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Abstract: In this paper, an analytical method based on the B-spline method is used to study the fractional Fokker Planck equation.

In this study, the B-Spline series method is derived, and its effectiveness in handling this problem is demonstrated. To illustrate the

effectiveness of the suggested method, two examples are given. Since the maximum error in our approximation is only about 10−15, the

suggested method is clearly very accurate as we can see from the fact that the approximate solution is very close to the exact solution.

This study demonstrates the proposed approach’s potential and its applicability to additional physical models.
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1 Introduction

September 30th, 1695 marks the born of fractional calculus with reason to a profound problem raised by a French
mathematician called L’Hospital in a letter to a German mathematician named Leibniz. The adorable response of Leibniz
as recorded to that profound problem laminated a major inspiration for all generations of scientists and is incessant to
motivate the minds of modern researchers. Fractional calculus has maintained the attention of best-level mathematicians
for last three centuries, and over the last decade it has been used to tackle the dynamics of complex systems from
different fields of science and engineering. The most important applications of fractional calculus in science and
engineering are fluid mechanics, quantum mechanics, electromagnetics, viscoelasticity, electricity, electrochemistry,
biological population models, optics, signals processing, and ecological systems [1]. A lot of prominent scientists
reporting results in fractional calculus during 18th and 19th centuries included Euler, Laplace, Fourier, Abel, Liouville,
Grunwald, Letnikov, Riemann, Laurent, Heaviside, and others, see [2,3,4,5,6,7,8,9,10,11]. This part introduces a few
definitions of fractional calculus for η ∈ (0,1].

Definition 1.The Riemann–Liouville fractional derivative is defined as

Dηh(y) =
1

Γ (1−η)

d

dy

∫ y

0
(y− s)−ηh(s)ds,

where y > 0 and η > 0.

Definition 2.The Caputo fractional derivative of y is defined as

Dηh(y) =
1

Γ (1−η)

∫ y

0
(y− s)−ηh′(s)ds,

where y > 0 and η > 0.
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Some of the properties of a Caputo derivative include:

1.Dη c = 0, where c is any constant.

2.Dη yγ = Γ (γ+1)
Γ (η+γ+1)y

γ−η , where γ ≥ η .

There is a long history of studies on the theory of Fokker–Planck equation, dating back to Einstein, Langevin, Fokker,
and Planck, among many others [11,12,13]. Because of impressive advancements in analysis and computation, plus a
wide range of available applications, the theory of the Fokker-Planck equation is exceedingly rich in content. A wide
range of scientific phenomena can be described by it, including the relationship between random force and fluctuations,
and nonlinearity in pattern formation. The Fokker–Planck equation can be used to describe many physical, chemical,
biological, and economic systems. Numerous algorithms have been explored for numerical solutions of the
Fokker–Planck equation in modern years, see [14,15]. The Fokker–Planck equation has received considerable theoretical
attention in recent years. Each of the proposed methods has its advantages and limitations, as might be expected. A
number of authors have used path integral methods [16,17,18]. A numerical evaluation of the
Onsager-Machlup-functions using a mathematical formalism provided by Wehner and Wolfer, [19], has been presented.
Eigenvalue expansion is applicable to a wide class of Fokker–Planck operators [20,21,22,23]. The eigenvalue of
Fokker–Planck equation can be solved very accurately by using various spectral methods and pseudospectral methods.
When the Fokker–Planck equation deals with a Lorentz gas system, the complete set of eigenvalues and eigenfunctions
determine the dynamics completely.
In this paper, we discuss the following Fractional Fokker Planck equation (FFPE)

Dη
z Ω(y,z)+Dη

y Ω(y,z)−D2η
y Ω(y,z) = 0, (1)

Ω(y,0) = h(y) (2)

where y,z > 0 and η ∈ (0,1] using the proposed method to increase the accuracy of the approximate solution. We select
this method since it is promising method and gives us accurate approximation. In Section 2, some preliminaries which
will be used in this paper will be presented. In section 3, we present the method of solution and in section 4, we show
some numerical results to show the efficiency of the B-spline method . Finally, we present some conclusions in Section 5.

2 Preliminaries

In this section, we present the concept fractional B-splines (FBS) and their properties. Let us define the fractional truncated
power functions (FTPFs) and the fractional B-spline.

