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Abstract: This article is devoted to present the α-power function, calculus on α-time scale, the α-logarithm and their applications

on α-difference equations. We introduce the α-power function as an absolutely convergent infinite product. We state that the α-power

function verifies the fundamentals of α-time scale and adheres to both the additivity and the power rule for α-derivative. Next, we

propose an α-analogue of Cauchy-Euler equation whose coefficient functions are α-polynomials and then construct its solution in

terms of α-power function. As illustration, we present examples of the second order α-Cauchy-Euler equation. Consequently, we

construct α-analogue of logarithm function which is determined in terms of α-integral. Finally, we propose a second order BVP for

α-Cauchy-Euler equation with two point unmixed boundary conditions and compute its solution by the use of Green’s function.
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1 Introduction

After the concept of time scales T was invented [17], not only the studies on the discrete settings

hZ := {hx : x ∈ Z,h > 0}, or Kq := {qn : n ∈ Z,q 6= 1}∪{0}, (1)

have been unified and extended but also the theories of differential and discrete equations have been gathered under
the roof of dynamical equations (see [7,9] and the references therein). Although the notion of time scales has provided
significant contributions in pure and applied mathematics, some elementary notions such as polynomials, power functions,
Taylor series have not been established in explicit, efficient and applicable forms on a general time scale. In order to
overcome these deficiencies, researchers usually prefer to study on particular time scales. For instance, in [12], the general
time scale is narrowed to a special time scale, namely (q,h)-time scale,

T
x0

(q,h) :=
{

qnx0 + h[n]q : n ∈ Z
}
∪

{
h

1− q

}
, h ≥ 0, q ≥ 1, q+ h > 1, x0 ∈ R,

which covers h- and q-discretizations (1). Here [n]q := qn−1
q−1

. The studies on T
x0

(q,h) attract the attention of many researchers

[15,26,27,30,28,20,21] where the delta and nabla (q,h)-analysis have been widely investigated separately.
In [13], motivated by [1], we presented a comprehensive framework which combines and expands the delta and nabla

(q,h)-analysis. We introduced the α-time scale, for x0 ∈ R\ { h
1−q

}, h ∈ R+
0 and q ∈ R+ \ {1}

T
x0
α := {αn(x0) : n ∈ Z}∪

{
h

1− q

}
, (2)
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where we defined the α-operator as

α(x) := t

(
x− h

q

)
+(1− t)(qx+ h), x ∈ R, h ∈ R+

0 , q ∈ R+, t ∈ [0,1], (3)

a convex combination of the backward and forward jump operators of T
x0

(q,h)
. We emphasize that, the weighted operator

α unifies delta and nabla (q,h)-analysis for t ∈ {0,1} and produces their extensions for t ∈ (0,1). Generated by the
operator α , for k,m ∈ Z, we introduced the αk,m-derivative which not only covers various kinds of discrete derivatives
such as symmetric (q,h)-/q-/h-derivatives, (p,q)-derivative [14], delta (q,h)-/q-/h-derivatives and nabla
(q,h)-/q-/h-derivatives but also provides their extensions. Based on the α-operator, we constructed the α-polynomial
which possesses the characteristics of α-time scales. We showed that the α-polynomial recovers discrete polynomials
such as delta (q,h)-/q-/h-polynomials, nabla (q,h)-/q-/h-polynomials and produces their extensions.

The concept of power function and its applications on dynamic equations have not been established on a general time
scale. Because even the polynomials could have been presented only in implicit and recursive forms by integrals as ∆ -
polynomials [9,16], ∇-polynomials [2] and diamond-alpha polynomials [25,24], the studies conducted on the exploration
of power function on time scales have been notably absent so far. As a result, Cauchy-Euler equation on time scales could
have been studied for order two with very specific variable coefficients [8] and its Hyers-Ulam stability was analyzed [3].

The primary motivation of the current work is to address these gaps. For the attainment of this objective, we first
introduce the power function on α-time scale. We express the α-power function as an absolutely convergent infinite
product. We showed that the α-power function reveals the fundamentals of the α-time scales since it obeys the additivity
rule and power rule for α-derivative. Such rules have an additional key role to propose the form of the α-difference
equations and to construct their solutions. We plot the graphs of the α-power function with different real powers and for
specific q,h, t,k values. This is where the significance of α-operator comes to the forefront. One can observe that the
convex combination structure of α-operator provides more balanced approximations to discrete power functions.

