reads [54]:

wtx +
3

2
w3wx +

3

2
w2wxx+

3ww2
x + 3wxwxx + wyy + wzz = 0,

(5)

which is observed to be an extended version of (3). So (5)
is called the extended Kadomtsev-Petviashvili-like
equation (extKP-Lke). Lü et al. adopted the generalized
bilinear operators with p = 3 to generate eighteen classes
of rational solutions to extKP-Lke (5). They were able to
accomplish a search for polynomial solutions associated
with generalized bilinear equations via symbolic
computations. Later, in [55], the authors engaged the
concept of Lie group theory to compute exact solutions of
(5). Moreover, Kudryashov as well as power series
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techniques, were employed to achieve more solutions to
the equation. Conservation laws of (5) were constructed
via Ibragimov’s method. Besides, in [56] the authors
obtained various copious invariant solutions associated
with extKP-Lke (5) using the symmetry method.

One other member of KP hierarchy is the
Bousinesque-Kadomtsev-Petviashvili, abbreviated as
BKP and one of the families of these BKP equations is

utz − uxxxy − 3(uxuy)x + 3uxx = 0. (6)

This equation has been the subject of much
research [43–46]. Studies have shown that in [57], the
author articulated the multiple exponential-function
approaches in handling BKP (6) using symbolic
computation in dealing with the involved computational
algebraic systems. As a result, the shape-changing
character of the anti-kink solution of (6) was explored.
Besides, Ma and Fan in [44] utilized the analyzed linear
superposition principle associated with exponential
travelling waves for Hirota bilinear equations. In
consequence, the construction of a specific sub-class of
N−soliton solutions was achieved via the linear
combinations of these exponential travelling waves which
were later applied to secure some particular N−wave
solutions. In their recent work, researchers in [43]
successfully derived two new NLNPADEs from equation
(6) and simultaneously established the validity of the
equations by using the simplified linear superposition
principle [44]. Furthermore, there are other derived
varieties of models of KP referred to as KP-like
equations. One such is the derived equation in [43], that is
the (3+1)-dimensional Kadomtsev-Petviashvili like
equation (3D-KPLike)

autx + b uty+c utz − d uxxxy−
3uxuxy − 3uxxuy + euxx = 0,

(7)

with arbitrary non-zero constants a, b, c, d and e. The
authors went on to obtain generalized resonant
multi-solitons whose existence, according to the authors,
justifies the validity of the equation. We state
categorically here for novelty, that model (7) is a new
equation which has not been comprehensively examined
using Lie symmetry analysis. Therefore, in this paper, for
the first time, a detailed and comprehensive study of
equation (7) is performed using its Lie algebras with a
view to generating various exact solutions of the equation.
We intend to use the symmetries to find group-invariant
solutions of equation (7). Therefore in Section 2, stepwise
computations of Lie point symmetries associated with (7)
are outlined. Section 3 reveals the reductions of the
underlying model using the obtained symmetries so that
various possible exact solutions could be found. Besides,
Section 4 is dedicated to the display of various graphical
representations of the obtained solutions. Finally, we
compute conservation laws using Ibragimov’s theorem in
Section 5. The concluding remarks are made thereafter.

2 Lie symmetries of 3D-KPLike (7)

We begin by extracting the Lie symmetries associated with
the 3D-KPLike (7). A generic infinitesimal generator of
(7) takes the form:

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ ξ4

∂

∂z
+ η

∂

∂u
, (8)

where ξ1, ξ2, ξ3, ξ4 and η are functions of (t, x, y, z).
Generator (8) must, however, conform to the invariance
condition:

X [4](a utx + b uty + c utz − d uxxxy

− 3uxuxy − 3uxxuy + e uxx)|(7) = 0.
(9)

Here X [4] is the third extension of the generator X given
by:

X [3] =X + ζx
∂

∂ux
+ ζy

∂

∂uy

+ ζtx
∂

∂utx
+ ζty

∂

∂uty
+ ζtz

∂

∂utz

+ ζxx
∂

∂uxx
+ ζxy

∂

∂uxy
+ ζxxxy

∂

∂uxxxy
,

(10)

with ζx, ζy, ζtx, ζty, ζtz , ζxx, ζxy and ζxxxy defined by:

ζx = Dx(η)− utDx(ξ
1)− uxDx(ξ

2)−
uyDx(ξ

3)− uzDx(ξ
4),

ζy = Dy(η)− utDx(ξ
1)− uxDx(ξ

2)−
uyDx(ξ

3)− uzDx(ξ
4),

ζtx = Dx(ζt)− uttDx(ξ
1)− utxDx(ξ

2)−
utyDx(ξ

3)− utzDx(ξ
4),

ζty = Dy(ζt)− uttDy(ξ
1)− utxDy(ξ

2)−
utyDy(ξ

3)− utzDy(ξ
4),

ζtz = Dz(ζt)− uttDz(ξ
1)− utxDz(ξ

2)−
utyDz(ξ

3)− utzDz(ξ
4),

ζxx = Dx(ζx)− uxtDx(ξ
1)− uxxDx(ξ

2)−
uxyDx(ξ

3)− uxzDx(ξ
4),

ζxy = Dy(ζx)− uxtDy(ξ
1)− uxxDy(ξ

2)−
uxyDy(ξ

3)− uxzDy(ξ
4),

ζxxx = Dx(ζxx)− uxxtDx(ξ
1)− uxxxDx(ξ

2)−
uxxyDz(ξ

3)− uxxzDx(ξ
4),

ζxxxy = Dy(ζxxx)− uxxxtDy(ξ
1)− uxxxxDy(ξ

2)−
uxxxyDy(ξ

3)− uxxxzDy(ξ
4),
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where Dt, Dx, Dy and Dz are the total derivatives,
which are given by:

Dt =
∂

∂t
+ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+

uty
∂

∂uy
+ utz

∂

∂uz
+ · · · ,

Dx =
∂

∂x
+ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+

uxy
∂

∂uy
+ uxz

∂

∂uz
+ · · · ,

Dy =
∂

∂y
+uy

∂

∂u
+ uyy

∂

∂uy
+ uyt

∂

∂ut
+

uyx
∂

∂ux
+ uyz

∂

∂uz
+ · · · ,

Dz =
∂

∂z
+uz

∂

∂u
+ uzz

∂

∂uz
+ uzt

∂

∂ut
+

uzy
∂

∂uy
+ uzx

∂

∂ux
+ · · · .

(11)

Expanding (9) and splitting leads to the following Lie
symmetries:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂z
,

X5 = c t
∂

∂t
− a z

∂

∂x
− b z

∂

∂y
− c z

∂

∂z
,

X6 =3c t
∂

∂t
− 3(b z − c y)

∂

∂y
+ c e y

∂

∂u
,

X7 =2c t
∂

∂t
− (a z − c x)

∂

∂x
+

(b z − c y)
∂

∂y
− c u

∂

∂u
,

XG =G(t)
∂

∂u
, XF = F (z)

∂

∂u
,

(12)

where G and F are arbitrary functions of t and z
respectively.

3 Symmetry reductions and exact solutions of

(7)

In this section, we obtain different types of exact solutions
of the 3D-KPLike (7) by utilizing the symmetries (12).

3.1 Invariant solutions under the symmetry

X1 +XG

First we take into account symmetry X1 + XG which
furnishes invariants:

Q(ξ, η, ζ) +

∫

G(t)dt = u(t, x, y, z),

ξ = x, η = y, ζ = z.

(13)

Inserting the value of u in the equation (7) yields the
NLNPADE

eQξ,ξ − 3QηQξξ − 3QξQξη − dQξξξη = 0, (14)

which can be easily integrated using Maple. Thus, we
gain the solution of 3D-KPLike (7) in this regard as

u(t, x, y, z) =

∫

G(t)dt +A4+

2dA2 tanh

(

A2x+
e

4dA2
y +A3z +A1

)

,

(15)

where arbitrary constants A1, A2, . . . , A4 are
involved. Furthermore, we observe that (14) possesses the
symmetries:

M1 =
∂

∂ζ
, M2 =

∂

∂ξ
, M3 =

∂

∂η
,

M4 =
∂

∂ξ
+

∂

∂η
+

∂

∂ζ
,

M5 = ξ
∂

∂ξ
+ ζ

∂

∂ζ
+

(

1

3
eη + ζ −Q

)

∂

∂Q
.

We invoke M1 and this furnishes the invariants
W (r, s) = Q(ξ, η, ζ), r = ξ and s = η. Using these
invariants, (14) reduces to:

eWrr − 3WsWrr − 3WrWrs − dWrrrs = 0. (16)

Solving (16), we achieve the solution of 3D-KPLike
(7) as:

u(t, x, y, z) = 2dC1 tanh

(

C1x+
e

4dC1
y + C0

)

+

∫

G(t)dt+ C2,

(17)

with arbitrary constants C0, C1 and C2. Further
exploration of (16) gives its symmetries as:

J1 =
∂

∂r
+ F1(s)

∂

∂s
+

1

3
e F1(s)

∂

∂W
,

J2 = F2(s)
∂

∂s
+

(

1

3
e F1(s) + 1

)

∂

∂W
,

J3 = r
∂

∂r
+ F3(s)

∂

∂s
+

(

1

3
e F3(s) +

1

3
e ss−W

)

∂

∂W
.