Definition 3.Let η > 0 be a real number, then the FTPF is given as

y
η
+ =

{

yη , y ≥ 0

0, y < 0

and the FBS is given by

Sη(y) =
1

Γ (η + 1)

∞

∑
k=0

(−1)k Γ (η + 2)

k!Γ (η − k+ 2)
(y− k)η

+. (3)

It is wroth to mention that when η > 0 is integer, the sum in definition (2.1) will be finite sum and its degree is η . Also,
its compact support, which is defined by {y ∈ ℜ : y

η
+ > 0}, is [0,η + 1] and it is always positive. However, when η is

non-integer, then the sum is infinite and does not have compact support but it decays very fast as y becomes large. Also,
it has both positive and negative values but the negative values decay very fast as η becomes large. To understand these
functions, we plot the graphs of Sη(y) for specific choices of η , η = k

4
,k = 0 : 8. We notice that the compact support of

Sη(y) is [0,6] when η is integer and decay to zero when η is non-integer number. Also, it is positive when η is integer
and has positive sign and negative sign when η is non-integer. Using the Caputo derivative and its power rule, one can get

Dνy
η
+ =

Γ (η + 1)

Γ (η −ν + 1)
y

η−ν
+ ,0 < ν ≤ η

which yields that

DνSη(y) =
∞

∑
k=0

(−1)k Γ (η + 2)

k!Γ (η − k+ 2)Γ (η −ν + 1)
(y− k)η−ν

+ . (4)

To understand the behavior of the fractional derivatives of S5(y), S 26
5

, and S 27
5

for ν = 1
5
,

3
5
,1, we sketch Figures (2)-(4),

respectively.
We note from Figures (2)-(4) that the derivatives of Sη(y) decay to zero as y.
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Fig. 1: Sη (y) for η = k
4 ,k = 0 : 8.
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Fig. 2: Dν S5(y) for ν = k
5 ,k = 1,3,5.

3 Method of solution

In this section, we present the proposed method. Generate a uniform partition to [0,1] as Π = {kλ : 0 ≤ k ≤ K} where

λ = 1
K

. As we notice from Figure (1) that Sν(y) does not have compact support but it decays to zero as y becomes large.
For this reason, we can assume that the support of Sν(y) is [0,L] where L > 0 is an integer. Let

Sη,λ = {Sη,k(y) = Sη(
y

λ
− k),k ∈ Iλ ,y ∈ [0,1]} (5)
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Fig. 3: Dν S 26
5
(y) for ν = k

5 ,k = 1,3,5.
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Fig. 4: Dν S 27
5
(y) for ν = k

5 ,k = 1,3,5.

be a basis for the fractional spline space where Iλ = {−L,−L+ 1, ...,K}. Because Sη(
y
λ − k) ⊆ [0,1], we let K = L− 1.

Hence, our spline space has dimension 2L. Let us assume that the solution of equation (1.1) by

Ωη,λ (y,z) =
L−1

∑
k=−L

ωk(z)Sη (
y

λ
− k). (6)
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We choose the collocation points as follows

ϒ = {yk = kρ : 1 ≤ k ≤ 2L} (7)

where ρ = 1
2L

. We implement the collocation method by forcing the approximate solution to satisfy Equation (1.1) at the
collocation points. Thus,

Dη
z Ωη,λ (yk,z)+Dη

y Ωη,λ (yk,z)−D2η
z Ωη,λ (yk,z) = 0 (8)

which gives that
L−1

∑
k=−L

Dη
z ωk(z)Sη,k(ym)+

L−1

∑
k=−L

ωk(z)D
η
y Sη,k(ym)−

L−1

∑
k=−L

ωk(z)D
2η
y Sη,k(ym) = 0 (9)

for m = 1, ...,2L. Let

h(y) =
L−1

∑
k=−L

hkSη,k(y). (10)

Equation (1.2) yields that

Ωη,λ (y,0) =
L−1

∑
k=−L

ωk(0)Sη,k(y) =
L−1

∑
k=−L

hkSη,k(y). (11)

Thus,
ωk(0) = hk,k =−L : L− 1. (12)

Let

ω(z) =







ω−L(z)
...

ωL−1(z)






,A = (Sη,k(ym))−L≤k≤L−1,1≤m≤2L,

B = (Dη
y Sη,k(ym)−D2η

y Sη,k(β ym))−L≤k≤L−1,1≤m≤2L,

H =







hL

...
hL−1






.

Equations (3.5) and (3.7) can be written in the matrix form as

ADη
z ω(z)+Bω(z) = 0, (13)

ω(0) = H. (14)

Assume that ω(z) is approximated by

ω(z) =
∞

∑
j=0

z jη

Γ (1+ jη)
ω j. (15)

Then, the sth truncation series is given by

ωs(z) =
s

∑
j=0

z jη

Γ (1+ jη)
ω j. (16)

Because ω(0) = H, then

ωs(z) = H +
s

∑
j=1

z jη

Γ (1+ jη)
ω j. (17)