The subsequent substantial contribution of the current paper is to present the α-analogue of Cauchy-Euler equation.
We first present an α-difference IVP which admits α-power function as a unique solution. We propose an nth order
α-Cauchy-Euler equation whose coefficients are α-polynomials. We present the solutions of α-Cauchy-Euler equation
in terms of α-power functions unlike the exponential forms studied in the literature [8]. In order to illustrate concrete
examples, we focus on second order α-Cauchy-Euler equations whose linearly independent solutions are derived by the
reduction of order method. In the first example, we obtain two linearly independent solutions where both are α-power
functions with different real powers which can also be constructed from one another by the use of additivity rule. In
the second example, similar to the repeated root case, the second linearly independent solution consists of a α-power
function and its logarithmic counterpart. Such applications allow us to introduce the α-analogue of logarithm function
whose figure is plotted to demonstrate its reductions to (q,h)-/q-/h- and ordinary logarithm functions. After Bohner posed
the open problem of defining a ”nice” logarithm function [6], numerous articles have been published [18,23,4]. We
present a partial answer for this open problem following the second approach given in [6] by introducing the α-logarithm
function which is expressed in terms of α-integral presented in the Appendix. We additionally compute the solutions of
nonhomogeneous α-Cauchy-Euler equation using the variation of parameters method. Finally, we propose a second order
BVP for the α-Cauchy-Euler equation with two point unmixed boundary conditions and derive its solution by the use of
Green’s function.

2 Preliminaries

In [13], for k ∈ Z, n ∈N0, q ∈R+ and t ∈ [0,1], we introduced the αk-integer as

[n]αk =





( t
q+(1−t)q)nk−1

( t
q+(1−t)q)k−1

if t
q
+(1− t)q 6= 1,

n if t
q
+(1− t)q= 1.

Now, we extend it to the real numbers in the following obvious way.

Definition 1.For k ∈ Z, r ∈ R, q ∈ R+ and t ∈ [0,1], the αk-number is defined by

[r]αk =





( t
q+(1−t)q)rk−1

( t
q+(1−t)q)k−1

if t
q
+(1− t)q 6= 1,

r if t
q
+(1− t)q= 1.
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The following properties of αk-numbers follow from the definition and are very handy in the rest of the manuscript. Since
their proofs are almost identical to those in the integer case [13], we state them without proofs.

Proposition 1. (i)[0]αk = 0 and [1]αk = 1.
(ii)If q = 1 or t = q

q+1
, then t

q
+(1− t)q= 1 and hence [r]αk = r for all r ∈R.

(iii)If n ∈ N0, then [n]αk =
n−1

∑
j=0

(
t

q
+(1− t)q

) jk

.

(iv)The αk-numbers have the following limits

lim
r→∞

[r]αk =





1

1−
(

t
q
+(1− t)q

)k
if 0 <

(
t
q
+(1− t)q

)k

< 1,

∞ if 1 ≤
(

t
q
+(1− t)q

)k

,

lim
r→−∞

[r]αk =





−∞ if 0 <
(

t
q
+(1− t)q

)k

≤ 1,

1

1−
(

t
q
+(1− t)q

)k
if 1 <

(
t
q
+(1− t)q

)k

.

(v)For r,s ∈ R, we have [s]αk − [r]αk =
(

t
q
+(1− t)q

)rk

[s− r]αk .

(vi)For r,s ∈ R, we have
(

t
q
+(1− t)q

)sk

[r]αk +[s]αk = [r+ s]αk .

In [13], we found the explicit form for the integer powers of the α-operator (3).

Proposition 2.[13] For n ∈ Z and x ∈R, the α-operator satisfies

αn(x) =

(
t

q
+(1− t)q

)n

x− h

(
t

q
− (1− t)

)
[n]α . (4)

In [13], we introduced the α-time scale as in (2) which unifies delta and nabla (q,h)-analysis for t ∈ {0,1} and allows
extensions for t ∈ (0,1). We extend the convenient form (4) to the real powers of α and present its fundamental properties.

Definition 2.For x ∈R, h≥ 0, q > 0, t ∈ [0,1], and r ∈R, we introduce the extended α-operator, denoted by αr, as follows

αr(x) =

(
t

q
+(1− t)q

)r

x− h

(
t

q
− (1− t)

)
[r]α .

Proposition 3. (i)If r ∈ Z, then αr(x) = αr(x).
(ii)For r,s ∈ R, we have αs ◦αr = αs+r.

(iii)For r ∈R, we have αr(x) =
(

t
q
+(1− t)q

)r (
x− h

1−q

)
+ h

1−q
.