By taking Fi = 1, i = 1, 2, 3, the symmetry J1 yields
the invariants H(w) = W (r, s), w = s − r and making
use of them further reduces (7) to the nonlinear ordinary
differential equation (NLNODE) given as:

2eH ′′(w) − 6H ′(w)H ′′(w) + dH ′′′′(w) = 0. (18)

Now, for symmetry J2, we haveH(w)+
(

1
3e+ 1

)

s =
W (r, s), where w = r, hence transforming (7) further to
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linear ordinary differential equation (LNODE) H ′′(w) =
0. This, then gives a solution of the equation (7) as:

u(t, x, y, z) = B1x+

(

1

3
e+ 1

)

y

+

∫

G(t)dt+B2,

(19)

where B1 and B2 are arbitrary constants. In the case
of symmetry J3, we have invariants
1
3r {3H(w) + (er + 1) s} = W (r, s), w = − ln (r), thus
reducing (7) to:

11dH ′′(w) − 12H ′(w)2 − 6H ′(w)H ′′(w)

− 9H(w)H ′(w) + 6dH ′(w) − 3H(w)H ′′(w)

+ 6dH ′′′(w) + dH ′′′′(w) = 0.

(20)

Exploring J2 gives a trivial solution of (7) whereas J3
purveys W (r, s) = Q(ξ, η, ζ), where r = ξ and s = ζ.
Hence, (7) gives Wrr = 0 and so we have a solution of
3D-KPLike (7) in this regard as:

u(t, x, y, z) = f1(z)x+ f2(z) +

∫

G(t)dt, (21)

where f1(z) and f2(z) are arbitrary functions of z.

Now, we consider the symmetry M4 and so, we have
W (r, s) = Q(ξ, η, ζ), where r = η − ξ and s = ζ − ξ.
Substituting this in (7), one achieves the NLNPADE:

eWrr + eWss + 2eWrs − 6WrWrr − 9WrWrs

− 3WrWss − 3WsWrr − 3WsWrs + dWrrrs

+ 3dWrrss + dWrsss + dWrrrr = 0.

(22)

Thus, we achieve a solution of the 3D-KPLike (7) as:

u(t, x, y, z) =

∫

G(t)dt

+ C3 + C2 tanh [C1 (y − x) − C1 (z − x) + C0] ,

(23)

where arbitrary constants C0, C1, C2 and C3 exist.
Further exploration of equation (22) yields three
symmetries presented as:

I1 =
∂

∂r
+

∂

∂s
+

1

3
e
∂

∂W
, I2 =

∂

∂r
+

(

1

3
e+ 1

)

∂

∂W
,

I3 = (r + 1)
∂

∂r
+ s

∂

∂s
+

{

1

3
e+

2

3
e (r − s)−W

}

∂

∂W
.

Using symmetry I1 purveys a trivial solution of (7).
However, in case of I2, following the above procedure, one
secures 1

3er+H(w)+r =W (r, s),w = s, which reduces

(7) to LNODE H ′′(w) = 0. Solving this equation, one
achieves the solution:

u(t, x, y, z) = A1 (z − x) +

{

1

3
e+ 1

}

(y − x)

+

∫

G(t)dt +A2,

(24)

which satisfies 3D-KPLike (7) withA1 andA2 serving
as arbitrary integration constants. Meanwhile, symmetry
generator I3 gives no result of interest.

Now, we examine the symmetry M5. This furnishes
1
6ξ {2eξη + 3ξζ + 6W (r, s)} = Q(ξ, η, ζ) with r = η

and s = ζ/ξ. Invoking these invariants, (7) transforms
into NLNPADE:

18d sWr,s − 3s2WrWss − 3s2WsWrs

+ 9d s2Wrss − 15sWrWs − 3sWWr,s

− 9WWr + 6dWr + ds3Wrsss = 0,

(25)

which can be integrated using Maple. Thus, the 3D-
KPLike (7) has the solution:

u(t, x, y, z) =
2exy + 3xz + 6f1(y)f2

( z

x

)

6x

+

∫

G(t)dt,

(26)

with arbitrary functions f1 and f2 depending on their
respective arguments. Moreover, the symmetries of (25)
are:

K1 =
∂

∂r
+ s

∂

∂s
, K2 =

∂

∂r
+

1

s

∂

∂W
,

K3 =
∂

∂r
+ s2

∂

∂s
− sW

∂

∂W
.

In the case of symmetry K1, one secures
H(w) = W (r, s), w = s/ exp(r) as invariants, which
reduces (7) to NLNODE:

18w2H ′(w)2 − 24dwH ′(w) + 12wH(w)H ′(w)

− 36dw2H ′′(w) + 3w2H(w)H ′′(w)

+ 6w3H ′(w)H ′′(w)− 12dw3H ′′′(w)

− dw4H ′′′′(w) = 0.

(27)

Now, we deal with K2, which furnishes
1

s
{r + sH(w)} = W (r, s) with w = s. Substituting the

achieved result in (25) gives the ordinary differential
equation (ORDE):

6H(w) + 12wH ′(w) + 3w2H ′′(w) = 0, (28)
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which solves and yields the solution of 3D-KPLike (7) as:

u(t, x, y,z) =
1

6x

{

2exy + 3xz +
6x

z
{{

y +
z

x

[

(x

z

)2

C0 +
(x

z

)

C1

]}}

+

∫

G(t)dt,

(29)

where constants C0 and C1 are both integration
constants. Next, we take on K3, which yields
1

s
H(w) = W (r, s) with w = (1 + rs) /s. This further

reduces (7) to:

6H ′(w)H ′′(w) + dH ′′′′(w) = 0. (30)

Thus, we gain a solution of (7) here with regards to
Weierstrass zeta function [58]:

u(t, x, y, z) =
1

6z

{

3z2 + 2eyz

+12dWeierstrassZeta

[

1

z
(x+ yz + C0z) ; 0;C1

]}

+

∫

G(t)dt,

(31)

where integration constants C0 and C1 exist.

3.2 Invariant solutions under the symmetry

X2 +XF

Here, we explore the symmetry X2 + XF and it purveys
the invariants Q(ξ, η, ζ) + xF (t) = u(t, x, y, z), ξ =
t, η = y, ζ = z, which transforms (7) to yield the partial
differential equation aF (t) + bQξη + cQξζ = 0. This can
be easily solved and consequently, the 3D-KPLike (7) has
the solution:

u(t, x, y, z) = f1(y, z)+f2(t, bz−cy)−
a

b
tyF ′(t), (32)

where functions f1 and f2 are arbitrary and dependent on
their stated arguments.

3.3 Invariant solutions under the symmetry

X3 +XF

The symmetryX3+XF secures the invariantsQ(ξ, η, ζ)+
yF (t) = u(t, x, y, z), ξ = t, η = x, and ζ = z. Invoking
these invariants, equation (7) reduces to the NLNPADE:

aQξη + bF ′(t) + cQξζ − 3F (t)Qηη + eQηη = 0. (33)

Solving this equation, we gain a set of solutions of the 3D-
KPLike (7) as:

u(t, x, y, z) = f1(t) + f2(x) + f3(z)−
e c0
c
t z

+ z

(

3c0
c

∫

F (t)dt− b

c
F (t)

)

,
(34a)

u(t, x,y, z) = f1(t)f2(x)f3(z)−
bF ′(t)

A0 (e− 3F (t))

(

1

2
A0x

2 +A1x+A2

)

,
(34b)

u(t, x, y, z) =yF (t)− ec1
c
tz − b

c
zF (t)

+
3c1
c
z

∫

F (t)dt+ f4(t) + f5(z)

+
1

2
c1x

2 + C0x+ C1,

(34c)

where functions f1(t), f2(x), f3(z), f4(t), f5(z) are
arbitrary. To secure more robust results we take F (t) = 1
in the PDE (33) and then the resulting equation admits the
following symmetries:

M1 =
∂

∂ξ
, M2 =

∂

∂η
, M3 =

∂

∂ζ
,

M4 = Q
∂

∂Q
, M5 =

1

2c
(aζ + cη)

∂

∂η
+ ζ

∂

∂ζ
,

M6 = ξ
∂

∂ξ
− 1

2c
(aζ − cη)

∂

∂η
,

M7 =
1

a
(aζ − cη)

∂

∂ξ
+

2

a
(e− 3) ζ

∂

∂η
,

M8 =
1

2
ηζ

∂

∂η
+

1

2
ζ2

∂

∂ζ
− 1

8c (e − 3)
(aζ − cη)

2 ∂

∂ξ
−

1

4
Qζ

∂

∂Q
.