To find the vectors ω j, j = 1 : s, we solve the iterative equation

D( j−1)ηResωs(0) = 0 (18)

where

Resωs(z) = ADη
z ωs(z)+Bωs(z) = 0

= BH +
s

∑
j=1

z( j−1)η

Γ (1+( j− 1)η)
Aω j +

s

∑
j=1

z jη

Γ (1+ jη)
Bω j = 0.
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Hence,

Aω j +Bω j−1 = 0, j = 1,2, ...,s

ω0 = H

which can be simplified as

ω j = (−1) j(A−1B) jH = 0, j = 0,1,2, ...,s. (19)

We summarize the proposed method in the following algorithm.
Algorithm 3.1

Step 1. Use Equation (3.15) to find ω j(z) for j = 0,1, ...,s.
Step 2. Use Equation (3.13) to find the approximate solution of Problem (3.9)-(3.10).
Step 3. Use Equation (3.2) to find the approximate solution Ω(y,z) of Problem (1.1)-(1.2).
Step 4. Stop.

4 Numerical results

In this section, we give two examples to illustrate the efficiency of the proposed method.
Example 1: Consider the following problem [22]

Dη
z Ω(y,z)+Dη

y Ω(y,z)−D2η
z Ω(y,z) = 0

with

Ω(y,0) =
−y3η

Γ (3η + 1)

where Ω(y,z) is the external potential and D
η
z Ω(y,z) and D

2η
z Ω(y,z) represent the negative external forces in the system.

The exact solution is

Ω(y,z) =
−yηzη

(Γ (η + 1))2
+

2z2η

Γ (2η + 1)
+

y2ηzη − yηz2η

Γ (2η + 1)Γ (η + 1)
+

z3η − y3η

Γ (3η + 1)
.

The maximum absolute errors in approximate solution for L = s = 6 are reported in Tables 1 for η = 1
k

for k = 1,2, ...,10
where

errormax = max{|Ω(y,z)−Ωη, 1
5
(y,z)| : y,z ∈ {0,0.1, ...,1}}.

Table 1: Error in Example 1

η errormax
1
10

0
2
10

1.2E − 15
3
10

1.3E − 15
4
10

1.5E − 15
5
10

1.7E − 15
6
10

1.9E − 15
7
10

2.1E − 15
8
10

2.2E − 15
9
10

2.4E − 15

1 2.7E − 15

The graphs of the exact and approximate solutions for L = s = 6 and η = 1
3
,

2
3
,1 are presented in Figures 5-7.

Example 2: Consider the following problem [22]

Dη
z Ω(y,z)+Dη

y Ω(y,z)−D2η
z Ω(y,z) = 0
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Fig. 5: Exact and approximate solutions for η = 1
3 in Example 1.

Fig. 6: Exact and approximate solutions for η = 2
3 in Example 1.

with

Ω(y,0) =
y2η

Γ (2η + 1)

where Ω(y,z) is the external potential and D
η
z Ω(y,z) and D

2η
z Ω(y,z) represent the negative external forces in the system.

The exact solution is

Ω(y,z) =
−yηzη

(Γ (η + 1))2
+

z2η

Γ (η + 1)
+

y2η + z2η

Γ (2η + 1)
.
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Fig. 7: Exact and approximate solutions for η = 1 in Example 1.

Fig. 8: Exact and approximate solutions for η = 1
3 in Example 2.

The maximum absolute errors in approximate solution for L = s = 6 are reported in Tables 2 for η = 1
k

for k = 1,2, ...,10
where

errormax = max{|Ω(y,z)−Ωη, 3
4
(y,z)| : y,z ∈ {0,0.1, ...,1}}.
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Fig. 9: Exact and approximate solutions for η = 2
3 in Example 2.

Fig. 10: Exact and approximate solutions for η = 1 in Example 2.
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Table 2: Error in Example 2

η errormax
1

10 0
2

10 1.1E −16
3

10 1.2E −15
4

10 1.4E −15
5

10 1.5E −15
6

10 1.7E −15
7

10 1.8E −15
8

10 2.0E −15
9

10 2.2E −15

1 2.3E −15

The graphs of the exact and approximate solutions for L = s = 6 and η = 1
3
,

2
3
,1 are presented in Figures 8-10.

5 Conclusion

The B-Spline method is used to solve the following FFPE

Dη
z Ω(y,z)+Dη

y Ω(y,z)−D2η
y Ω(y,z) = 0, (20)

Ω(y,0) = h(y) (21)

where y,z > 0 and η ∈ (0,1]. Theoretical and numerical results are given. Two numerical examples are studied to illustrate
the efficiency of the B-Spline series method. Tables (1)-(2) shows that the approximate solution is very close to the exact
solution. In addition, Figures (5)-(10) give strong evidences of the efficiency of the proposed method. For the future work,
we will use the proposed method to study more applications in physics and engineering.
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