(iv)For r ∈ R, we have αr (x) = x if and only if r = 0 or x = h
1−q

or t
q
+(1− t)q = 1. The last case occurs when q = 1 or

t = q
q+1

.

(v)The extended α-operator admits the following limits

lim
r→∞

αr(x) =





∞ if t
q
+(1− t)q> 1 and x > h

1−q
,

−∞ if t
q
+(1− t)q> 1 and x < h

1−q
,

h
1−q

if t
q
+(1− t)q< 1,

lim
r→−∞

αr(x) =





h
1−q

if t
q
+(1− t)q> 1,

∞ if t
q
+(1− t)q< 1 and x > h

1−q
,

−∞ if t
q
+(1− t)q< 1 and x < h

1−q
.
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(vi)For r,s ∈ R, we have

αs(x)−αr(x) =

(
t

q
+(1− t)q

)r

[s− r]α(α(x)− x)

=

(
t

q
+(1− t)q

)r

[s− r]α

(
t

q
+(1− t)q− 1

)(
x−

h

1− q

)
.

Proof. (i)Follows from (4).
(ii)By Definition 2 and Proposition 1/(vi) with k = 1, we have

(αs ◦αr)(x) = αs(αr(x)) =

(
t

q
+(1− t)q

)s

αr(x)− h

(
t

q
− (1− t)

)
[s]α

=

(
t

q
+(1− t)q

)s((
t

q
+(1− t)q

)r

x− h

(
t

q
− (1− t)

)
[r]α

)
− h

(
t

q
− (1− t)

)
[s]α

=

(
t

q
+(1− t)q

)s+r

x− h

(
t

q
− (1− t)

)((
t

q
+(1− t)q

)s

[r]α +[s]α

)

=

(
t

q
+(1− t)q

)s+r

x− h

(
t

q
− (1− t)

)
[s+ r]α = αs+r(x).

(iii)By Definition 2, we have

αr(x) =

(
t

q
+(1− t)q

)r

x− h

(
t

q
− (1− t)

)
[r]α =

(
t

q
+(1− t)q

)r


x−

h
(

t
q
− (1− t)

)

t
q
+(1− t)q− 1


+

h
(

t
q
− (1− t)

)

t
q
+(1− t)q− 1

.

Note that (1− q)
(

t
q
− (1− t)

)
= t

q
+(1− t)q− 1, hence we conclude with

αr(x) =

(
t

q
+(1− t)q

)r(
x−

h

1− q

)
+

h

1− q
.

(iv)By (iii), we get

αr(x)− x =

((
t

q
+(1− t)q

)r

− 1

)(
x−

h

1− q

)
, (5)

which implies that αr (x) = x if and only if r = 0 or x = h
1−q

or t
q
+(1− t)q= 1.

(v)Obvious from (iii).
(vi)By (iii) and (5) with r = 1, we derive

αs(x)−αr(x) =

((
t

q
+(1− t)q

)s(
x−

h

1− q

)
+

h

1− q

)
−

((
t

q
+(1− t)q

)r(
x−

h

1− q

)
+

h

1− q

)

=

(
t

q
+(1− t)q

)r
((

t

q
+(1− t)q

)s−r

− 1

)(
x−

h

1− q

)

=

(
t

q
+(1− t)q

)r

[s− r]α

(
t

q
+(1− t)q− 1

)(
x−

h

1− q

)

=

(
t

q
+(1− t)q

)r

[s− r]α(α(x)− x).

By Proposition 3/(i), from now on we prefer to use the notation αr instead of αr for any r ∈ R. Now, we recall αk-
factorial [13] and extending αk-permutation coefficient [13] to real numbers which will be necessary in the remaining of
the text.
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Definition 3.For j ∈ N0, the αk-factorial is introduced as

[ j]αk ! := [ j]αk [ j− 1]αk [ j− 2]αk · · · [2]αk [1]αk

with convention [0]αk ! = 1. For n ∈N, αk-permutation coefficient is defined by

Pαk [r, j] :=

{
[r]αk [r− 1]αk · · · [r− j+ 1]αk if j ∈ N,

1 if j = 0.

The notions for k = 1 in Definition 3, are called as α-factorial and α-permutation, respectively. Note that by Proposition
(3)/(iii), x > h

1−q
if and only if αr(x)>

h
1−q

. In the rest of the article, any function under consideration is real valued and

either defined for x ∈ [ h
1−q

,∞) or for x ∈ (−∞, h
1−q

] depending on whether the seed element x0 >
h

1−q
or x0 <

h
1−q

.