We engage the combination of M1, . . . ,M4 and this
yields the invariant functions exp(ξ)W (r, s) = Q(ξ, η, ζ),
r = η − ξ and s = ζ − ξ. Using these results, (7) reduces
to:

aWrr − eWrr + aWrs + cWrs−
aWr + cWss − cWs + 3Wrr = 0,

(35)

which admits the two translation symmetries ∂/∂r and
∂/∂s. Their linear combination ∂/∂r + α1∂/∂s provides
invariants H(w) = W (r, s) and w = (sα0 − rα1) /α0

and these transform (7) to NLNODE:

aα2
1H

′′(w) − aα0 α1H
′′(w) + c α2

0H
′′(w)

− c α0 α1H
′′(w) − e α2

1H
′′(w) + aα0 α1H

′(w)

− c α2
0H

′(w) + 3α2
1H

′′(w) = 0.

(36)
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This ORDE can be easily solved and consequently, we
achieve a solution of the 3D-KPLike (7) as:

u(t, x,y, z) = exp(t)

{

A0 +A1 exp

{

α0 (aα1 − cα0)

Λ

×
[

1

α0
{α0 (z − t)− α1 (x− t)}

]}}

+ y,

(37)

where Λ = aα0 α1 − aα2
1 − c α2

0 + c α0 α1 +
e α2

1 − 3α2
1, A0 and A1 are arbitrary integration constants.

Next, we make use of the symmetry M5 and see that it
produces the invariants W (r, s) = Q(ξ, η, ζ), r = ξ and
s = 1

c
√
ζ
(cη − aζ), thus reducing (7) to:

2eWss − csWrs − 6Wss = 0. (38)

Solving the above equation yields the solution of the 3D-
KPLike (7) as

u(t, x, y, z) = y + f1(t)+
∫

f2

(

1

c

[

cΩ2 + (4e− 12) t
]

)

dΩ,
(39)

with Ω = 1
c
√
z
(cx− az) as well as arbitrary

functions f1 and f2 depending on their respective
arguments. Now for the symmetry M6, the invariants are
W (r, s) = Q(ξ, η, ζ), r = 1

c
√
ξ
(cη − aζ) and s = ζ,

which reduces (7) to:

2eWrr − crWrs − 6Wrr = 0. (40)

In consequence, we secure the solution of (7) presented as:

u(t, x, y, z) = y + f1(z)

+

∫

f2

(

1

4 (e− 3)

[

c∆2
0 + (4e− 12) z

]

)

d∆0,
(41)

where ∆0 = 1
c
√
t
(cx− az) and functions f1 and f2

are arbitrary, depending on their various arguments. With
regards to the symmetry M7, we obtain invariants:

W (r, s) = Q(ξ, η, ζ),

r =
1

4 (e− 3) ζ

{

2aηζ − cη2 + (12− 4e) ξζ
}

,

s = ζ,

and by utilizing them the model (7) transforms to:

6cWr−4cesWrs − a2sWrr

− 2ceWr + 12csWrs = 0.
(42)

Eventually, we achieve a solution of 3D-KPLike (7) as:

u(t, x, y, z) = f1(z) +
1

a
√
z
f2

{

1

a2

[

a2z

− 4c(e− 3)

{

1

4 (e − 3) z
[2axz

− cx2 + (12− 4e) tz]

}]}

+ y,

(43)

where functions f1 and f2 are arbitrary and depend on
their respective arguments. Finally, for the symmetry M9

invariants are:

1√
η
W (r, s) = Q(ξ, η, ζ), r =

ζ

η

s =
1

4c (e− 3) ζ

{

a2ζ2 − 2acηζ + c2η2 + 4c (e− 3) ξζ
}

,

which when used in equation (7), reduces (7) to:

12erWr − 36rWr + 3eW − 9W

+ 4er2Wrr − 12r2Wrr = 0.
(44)

Therefore, we secure a solution of 3D-KPLike (7) as:

u(t, x, y, z) =
1√
x

{

(x

z

)1/2

f1 (P ) (45)

+
(x

z

)3/2

f2 (P )

}

+ y.

with arbitrary functions f1 and f2 depending on their
respective arguments P = 1

4c(e−3)z [a
2z2 − 2acxz + c2x2

+ 4c (e− 3) tz.

3.4 Invariant solutions under the symmetry

X4 +XF

The Lie symmetry operatorX4 +XF gives the invariants:

ξ = t, η = x, ζ = y,

Q(ξ, η, ζ) +

∫

F (z)dz = u(t, x, y, z).
(46)

Inserting the value of u in the equation (7) yields the
NLNPADE:

aQξη + bQξζ+eQηη − 3QζQηη

− 3QηQηζ − dQηηηζ = 0.
(47)

Thus, by solving this equation we gain the solution of
3D-KPLike (7) as:

u(t,x, y, z) = 2dC2 tanh

(

C2
2 (4 dC2C3 − e)

aC2 + bC3
t

+ C2x+ C3y + C1

)

+

∫

F (z)dz + C4,

(48)

where C1, C2, . . . , C4 are arbitrary constants. Further
study of (47) reveals that the equation admits the following
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symmetries:

M1 =
∂

∂ξ
+

∂

∂Q
, M2 =

∂

∂ζ
+

∂

∂Q
,

M3 =
∂

∂η
+

∂

∂Q
,

M4 = ξ
∂

∂η
+

(

1− 1

3
aζ − 1

3
bη

)

∂

∂Q
,

M5 = ξ
∂

∂ξ
+

1

3
η
∂

∂η
+

1

3
ζ
∂

∂ζ
+

(

1 +
2

9
eζ − 1

3
Q

)

∂

∂Q
.

We now explore M1, . . . ,M5 in obtaining some solutions
to (7). Beginning with M1, we have invariants
ξ + W (r, s) = Q(ξ, η, ζ), r = η and s = ζ, which
transform (7) to:

eWrr − 3WsWrr − 3WrWrs − dWrrrs = 0. (49)

Thus, we have a solution of 3D-KPLike model in this
instance as:

u(t,x, y, z) = t+

∫

F (z)dz + C2

+ 2dC1 tanh

(

C1x+
e

4dC1
y + C0

)

,

(50)

with C0, C1, C2 being arbitrary constants.
Further study of (49) gives

J1 =
∂

∂r
+ F1(s)

∂

∂s
+

1

3
eF1(s)

∂

∂W
,

J2 = F2(s)
∂

∂s
+

(

1

3
eF2(s) + 1

)

∂

∂W
,

J3 = r
∂

∂r
+ F3(s)

∂

∂s
+

(

1

3
eF3(s) +

1

3
es−W

)

∂

∂W
.

We assume Fi(s) = s, i = 1, 2, 3, and then for J1,
one secures the invariants H(w) + 1

3es = W (r, s) and
w = s/er. Thus, these invariants further reduce (7) to the
NLNODE given as:

dH ′(w) − 6wH ′(w)2 + 7dwH ′′(w)

+ 6 dw2H ′′′(w) − 6w2H ′(w)H ′′(w)

+ dw3H ′′′′(w) = 0.

(51)

Next, for J2, one gains the invariants
H(w) + 1

3es+ ln(s) =W (r, s) and w = r, which further
reduce (7) to H ′′(w) = 0. Thus, this gives a solution:

u(t, x, y, z) = t+A1x+
1

3
ey+

ln(y) +

∫

F (z)dz +A2,
(52)

where A1 and A2 are arbitrary constants. In the case of
J3, we have invariants 1

3r {3H(w) + ers} = W (r, s) and

w = s/r. Hence, using these invariants equation (7)
reduces to:

36dwH ′′(w) − 18wH ′(w)2 − 6w2H ′(w)H ′′(w)

− 3wH(w)H ′′(w) + 24 dH ′(w)

− 12H(w)H ′(w) + 12dw2H ′′′(w)

+ dw3H ′′′′(w) = 0.

(53)

Exploring M2 purveys ζ +W (r, s) = Q(ξ, η, ζ), r =
ξ, s = η, which reduce (7) to:

aWrs − 3Wss + eWss = 0. (54)

This equations is solved easily, and so we have a solution
of 3D-KPLike (7) as:

u(t, x, y, z) =y + f1(t)

+ f2 [ax− (e − 3) t] +

∫

F (z)dz.
(55)

with arbitrary functions f1 and f2.
Now, we consider M3 and so, we have the invariants

η +W (r, s) = Q(ξ, η, ζ), r = ξ and s = ζ, which reduce
(7) to Wrs = 0, thus yielding a solution of the 3D-KPLike
(7) as:

u(t, x, y, z) = x+ f1(t) + f2 (y) +

∫

F (z)dz, (56)

with f1 and f2 being arbitrary functions. The
symmetry M4 furnishes the invariants
η +W (r, s) = Q(ξ, η, ζ), r = ξ and s = ζ, thus reducing
(7) to:

3rWrs + 3Ws − e = 0. (57)

By solving differential equation (57), one has a solution of
(7) as:

u(t, x,y, z) = x+
1

6t

{

6x− 2axy − bx2
}

+ 2ey + 6f1(t) +
6

t
f2 (y) +

∫

F (z)dz,
(58)

with f1(t) and f2(y) are arbitrary functions of t and y
respectively.