Definition 4.[13] For any k ∈ Z, we define the αk-derivative of f by

Dαk f (x) :=





f (αk(x))− f (x)

αk(x)− x
if x 6= h

1−q
,

lim
s→ h

1−q

s∈T
x0
α

f (s)− f
(

h
1−q

)

s− h
1−q

= f ′
(

h

1− q

)
if x = h

1−q
,

(6)

if the limit exists.

Note that, the αk-derivative (6) is a comprehensive derivative. For t ∈ {0,1}, it leads to the (q,h)-derivative generator
which provides delta/nabla (q,h)-derivatives [26,30], q-derivative generator which covers delta/nabla q-derivatives [19]
and h-derivative generator which produces delta/nabla h-derivatives [7]. Moreover, for t ∈ (0,1), αk-derivative provides
extensions for the (q,h)-derivative generator, q-derivative generator and h-derivative generator. For details see [13].

Definition 5.For any r ∈ R, we define the shift operator on f , denoted by Sαr( f ), as

(Sαr f )(x) := f (αr(x)). (7)

The following simple form of the chain rule will be repeatedly used especially in applications.

Proposition 4.For any r ∈ R, k ∈ Z, we have

Dαk(Sαkr f (x)) =

(
t

q
+(1− t)q

)kr

(Dαk f ) (Sαkr(x)).

Proof.Using Definition 4, Definition 5 and Proposition 3/(vi), we have

Dαk(Sαkr f (x)) =
f (αk(r+1)(x))− f (αkr(x))

αk(x)− x
=

f (αk(r+1)(x))− f (αkr(x))

αk(r+1)(x)−αkr(x)

αk(r+1)(x)−αkr(x)

αk(x)− x

=

(
t

q
+(1− t)q

)kr [k(r+ 1)− kr]α(α(x)− x)

[k]α(α(x)− x)
(Dαk f ) (αkr(x))

=

(
t

q
+(1− t)q

)kr

(Dαk f ) (αkr(x)) =

(
t

q
+(1− t)q

)kr

(Dαk f ) (Sαkr(x)).

We finish this section, by rewriting the product rule [13] for the αk-derivative in terms of shift operator (7).

Proposition 5.The product rule for the αk-derivative is given by

Dαk ( f (x)g(x)) = Sαk f (x)Dαk g(x)+ g(x)Dαk f (x) = Sαk g(x)Dαk f (x)+ f (x)Dαk g(x).
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3 α-Power function

This section is devoted to introduce the power function and its properties. Our objective is to formulate an explicit α-
power function such that it is compatible with an additivity rule and power rule for αk-derivative given in Definition 4
and it is consistent with the ordinary power function. To achieve this, the convex combination structure has to function
on the level of forward and backward jump operators rather than on the level of delta and nabla (q,h)-derivatives. This
approach yields an explicit, efficient and applicable α-power function which exhibits a structure that is in harmony with
T

x0
α . The α-power function recovers nabla (q,h)-power function [15] and delta (q,h)-polynomials [26,27], nabla (q,h)-

polynomials [30] for nonnegative powers.

Definition 6.If x ≥ h
1−q

, r ∈ R, k ∈ Z,
(

t
q
+(1− t)q

)k

< 1 and a ≥− h
1−q

, the αk-power function is defined by

(a+ x)r
αk :=





(
a+ h

1−q

)r ∞

∏
j=0

a+αk j(x)

a+αk(r+ j)(x)
if a >− h

1−q
,

(
t
q
+(1− t)q

)kr(r−1)
2
(
− h

1−q
+ x
)r

if a =− h
1−q

.

If x ≤ h
1−q

, r ∈ R, k ∈ Z,
(

t
q
+(1− t)q

)k

< 1 and a ≤− h
1−q

, the αk-power function is defined by

(a+ x)r
αk :=





∣∣∣a+ h
1−q

∣∣∣
r

eirπ
∞

∏
j=0

a+αk j(x)

a+αk(r+ j)(x)
if a <− h

1−q
,

(
t
q
+(1− t)q

) kr(r−1)
2
∣∣∣− h

1−q
+ x

∣∣∣
r

eirπ if a =− h
1−q

.

Proposition 6.The infinite products in Definition 6 converge and the αk-power function is well defined.

Proof.Using Proposition 3/(iii), for any s ∈ R, we obtain

a+αs(x) =

(
a+

h

1− q

)
+

(
t

q
+(1− t)q

)s(
x−

h

1− q

)
.