Finally, under symmetry X4 + XF we explore M5,
which gives the invariants:

1

3
(e ζ + 9) +

1
3
√
ξ
W (r, s) = Q(ξ, η, ζ),

r =
η
3
√
ξ

and s =
ζ
3
√
ξ
.

Utilizing these invariants, equation (7) reduces to the
NLNPADE:

a rWrr + b sWss + b rWrs + a sWrs

+ 2aWr + 2bWs + 9WrWrs + 9WsWrr + 3dWrrrs = 0.

Further exploration of the above equation yields no
solution of interest.
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3.5 Invariant solutions under the symmetry

X1, . . . , X4

We will now explore various types of solutions emanating
from the translation symmetries.

Jacobi elliptic function solutions of equation (7)
Using the time and space translations X1, . . . , X4, we

have the group invariant:

u(t, x, y, z) = U(p), p = αx+ βy + νz − γt, (59)

where α, β, ν and γ are arbitrary constants. Using (59),
equation (7) is reduced to the fourth-order NLNODE:

(e α2 − aα γ − b β γ − c ν γ)U ′′(p)

− 6β α2U ′′(p)U ′(p)− d β α3U ′′′′(p) = 0.
(60)

Integrating (60) once with respect to p gives:

C0 + (e α2 − aα γ − b β γ − c ν γ)U ′(p)

− 3β α2U ′(p)2 − d β α3U ′′′(p) = 0,
(61)

where C0 is an integration constant.
We now let:

U ′(p) = αdψ(p),

ω =
1

dβα3

{

eα2 − aαγ − bβγ − cνγ
}

, and

C1 =
C0

dβα4
.

(62)

Equation (61) becomes:

ψ′′ + 3ψ2 − ωψ + C1 = 0. (63)

Multiplying (63) by ψ′ and integrating with respect to
p gives:

1

2
ψ′2 + ψ3 − 1

2
ωψ2 + C1ψ + C2 = 0,

which when rearranged becomes:

ψ′2 = −(2ψ3 − ωψ2 + 2C1ψ + 2C2), (64)

where C2 is an arbitrary constant of integration.
Now, the right hand side of equation (64) is a cubic

function and suppose it has factors θ1 > θ2 > θ3 such that
θi ∈ ℜ, i = 1, 2, 3. Thus we have:

ψ′2 = −2(ψ − θ1)(ψ − θ2)(ψ − θ3). (65)

The solution for (65) is well-known in terms of the
Jacobi elliptic cosine function and is given by [59, 60]:

ψ(p) = θ2 + (θ1 − θ2)cn2

(

√

θ1 − θ3
2

p

∣

∣

∣

∣

S2

)

, (66)

where S2 =
θ1 − θ2

θ1 − θ3
.

Notice the appearance of the Jacobi elliptic cosine
function cn(p|S2) with special parameter
S2 : 0 < S2 < 1. The behaviour of S2 greatly dictates
how the function morphs into its trigonometric and
hyperbolic counterparts. In general, when S2→ 1,
cn( p|S2)→ sech (p) and when S2→ 0,
cn(p|S2)→ cos (p) [61]. Now, since U(p) = αd

∫

ψ(p),
the solution of the 3D-KPLike (7) is thus:

u(t, x, y, z) = αd

{√
2 (θ1 − θ3)√
θ1 − θ2

×E

{

sn

[

(xα + yβ − tγ + zν)
√
θ1 − θ3√

2

∣

∣

∣

∣

θ1 − θ2
θ1 − θ3

]

×
∣

∣

∣

∣

θ1 − θ2
θ1 − θ3

}

+ θ2(αx − γt+ βy + νz)

− (θ1 − θ3)
2

θ1 − θ2
(αx− γt+ βy + νz)

×
(

1− (θ1 − θ2)
2

(θ1 − θ3)
2

)}

,

where sn is the Jacobi elliptic sine function and E is the
elliptic integral of the second kind. Solution (67) contains
both topological kink when {(θ1 − θ2) / (θ1 − θ3)} → 1,
and periodic solutions when {(θ1 − θ2) / (θ1 − θ3)} → 0.
Hyperbolic function solutions of equation (7)

Multiplying equation (61) by U ′′ and integrating once
with respect to p leads to the second-order NLNODE:

C1 + C0U
′(p) +AU ′(p)2

−BU ′(p)3 − EU ′′(p)2 = 0,
(67)

where A = (eα2 − aαγ − bβγ − cνγ)/2, B = βα2, and
E = 1/2dβα3.

Now letting U ′(p) = V (p), we obtain:

C1 + C0V (p) +AV (p)2

−BV (p)3 − EV ′(p)2 = 0.
(68)

Letting C0 = C1 = 0, and solving the resultant
equation to get:

V (p) =
A

B

V (p) = −A
B





{

tanh

(√
EA (C3 − p)

2E

)}2

− 1



.

(69)

Recall thatU(p) =
∫

V (p)dp. Consequently, reverting
to the original variables, the analytic solutions of (7) are:

u1 =
A

B
p+K0. (70)
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and

u2 = − 2EA

B
√
EA

tanh

{√
EA(C3 − p)

2E

}

− EA

B
√
EA

ln

{

tanh

(√
EA(C3 − p)

2E

)

− 1

}

+
EA

B
√
EA

ln

(

tanh

{√
EA(C3 − p)

2E

}

+ 1

)

+
A

B
p+K1,

(71)

where p = αx+βy+νz−γt, withK0 andK1, integration
constants.
Exact solutions of (7) using Kudryashov’s method

We invoke the Kudryashov method [62] to determine
additional exact solutions of (7). We begin by assuming
that the solutions to the fourth-order NLNODE (60) can
be written in the form:

U(p) =

M
∑

i=0

AiY
i(p), (72)

where Y (p) solves the Riccati equation:

Y ′(p) = Y 2(p)− Y (p), (73)

which has an exact solution given by:

Y (p) =
1

1 + ep
. (74)

The value of M in (72) can be determined by using
the balancing procedure [62] and Ai, i = 0, 1, . . . ,M are
constants which we will determine. We balance the highest
order derivative with the nonlinear term, that is, U ′′′′(p)
and U(p)′U ′′(p) respectively. This givesM = 1. Thus the
solution (72) can be written as:

U(p) = A0 +A1Y (p). (75)

Substituting (75) into (60) and invoking (73), we
obtain:

−2a a1 αγ Y
3(p) + 3 a a1 αγ Y

2(p)

− a a1αγ Y (p)− 2 b a1β γ Y
3(p)

+ 3 b a1β γ Y
2(p)− b a1β γ Y (p)

− 2 c a1ν γ Y
3(p) + 3 c a1ν γ Y

2(p)

− c a1ν γ Y (p)− 24 d a1β α
3Y 5(p)

+ 60 d a1β α
3Y 4(p)− 50 d a1β α

3Y 3(p)

+ 15 d a1β α
3Y 2(p)− d a1β α

3Y (p)

− 12 a1
2α2β Y 5(p) + 30 a1

2α2β Y 4(p)

− 24 a1
2α2β Y 3(p) + 6 a1

2α2β Y 2(p)

+ 2 e a1α
2Y 3(p)− 3 e a1α

2Y 2(p)

+ ea1α
2Y (p) = 0.

Equating the coefficients of like powers of Y (p) in
equation (76) we obtain the following five algebraic
equations in terms of a0 and a1:

Y 5(p) : 2 da1β α
3 + a1

2α2β = 0,

Y 4(p) : 2 da1β α
3 + a1

2α2β = 0,

Y 3(p) : ea1α
2 − 25 da1β α

3

− 12 a1
2α2β − aa1α γ

− ba1β γ − ca1ν γ = 0,

Y 2(p) : 5 da1β α
3 + 2 a1

2α2β + aa1αγ

− ea1α
2 + ba1β γ + ca1ν γ = 0,

Y 1(p) : 25 γ3λa1 + 16 γ2λa1
2

+ 8 γ λ2a1
2 − 4 γ va1 = 0.

(76)

The solution of these equations is:

a0 = a0,

a1 =
2(aα γ − α2e + bβ γ + cγ ν)

α2β
,

d =
α2e− aα γ − bβ γ − cγ ν

α3β
.

(77)

Thus, the solution of the (3+1)-D KP-like (7) reads:

u(t, x, y, z) = a0 +
2 aαγ − 2α2e + 2 bβ γ + 2 cγν

α2β (1 + eαx+β y−γ t+ν z)
.