As we showed in [13, Proposition 5], if x 6= h
1−q

, then x> h
1−q

if and only if x0 >
h

1−q
. Therefore, for all s∈R, a+αs(x)> 0

if x0 >
h

1−q
and a+αs(x)< 0 if x0 <

h
1−q

and hence the terms of the infinite products are positive real numbers. Now, to

prove the convergence of the infinite product, it is enough to show that the series

∞

∑
j=0

(
a+αk j(x)

a+αk(r+ j)(x)
− 1

)
=

∞

∑
j=0

αk j(x)−αk(r+ j)(x)

a+αk(r+ j)(x)
(8)

converges absolutely, see [22, p. 54]. Using Proposition 3/(vi), we have

L := lim
j→∞

∣∣∣∣∣
αk( j+1)(x)−αk(r+ j+1)(x)

a+αk(r+ j+1)(x)

a+αk(r+ j)(x)

αk j(x)−αk(r+ j)(x)

∣∣∣∣∣= lim
j→∞

(
t

q
+(1− t)q

)k
∣∣∣∣∣

a+αk(r+ j)(x)

a+αk(r+ j+1)(x)

∣∣∣∣∣ .

The condition
(

t
q
+(1− t)q

)k

< 1 implies that k > 0 when t
q
+(1− t)q < 1 and k < 0 when t

q
+(1− t)q > 1, then it

follows from Proposition 3/(v) that

lim
j→∞

αk(r+ j)(x) = lim
j→∞

αk(r+ j+1)(x) =
h

1− q
,

and hence

lim
j→∞

∣∣∣∣∣
a+αk(r+ j)(x)

a+αk(r+ j+1)(x)

∣∣∣∣∣= 1,

which implies that

L = lim
j→∞

(
t

q
+(1− t)q

)k

< 1

and the series (8) converges absolutely by the ratio test.
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Remark.Note that when
(

t
q
+(1− t)q

)k

> 1, it follows from Proposition 3/(iii) that

lim
j→∞

a+αk j(x)

a+αk(r+ j)(x)
= lim

j→∞

a+
(

t
q
+(1− t)q

)k j

(x− h
1−q

)+ h
1−q

a+
(

t
q
+(1− t)q

)k(r+ j)
(x− h

1−q
)+ h

1−q

=
1

(
t
q
+(1− t)q

)kr
6= 1

unless r = 0 or x = h
1−q

, and hence the infinite product
∞

∏
j=0

a+αk j(x)

a+αk(r+ j)(x)
diverges.

Fig. 1: Graph of α-power function for several parameters

To gain a deeper understanding of the α-power function, we plot Figure 1. It is evident that, the green graphs in both
sides provide the closest approximation to the ordinary power function. It is noteworthy that in the left graph, the blue and
red graphs ( when t = 0 and t = 1) coincide, while in the right graph, the blue and purple graphs (when t = 0 and t = 1)
coincide. Moreover, the graphs (For Python codes see [31]) in Figure 1, can be considered as approximations to discrete
power functions.

Theorem 1.The following additivity rule holds for the αk-power function

(a+ x)s+r

αk = (a+ x)s
αk(a+αks(x))r

αk , s,r ∈ R, k ∈ Z. (9)

In particular, the shifted form of the additivity rule (9) is given by

(a+α jk(x))s+r

αk = (a+α jk(x))s
αk (a+α(s+ j)k(x))r

αk , s,r, j ∈R, k ∈ Z. (10)

Proof.We prove the theorem for x0 > h
1−q

, the proof of the case x0 < h
1−q

is similar. We first consider the case when

a >− h
1−q

(a+ x)s+r

αk =

(
a+

h

1− q

)s+r ∞

∏
j=0

a+αk j(x)

a+αk(s+r+ j)(x)
=

(
a+

h

1− q

)s(
a+

h

1− q

)r

lim
n→∞

n

∏
j=0

a+αk j(x)

a+αk(s+r+ j)(x)

=

(
a+

h

1− q

)s

lim
n→∞

n

∏
j=0

a+αk j(x)

a+αk(s+ j)(x)
·

(
a+

h

1− q

)r

lim
n→∞

n

∏
j=0

a+αk(s+ j)(x)

a+αk(s+r+ j)(x)

= (a+ x)s
αk

(
a+

h

1− q

)r

lim
n→∞

n

∏
j=0

a+αk j(αks(x))

a+αk(r+ j)(αks(x))
= (a+ x)s

αk(a+αks(x))r
αk .