(78)

3.6 Invariant solutions under symmetry X5

The characteristic equations of the symmetry X5 yield the
invariants G(p, q, k) = u(t, x, y, z),
p = tz, q = cx− az, k = bx− ay. Insertion of this value
of u into (7) produces:

c pGpp + cGp + a c3dGqqkq + 3 a b c2dGqkkq

+ 3a b2c dGkkkq + a b3dGkkkk + 3 a c2GkGqq

+ 9a b cGkGkq + 6a b2GkGkk + 3a c2GqGkq

+ 3a b cGqGkk + c2eGqq + 2b c eGkq + b2eGkk = 0.
(79)

Equation (79) has five symmetries, namely:

Γ1 =
∂

∂q
, Γ2 =

∂

∂k
,

Γ3 =
∂

∂G
, Γ4 = ln p

∂

∂G
,

Γ5 = 3acp
∂

∂p
+ (3ack − 3abq)

∂

∂k
+ (beq − cek)

∂

∂G
.

Characteristic equations of Γ = Γ1 + γΓ2, where γ is
a constant yields the invariants G(p, q, k) = U(g), g =
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k − γq, which transforms equation (79) to the NLNODE:

(3a b c2dγ2 + a b3d− 3a b2c dγ − a c3dγ3)U ′′′′

+ (6a c2γ2 − 12a b cγ + 6ab2)U ′′U ′

+ (c2eγ2 + b2e− 2bceγ)U ′′ = 0,

or

EU ′U ′′ + FU ′′ + ZU ′′′′ = 0, (80)

where

Z = 3abc2dγ2 + ab3d− 3ab2cdγ − ac3dγ3,

E = 6ac2γ2 − 12abcγ + 6ab2,

F = c2eγ2 + b2e− 2bceγ.

Solution of (7) by direct integration.

We seek to find the solution of 3D-KPLike (7) by
utilizing the NLNODE (80). Integrating (80) with respect
to g yields:

E
2
U ′2 + FU ′ + ZU ′′′ + P0 = 0, (81)

where P0 is an arbitrary constant of integration.
Let U ′(g) = ρ(g), then equation (81) becomes:

E
2
ρ2 + Fρ+ Zρ′′ + P0 = 0. (82)

Multiplying (82) by ρ′(g) and integrating with respect
to g gives:

Z
2
ρ′2 +

E
6
ρ3 +

F
2
ρ2 + P0ρ+ P1 = 0, (83)

where P1 is an arbitrary constant.
Then,

ρ′2 +
E
3Z ρ

3 +
F
Z ρ

2 +
2

ZP0ρ+
2

Z P1 = 0. (84)

Suppose that r1, r2 and r3 are real roots (r1 > r2 > r3)
of a cubic equation:

ρ3 +
3F
E ρ2 +

6

E P0ρ+
6

E P1 = 0. (85)

that satisfy the conditions:

r1r2r3 = − 6

E P1,

r1r2 + r1r3 + r2r3 =
6

E P0,

r1 + r2 + r3 = −3F
E .

Then equation (84) is written as:

ρ′
2
= − E

3Z (ρ− r1)(ρ− r2)(ρ− r3),

and has the solution:

ρ(r) = r2 + (r1 − r2) cn2

×
{
√

E(r1 − r3)

12Z (g − g0)

∣

∣

∣

∣

M2

}

,

M2 =
r1 − r2

r1 − r3
,

(86)

where r0 is a constant and cn is the Jacobi cosine function.

Thus, by returning to the original variables, we obtain
the solution of the 3D-KPLike (7) as:

u(t, x, y, z) =F0

[

EllipticE
{

sn
[

F1(g − g0),K
2
]

,K2
}]

+

{

r2 − (r1 − r2)
1 −K4

K4

}

× (g − g0) + k1,
(87)

where

F0 =

√

12C(r1 − r2)2

(r1 − r3)EK8
, F1 =

√

E(r1 − r2)

12C ,

with g = bx−ay−γ(cx−az) and k1 an arbitrary constant.

3.7 Invariant solutions under symmetry X6

From the symmetry X6 we get the group invariant
solution:

F (p, q, k) = u(t, x, y, z)−bz ln (bz − cy)

3c

+
e (bz − cy)

3c
,

(88)

where p = x , q = z and k = (cy− bz)/t and equation (7)
transforms to the NLNPADE:

a k2Fkp + c k2Fkq + c d k Fppkp

+ bqFpp + 3ckFppFk + 3ckFpFkp = 0.
(89)

Equation (89) has three Lie symmetries:

U1 =
∂

∂p
+ F 1(q)

∂

∂F
,

U2 = 3c
∂

∂q
−
{

b ln k − F 2(q)
} ∂

∂F
,

U3 = (2aq − cp)
∂

∂p
− cq

∂

∂q
+ 4ck

∂

∂k

+
{

cF + cF 3(q)
} ∂

∂F
,

(90)

where F 1, F 2 and F 3 are arbitrary functions of q.
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However, here we take a special case F 1 = F 2 =
F 3 = 0, and obtain:

Y1 =
∂

∂p
, Y2 = 3c

∂

∂q
− b lnk

∂

∂F
,

Y3 =(2aq − cp)
∂

∂p
− cq

∂

∂q
+ 4ck

∂

∂k
+ cF

∂

∂F
.

(91)

We use the symmetry Y2 to perform reductions on (89).
This symmetry has invariants:

F (p, q, k) +
1

3c
(bq ln k) =W (r, j) ,

r = p, s = k.
(92)

Substituting (92) into (89) yields NLNPADE:

3 a sWrs + 3 c dWrrrs + 9 cWrrWs

+ 9cWrWrs − b = 0.
(93)

The given equation (93) has the following operator as its
Lie symmetry:

W1 =
∂

∂r
, W2 = 3c

∂

∂s
− ar

∂

∂W
, W3 =

∂

∂W
.

We use symmetry W2 to perform reductions on (93).
This symmetry has invariantsW (r, s)+(ars)/(3c) =

N (r), r = ξ and using them yields the LNORDE:

b+ 3aξN ′′ + 3aN ′ = 0, (94)

whose solution is

N(ξ) = C1 ln(ξ)−
b

3a
ξ + C2, (95)

with C1 and C2 being arbitrary constants of integration.
Hence, the group-invariant solution of (7) underX6 is:

u(t, x, y, z) =
b

3c
{z ln (bz − cy)} − e

3c
(bz − cy)

+ C1 ln(x) −
b

3a
x

+ C2 −
b

3c

{

z ln

[

1

t
(cy − bz)

]}

.

3.8 Invariant solutions under symmetry X7

The use of symmetry X7 gives the invariants:

p = z, q = (cx − az)/
√
tc,

k =
√
t(cy − bz)/c,

U (p, q, k) = t1/2u(t, x, y, z).

and using these, equation (7) transforms to:

2eUqq − cUp − 2dUqqkq − 6UqqUk

− 6UqUkq − cqUpq + ckUkp = 0.
(96)

Equation (96) has the following operators as its Lie
symmetries:

Q1 =
∂

∂p
, Q2 =

∂

∂U
,

Q3 = 9p
∂

∂p
+ 3q

∂

∂q
+ (ek − 3U)

∂

∂U
,

Q4 = −3q
∂

∂q
+ 9k

∂

∂k
+ (2ek + 3U)

∂

∂U
.

The symmetry Q3 has the invariants:

r =
q
3
√
p
, s = k,

H (r, s) =

(

U(p, q, k)− 1

3
ek

)

q
3
√
p
,

(97)

which transform the PDE (96) to:

cH+3 c rHr − 6 dHrrrs − 18HrrHs

− 18HrHrs + c r2Hrr − c sHs − c r sHrs = 0.
(98)

The above equation admits the Lie symmetry:

G = −r ∂
∂r

+ 3s
∂

∂s
+H

∂

∂H
,

which has invariants:

rH(r, s) = F (ξ), ξ = r3s,

and so the PDE (98) reduces to the NLNODE:

9F (ξ)F ′′(ξ)− 27ξ2dF ′′′′(ξ) − 108ξ dF ′′′(ξ)

+ (ξc− 60d)F ′′(ξ) + c F ′(ξ)

− 54 r F ′(ξ)F ′′(ξ)− 36F (ξ)F ′(ξ) = 0.

The use of symmetry Q4 provides us with the
invariants:

r = p, s = kq3,

H(r, s) =

(

U(p, q, k)− 1

3
ek

)

q,

and these invariants convert equation (96) to NLNPADE:

9HssH − 27 d s2Hssss − 54 sHssHs

− 108 d s− 60 dHss − 18H2
s − cHrs = 0.

(99)

Equation (99) has two Lie point symmetries, viz.,

T1 =
∂

∂r
, T2 = r

∂

∂r
+ s

∂

∂s
.

The symmetry operator T2 has invariants:

H(r, s) =W (r) , ξ =
s

r
,

and these transform the PDE (99) to the NLNODE

cW ′(ξ) − 27 d ξ2W ′′′′(ξ) + c ξW ′′(ξ)

+ 108ξ dW ′′′(ξ)− 54ξW ′′(ξ)W ′(ξ)

− 60 dW ′′(ξ)− 1 8W ′2(ξ)

+ 9W ′′(ξ)W (ξ) = 0.

(100)
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4 Graphical representation of solutions and

discussions

In this section, we present the graphical descriptions of
some of the obtained solutions in the previous section.
The results comprise various solutions of interest ranging
from exponential, trigonometry, and hyperbolic to Jacobi
elliptic function solutions. Besides, several algebraic
solutions consisting of arbitrary functions were achieved.
These arbitrary functions can assume any possible
mathematical functions with the result satisfying (7).
Therefore, using computer software, we represent a few
of the various interesting solutions in this study with
some graphical display of solitary waves in the form of
three-dimensional (3D), two-dimensional (2D), and
density plots.

In the first place, we explore the dynamics of
algebraic solution (21) in Figure 1 with functions
f1(z) = sech(z), f2(z) = sin(z), and G(t) = − sin(t),
where x = 1, y = 0, −8 ≤ t, z ≤ 8. We further have as
earlier presented, a fixed value of y with f1(z) = sech(z),
f2(z) = cos(z), G(t) = − cos(t), where x = 1.2, and
−10 ≤ t, z ≤ 10, thus, we plot Figure 2. In addition,
Figure 3 is presented for the solution of (7) with
f1(z) = sech(z), f2(z) = cos(z), and G(t) = − cos(t),
where x = 2, y = 0, alongside −8 ≤ t, z ≤ 8. Next, we
display solution (55) in Figure 4 where we take
f1(t) = sech(t), f2(t, x) = sin [ax− (e− 3)t],
F (z) = − sin(z), in which a = 1, e = 5, x = y = 0, and
−8 ≤ t, z ≤ 8. Further to that, in Figure 5, we assign
f1(t) as earlier done and F (z) = cos(z),

f2(t, x) = tanh2 [ax− (e − 3)t], where a = 1, e = 5,
x = 0.1, y = 0, and −8 ≤ t, z ≤ 8. We present in Figure
6 and Figure 7 portrayals of solution (55) with the
assignment functions and parameter values as in Figure 5
but with different values of x and intervals of t and z,
where for Figure 6 function f2(t, x) is doubled. We notice
that by fixing y and other involved constants and varying
x in dissimilar intervals of t and z, we obtain diverse
notable soliton interactions as demonstrated in the
Figures.

Now, we depict Jacobi elliptic solution (67) in Figure
8 with parameter values α = 0.3, β = 0.5, ν = 5,
γ = −0.2, θ1 = 90, θ2 = 50.05, θ3 = 0.04, where
variables y = 1.4, z = 2, and −5 ≤ t, x ≤ 5, whereas in
Figure 9, same value allocations are utilized but with
varying interval of t and x. Finally, we represent elliptic
integral function solution (87) in Figure 10, by using
dissimilar values α = −1.1, β = 1.1, ν = 0.7, γ = 0.4,
C = 70, E = 10, k1 = 1, r1 = 90, r2 = 40.05, r3 = 0.05,
where variables t = 0.01, z = 0.02, and −5 ≤ x, y ≤ 5.
Moreover, we further exhibit the dynamics of (87) in
Figure 11 by assigning α = −1.1, β = 1.1, ν = 0.7,
γ = 0.4, C = 70, E = 10, k1 = 1, r1 = 90, r2 = 40.05,
r3 = 0.05, with variables t = 0.01, z = 0.02, and
−10 ≤ x, y ≤ 10. It is observed that the elliptic function
solutions exhibit various periodic waves at various values
of parameters and dissimilar intervals.

-5 5

z

-2

-1

1

2

u

Fig. 1: Wave profile representing algebraic solution (21) at
x = 1 and y = 0.

5 Conservation laws of (7)

We devote this section to secure conservation laws related
to the 3D-KPLike (7) via Ibragimov’s theorem [63–65].
Using the salient information provided in [64], we have
the following theorem:

Theorem 51The adjoint equation of 3D-KPLike (7) is

expressed as:

G∗ ≡ avtx + bvty + cvtz − dvxxxy + vxx (e− 3uy)

− 6vxuxy − 3uxvxy = 0,
(101)

and the formal Lagrangian given as:

L = vG ≡ v(autx + buty + cutz − duxxxy

+ euxx − 3uxuxy − 3uxxuy),
(102)

with

G = autx + buty + cutz − duxxxy + euxx

− 3uxuxy − 3uxxuy.
(103)

Therefore, using the earlier outlined information, we
have the conserved vectors associated with Lie symmetries
obtained in (12), as:

T t
1 = evuxx − 3vuxuxy − 3vuyuxx − dvuxxxy

+
1

2
cvzut +

1

2
bvyut +

1

2
avxut
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+
1

2
cvutz +

1

2
bvuty +

1

2
avutx,

T x
1 = evxut −

3

2
vyuxut − 3uyvxut −

3

2
vuxyut

−3

4
dvxxyut +

1

2
avtut +

3

2
vuxuty +

1

4
dvxxuty

−evutx + 3vuyutx +
1

2
dvxyutx − 1

2
dvxutxy

−1

4
dvyutxx +

3

4
dvutxxy −

1

2
avutt,

T z
1 =

1

2
cutvt −

1

2
cvutt;

-10 -5 5 10

z

-1

1

2

3

u

Fig. 2: Wave profile representing algebraic solution (21) at
x = 1.2 and y = 0.

T y
1 =

3

2
vuxxut −

3

2
uxvxut −

1

4
dvxxxut +

1

2
bvtut

+
3

2
vuxutx +

1

4
dvxxutx − 1

4
dvxutxx

+
1

4
dvutxxx − 1

2
bvutt,

T t
2 =

1

2
auxvx − 1

2
auxxv −

1

2
buxyv −

1

2
cuxzv

+
1

2
buxvy +

1

2
cuxvz,

T x
2 =

1

2
autxv + butyv + cutzv −

1

4
duxxxyv

−3uxuxyv +
1

2
avtux −

3

4
duxvxxy

+
1

2
duxxvxy +

1

4
dvxxuxy −

1

2
dvxuxxy

−1

4
duxxxvy + euxvx − 3

2
u2xvy − 3uxuyvx,

T y
2 =

1

4
duxxxxv −

1

2
butxv + 3uxxuxv

+
1

2
bvtux − 1

4
duxvxxx +

1

4
duxxvxx

−1

4
duxxxvx − 3

2
u2xvx,

T z
2 =

1

2
cvtux − 1

−2cutxv;

T t
3 =

1

2
cvzuy +

1

2
bvyuy +

1

2
avxuy

1

2
cvuyz

−1

2
bvuyy −

1

2
avuxy,

T x
3 =

3

2
vuxyuy − 3vxu

2
y −

3

2
vyuxuy + evxuy

−3

4
dvxxyuy +

1

2
avtuy +

3

2
vuyyux − evuxy

+
1

2
duxyvxy −

1

2
dvxuxyy +

1

4
duyyvxx

−1

4
dvyuxxy +

3

4
dvuxxyy −

1

2
avuty,
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T y
3 = evuxx − 3

2
uyuxvx − 1

4
duxxyvx − 3

2
vuxuxy

−3

2
vuyuxx +

1

4
duxyvxx − 1

4
duyvxxx

−3

4
dvuxxxy +

1

2
buyvt + cvutz

+
1

2
bvuty + avutx,

T z
3 =

1

2
cuyvt −

1

2
cvuty,

T t
4 =

1

2
cuzvz −

1

2
cvuzz +

1

2
buzvy

−1

2
bvuyz +

1

2
auzvx − 1

2
avuxz,

T x
4 =

3

2
vuyzux −

3

2
uzvyux + euzvx

−3uzuyvx − evuxz + 3vuyuxz

−3

2
vuzuxy +

1

2
duxzvxy −

1

2
dvxuxyz

+
1

4
duyzvxx − 1

4
dvyuxxz −

3

4
duzvxxy

+
3

4
dvuxxyz +

1

2
auzvt −

1

2
avutz,

T y
4 =

3

2
vuxuxz −

3

2
uzuxvx − 1

4
duxxzvx

+
3

2
vuzuxx +

1

4
duxzvxx − 1

4
duzvxxx

+
1

4
dvuxxxz +

1

2
buzvt −

1

2
bvutz,

T z
4 = evuxx − 3vuxuxy − 3vuyuxx − dvuxxxy

+
1

2
cuzvt +

1

2
cvutz + bvuty + avutx;

-5 5

z

-1

1

2

3

4

u

Fig. 3: Wave profile representing algebraic solution (21) at
x = 2 and y = 0.
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u

Fig. 4: Wave profile representing algebraic solution (55) at
x = 0 and y = 0.
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T t
5 =

1

2
zvuxxa

2 − 1

2
zuxvxa

2 +
1

2
cvuxa−

1

2
czvzuxa

−1

2
bzvyuxa−

1

2
czuzvxa−

1

2
bzuyvxa+ czvuxza

+bzvuxya+
1

2
ctvxuta+

1

2
ctvutxa+

1

2
c2vuz

−1

2
c2zuzvz +

1

2
c2zvuzz +

1

2
bcvuy −

1

2
bczvzuy

−1

2
bczuzvy −

1

2
b2zuyvy + bczvuyz +

1

2
b2zvuyy

−3ctvuxuxy + cetvuxx − 3ctvuyuxx

−cdtvuxxxy +
1

2
c2tvzut +

1

2
bctvyut +

1

2
c2tvutz

+
1

2
bctvuty,

T x
5 =

3

2
zvyu

2
xa−

1

2
zuxvta

2 − 1

2
zvutxa

2

−ezuxvxa+ 3zuyuxvxa+ 3zvuxuxya

−1

2
dzvxyuxxa−

1

4
dzuxyvxxa+

1

2
dzvxuxxya

+
3

4
dzuxvxxya+

1

4
dzvyuxxxa+

1

4
dzvuxxxya

−1

2
cvuta−

1

2
czuzvta−

1

2
bzuyvta

+
1

2
ctutvta−

1

2
czvutza−

1

2
bzvutya

−1

2
ctvutta+

3

2
czuzvyux +

3

2
bzuyvyux

−3

2
czvuyzux − 3

2
bzvuyyux + 3bzu2yvx

−cezuzvx − bezuyvx + 3czuzuyvx + cezvuxz

−3czvuyuxz + bezvuxy +
3

2
czvuzuxy

−3

2
bzvuyuxy −

1

2
cdzuxzvxy −

1

2
bdzuxyvxy

+
1

2
cdzvxuxyz +

1

2
bdzvxuxyy −

1

4
cdzuyzvxx

−1

4
bdzuyyvxx +

1

4
cdzvyuxxz +

1

4
bdzvyuxxy

+
3

4
cdzuzvxxy +

3

4
bdzuyvxxy −

3

4
cdzvuxxyz

−3

4
bdzvuxxyy −

3

2
ctvyuxut + cetvxut

−3ctuyvxut −
3

2
ctvuxyut −

3

4
cdtvxxyut

+
3

2
ctvuxuty +

1

4
cdtvxxuty − cetvutx

+3ctvuyutx +
1

2
cdtvxyutx − 1

2
cdtvxutxy

−1

4
cdtvyutxx +

3

4
cdtvutxxy,

T z
5 =

1

2
tutvtc

2 − 1

2
vutc

2 − 1

2
zuzvtc

2

−1

2
zvutzc

2 − 1

2
tvuttc

2 + 3zvuxuxyc

−ezvuxxc+ 3zvuyuxxc+ dzvuxxxyc

−1

2
bzuyvtc−

1

2
azuxvtc

−1

2
bzvutyc−

1

2
azvutxc;

T t
6 =

3

2
zvuyyb

2 − 3

2
zuyvyb

2 +
1

2
cevb

−3

2
czvzuyb−

1

2
ceyvyb+

3

2
cyuyvyb
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+
3

2
czvuyzb−

3

2
cyvuyyb−

3

2
azuyvxb

+
3

2
azvuxyb+

3

2
ctvyutb+

3

2
ctvutyb

−1

2
c2eyvz +

3

2
c2yvzuy −

3

2
c2yvuyz

−1

2
aceyvx +

3

2
acyuyvx − 3

2
acyvuxy

−9ctvuxuxy + 3cetvuxx − 9ctvuyuxx

−3cdtvuxxxy +
3

2
c2tvzut +

3

2
actvxut

+
3

2
c2tvutz +

3

2
actvutx,
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Fig. 5: Wave profile representing algebraic solution (55) at
x = 0.1 and y = 0.
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Fig. 6: Wave profile representing algebraic solution (55) at
x = 0.5 and y = 0.
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Fig. 7: Wave profile representing algebraic solution (55) at
x = 0.3 and y = 0.
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Fig. 8: Wave profile representing elliptic function (67) at
y = 1.4 and z = 2.
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Fig. 9: Wave profile representing elliptic function (67) at
y = 1.4 and z = 2.

T y
5 =

3

2
zuyuxvxb−

1

2
zuyvtb

2 − 1

2
zvutyb

2

+
3

2
zvuxuxyb− ezvuxxb+

3

2
zvuyuxxb

−1

4
dzuxyvxxb+

1

4
dzvxuxxyb+

1

4
dzuyvxxxb

+
3

4
dzvuxxxyb−

1

2
cvutb−

1

2
czuzvtb−

1

2
azuxvtb

+
1

2
ctutvtb−

1

2
czvutzb −

1

2
azvutxb−

1

2
ctvuttb

+
3

2
azu2xvx +

3

2
czuzuxvx − 3

2
czvuxuxz −

3

2
czvuzuxx

−3azvuxuxx − 1

4
cdzuxzvxx − 1

4
adzuxxvxx

+
1

4
cdzvxuxxz +

1

4
adzvxuxxx +

1

4
cdzuzvxxx

+
1

4
adzuxvxxx − 1

4
cdzvuxxxz −

1

4
adzvuxxxx

−3

2
ctuxvxut +

3

2
ctvuxxut −

1

4
cdtvxxxut +

1

4
cdtvutxxx

+
3

2
ctvuxutx +

1

4
cdtvxxutx − 1

4
cdtvxutxx,

T z
6 =

3

2
yuyvtc

2 − 3

2
vutc

2

−1

2
eyvtc

2 +
3

2
tutvtc

2

−3

2
yvutyc

2 − 3

2
tvuttc

2

−3

2
bzuyvtc+

3

2
bzvutyc;

T x
6 =

3

2
cyvyuxe− cyvxe

2 − 3

2
cvuxe+ 6cyuyvxe

−3bzuyvxe−
3

2
cyvuxye+ 3bzvuxye−

1

4
cdvxxe

+
3

4
cdyvxxye + 3ctvxute−

1

2
acyvte− 3ctvutxe
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+
9

2
cvuyux − 9

2
cyuyvyux +

9

2
bzuyvyux

+
9

2
cyvuyyux − 9

2
bzvuyyux − 9cyu2yvx + 9bzu2yvx

+
9

2
cyvuyuxy −

9

2
bzvuyuxy −

3

2
cdvxuxy

+
3

2
cdyuxyvxy −

3

2
bdzuxyvxy +

3

2
bdzvxuxyy

+
3

4
cduyvxx +

3

4
cdyuyyvxx − 3

2
cdyvxuxyy

−3

4
bdzuyyvxx +

9

4
cdvuxxy −

3

4
cdyvyuxxy

+
3

4
bdzvyuxxy −

9

4
cdyuyvxxy +

9

4
bdzuyvxxy

+
9

4
cdyvuxxyy −

9

4
bdzvuxxyy −

3

2
acvut −

9

2
ctvyuxut

−9ctuyvxut −
9

2
ctvuxyut −

9

4
cdtvxxyut +

3

2
acyuyvt

−3

2
abzuyvt +

3

2
actutvt −

3

2
acyvuty +

3

2
abzvuty

+
9

2
ctvuxuty +

3

4
cdtvxxuty + 9ctvuyutx +

3

2
cdtvxyutx

−3

2
cdtvxutxy −

3

4
cdtvyutxx +

9

4
cdtvutxxy −

3

2
actvutt,

T y
6 =

9

2
zvuxuxyb−

3

2
zuyvtb

2 − 3

2
zvutyb

2

+
9

2
zuyuxvxb− 3ezvuxxb+

9

2
zvuyuxxb

−3

4
dzuxyvxxb +

3

4
dzvxuxxyb+

3

4
dzuyvxxxb

+
9

4
dzvuxxxyb−

3

2
cvutb−

1

2
ceyvtb

+
3

2
cyuyvtb+

3

2
ctutvtb− 3czvutzb

+
3

2
cyvutyb− 3azvutxb−

3

2
ctvuttb+

3

2
ceyuxvx

−9

2
cyuyuxvx − 9

2
cyvuxuxy +

3

2
ceyvuxx

−9

2
cyvuyuxx +

3

4
cdyuxyvxx − 3

4
cdyvxuxxy

+
1

4
cdeyvxxx −

3

4
cdyuyvxxx − 9

4
cdyvuxxxy

−9

2
cyvuyuxx +

3

4
cdyuxyvxx − 3

4
cdyvxuxxy

−9

2
ctuxvxut +

9

2
ctvuxxut −

3

4
cdtvxxxut

+3c2yvutz + 3acyvutx +
9

2
ctvuxutx

+
3

4
cdtvxxutx − 3

4
cdtvxutxx +

3

4
cdtvutxxx,
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Fig. 10: Wave profile representing elliptic function (87) at
t = 0.01 and z = 0.02.
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−1

2
cyuyvxa+

1

2
bzuyvxa+

1

2
cxuxvxa

+
1

2
czvuxza+

1

2
cyvuxya−

1

2
cxvuxxa

+ctvxuta+ ctvutxa−
1

2
c2vuz

+
1

2
c2uvz −

1

2
bcvuy −

1

2
c2yvzuy

+
1

2
bczvzuy +

1

2
bcuvy −

1

2
bcyuyvy

+
1

2
b2zuyvy +

1

2
c2yvuyz −

1

2
bczvuyz

+
1

2
bcyvuyy −

1

2
b2zvuyy +

1

2
c2xvzux

+
1

2
bcxvyux −

1

2
c2xvuxz −

1

2
bcxvuxy
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+c2tvutz + bctvuty,
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zvyu
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1
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2
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1
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dzvxyuxxa−

1
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1
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3
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1

2
cyvutya
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3
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3
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−3
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3

2
bzvuyyux + 3cyu2yvx
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2
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3

2
cyvuyuxy +

3

2
bzvuyuxy

−3cxvuxuxy −
1

2
cdvxuxy + cduxvxy
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2
cdyuxyvxy +

1

2
bdzuxyvxy +

1

2
cdyvxuxyy

−1

2
bdzvxuxyy −

3
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1
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Fig. 11: Wave profile representing elliptic function (87) at
t = 0.01 and z = 0.02.
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1
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zuyvtb
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1
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2
zuyuxvxb
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2
zvuxuxyb+ ezvuxxb−

3

2
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+
1

4
dzuxyvxxb−

1

4
dzvxuxxyb−

1

4
dzuyvxxxb
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4
dzvuxxxyb−

3

2
cvutb+

1

2
cuvtb

− 1

2
cyuyvtb+

1

2
cxuxvtb−

1

2
azuxvtb

+ ctutvtb+ czvutzb−
1

2
cyvutyb

− 1

2
cxvutxb+

3

2
azvutxb− ctvuttb

+ 3cvu2x − 3

2
cxu2xvx +

3

2
azu2xvx

− 3

2
cuuxvx +

3

2
cyuyuxvx +

3

2
cyvuxuxy

− ceyvuxx +
3

2
cuvuxx +

3

2
cyvuyuxx

+ 3cxvuxuxx − 3azvuxuxx −
3

4
cdvxuxx

+
1

2
cduxvxx − 1

4
cdyuxyvxx +

1

4
cdxuxxvxx

− 1

4
adzuxxvxx +

1

4
cdyvxuxxy + cdvuxxx

− 1

4
cdxvxuxxx +

1

4
adzvxuxxx − 1

4
cduvxxx

+
1

4
cdyuyvxxx − 1

4
cdxuxvxxx +

1

4
adzuxvxxx

+
3

4
cdyvuxxxy +

1

4
cdxvuxxxx − 1

4
adzvuxxxx

− 3ctuxvxut + 3ctvuxxut −
1

2
cdtvxxxut

− c2yvutz − acyvutx + 3ctvuxutx

+
1

2
cdtvxxutx − 1

2
cdtvxutxx +

1

2
cdtvutxxx,

T z
7 =

1

2
uvtc

2 − 3

2
vutc

2 − 1

2
yuyvtc

2

+
1

2
xuxvtc

2 + tutvtc
2 +

1

2
yvutyc

2

− 1

2
xvutxc

2 − tvuttc
2 +

1

2
bzuyvtc

− 1

2
azuxvtc−

1

2
bzvutyc+

1

2
azvutxc;

T t
G = −1

2
aG(t)vx − 1

2
bG(t)vy −

1
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cG(t)vz ,
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T x
G =

3

2
G(t)uxyv +

1

2
aG′(t)v − 1

2
aG(t)vt

+
3

4
dG(t)vxxy − eG(t)vx +

3

2
G(t)uxvy

+ 3G(t)uyvx,

T y
G =

1

2
bG′(t)v − 3

2
G(t)uxxv

− 1

2
bG(t)vt +

1

4
dG(t)vxxx +

3

2
G(t)uxvx,

T z
G =

1

2
cG′(t)v − 1

2
cG(t)vt,

T t
F =

1

2
cF ′(z)v − 1

2
aF (z)vx

− 1

2
bF (z)vy −

1

2
cF (z)vz,

T x
F =

3

2
F (z)uxyv −

1

2
aF (z)vt +

3

4
dF (z)vxxy

− eF (z)vx +
3

2
F (z)uxvy + 3F (z)uyvx,

T y
F =

3

2
F (z)uxvx − 3

2
F (z)uxxv −

1

2
bF (z)vt

+
1

4
dF (z)vxxx

T z
F = − 1

2
cF (z)vt.

Remark 51We observe that by invoking Ibragimov’s

theorem, we obtained nine conservation laws of the

3D-KPLike (7) which contain new variable v and

arbitrary functions F (z) and G(t). These conservation

laws are not the same, and there is the availability of

functions that attest to the fact that a nonlinear

differential equation can possess infinitely many

conservation laws. In addition, some of them represent

conserved quantities such as energy and momentum.

6 Conclusion

In this work, an investigation of a three-dimensional
fourth-order nonlinear Kadomtsev-Petviashvili-like
equation (7) was carried out. There are numerous
disciplines in which this equation can be used. We
performed symmetry analysis on the model and obtained
point symmetries given in (12). In order to execute
symmetry reductions and create exact solutions, we first

reduced the equation using the obtained Lie point
symmetries. As a result, diverse group-invariant solutions
were obtained. Besides, using the direct integration
technique along with Kudryashov’s approach, more
solutions to (7) were found. Solutions of interest secured
include logarithmic, exponential, and hyperbolic
functions, as well as elliptic integral functions. In
addition, various algebraic function solutions of interest
were found. Moreover, the solutions secured were
depicted with various diagrammatic representations by
making an adequate choice of parameter values. Lastly,
Ibragimov’s approach was utilized to construct
conservation laws for this model. These conservation
laws represented conserved quantities that included
energy and momentum.
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[54] X. Lü, W.X. Ma, Y. Zhou, and C.M. Khalique, Rational

solutions to an extended Kadomtsev-Petviashvili-like

equation with symbolic computation, Comput. Math. Appl.,

71, (2016) 1560-1567.

[55] O.D. Adeyemo, and C.M. Khalique, Symmetry solutions

and conserved quantities of an extended (1+3)-dimensional

Kadomtsev-Petviashvili-like equation, Appl. Math. Inf. Sci.,

15, (2021) 649-660.

[56] O.D. Adeyemo, and C.M. Khalique, Dynamics of soliton

waves of group-invariant solutions through optimal system

of an extended KP-like equation in higher dimensions with

applications in medical sciences and mathematical physics,

J. Geom. Phys., 177, 104502, 2022.

[57] M.T. Darvishi, M. Najafi, S. Arbabi, and L. Kavitha,

Exact propagating multi-anti-kink soliton solutions of a

(3+1)-dimensional B-type Kadomtsev-Petviashvili equation,

Nonlinear Dyn., 83, (2016) 1453-1462.

[58] D.F. Lawden, Elliptic Functions and Applications, Vol 8,

Springer-Verlag, New-York, NY, USA, 1989.

[59] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and

Products, 7th edn. Academic Press, New York, (2007).

[60] J. Billingham, A.C. King, Wave motion, Cambridge

University Press, Cambridge, 2000.

[61] N.A. Kudryashov, On new travelling wave solutions of the

KdV and the KdV-Burgers equations, Commun. Nonlinear

Sci. Numer. Simulat., 14, 1891-1900, 2009.

[62] N.A. Kudryashov, One method for finding exact solutions

of nonlinear differential equations, Commun. Nonlinear Sci.

Numer. Simulat., 17 (2012) 2248–2253

[63] N.H. Ibragimov, Integrating factors, adjoint equations and

Lagrangians, J. Math. Anal. Appl. 318 (2006) 742–757.

[64] N.H. Ibragimov, A new conservation theorem, J. Math.

Anal. Appl., 333 (2007) 311–328.

[65] C.M. Khalique, O.D. Adeyemo, Closed-form solutions

and conserved vectors of a generalized (3+1)-dimensional

breaking soliton equation of engineering and nonlinear

science, Mathematics, 8 (2020) 1692.

c© 2024 NSP

Natural Sciences Publishing Cor.


	Introduction
	Lie symmetries of 3D-KPLike (7)
	Symmetry reductions and exact solutions of (7)
	Graphical representation of solutions and discussions
	Conservation laws of (7)
	Conclusion