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1058 B. Silindir et al.: α-Cauchy-Euler equation

Using Definition 6 for a =− h
1−q

and Proposition 3/(iii), we derive

(
−

h

1− q
+ x

)s+r

αk

=

(
t

q
+(1− t)q

) k(s+r)(s+r−1)
2

(
−

h

1− q
+ x

)s+r

=

(
t

q
+(1− t)q

) ks(s−1)
2
(
−

h

1− q
+ x

)s(
t

q
+(1− t)q

) kr(r−1)
2
(

t

q
+(1− t)q

)ksr(
−

h

1− q
+ x

)r

=

(
t

q
+(1− t)q

) ks(s−1)
2
(
−

h

1− q
+ x

)s(
t

q
+(1− t)q

) kr(r−1)
2
(
−

h

1− q
+αks(x)

)r

=

(
−

h

1− q
+ x

)s

αk

(
−

h

1− q
+αks(x)

)r

αk

.

The identity (10) follows from the additivity rule (9).

Proposition 7.If n is a nonnegative integer, then

(a+ x)n
αk =

n−1

∏
j=0

(
a+αk j(x)

)
. (11)

Proof.We present the proof when x0 >
h

1−q
, the proof of the case x0 <

h
1−q

is similar. If n = 0, the statement is obvious. If

n is a positive integer, we have

(a+ x)n
αk =

(
a+

h

1− q

)n

lim
N→∞

N

∏
j=0

a+αk j(x)

a+αk(n+ j)(x)
=

(
a+

h

1− q

)n

lim
N→∞

n−1

∏
j=0

(
a+αk j(x)

) N

∏
j=n

(
a+αk j(x)

)

N−n

∏
j=0

(
a+αk(n+ j)(x)

) N

∏
j=N−n+1

(
a+αk(n+ j)(x)

)

=

(
a+

h

1− q

)n n−1

∏
j=0

(
a+αk j(x)

) n

∏
j=1

lim
N→∞

(
a+αk(N+ j)(x)

)−1

.

If 1 ≤ j ≤ n, then by Proposition 3/(v), we have lim
N→∞

αk(N+ j)(x) =
h

1− q
and the result follows as

(a+ x)n
αk =

(
a+

h

1− q

)n n−1

∏
j=0

(
a+αk j(x)

) n

∏
j=1

(
a+

h

1− q

)−1

=
n−1

∏
j=0

(
a+αk j(x)

)
.

If a =− h
1−q

, the statement is straightforward by Proposition 3/(iii).

Theorem 2.If n ∈N0, then

Dn
αk(a+ x)r

αk =

(
t

q
+(1− t)q

) kn(n−1)
2

Pαk [r,n]
(

a+αkn(x)
)r−n

αk
.

Proof.The assertion obviously holds when n = 0. Now suppose it holds for n and prove it for n+ 1. Note that

Dn+1

αk (a+ x)r
αk = Dαk(Dn

αk(a+ x)r
αk) =

(
t

q
+(1− t)q

) kn(n−1)
2

Pαk [r,n]Dαk

(
a+αkn(x)

)r−n

αk
.

Using Theorem 1, we have

(a+αk(n+1)(x))r−n

αk = (a+αk(n+1)(x))
r−(n+1)

αk (a+αkr(x)),

(a+αkn(x))r−n

αk = (a+αkn(x))(a+αk(n+1)(x))
r−(n+1)

αk
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which implies that

Dαk

(
a+αkn(x)

)r−n

αk
=

(
a+αk(n+1)(x)

)r−n

αk
−
(
a+αkn(x)

)r−n

αk

αk(x)− x
=

(a+αk(n+1)(x))
r−(n+1)

αk

(
αkr(x)−αkn(x)

)

αk(x)− x
.

It follows from Proposition 3/(vi) that

αkr(x)−αkn(x)

αk(x)− x
=

(
t

q
+(1− t)q

)kn

[r− n]αk .

Noting Pαk [r,n+ 1] = [r− n]αkPαk [r,n], the result follows. As in [15], the derivative at the accumulation point h
1−q

can be

derived by applying l’Hôpital’s rule and the logarithmic differentiation.

4 Applications

Cauchy-Euler equation models various real life dynamical problems and it has numerous applications in physics and
applied mathematics such as time-harmonic vibrations of a thin elastic rod, in engineering such as wave mechanics and
computer algorithm analysis and in finance such as Black-Scholes PDE’s [5].

We aim to propose nth order α-Cauchy-Euler equation whose coefficients are αk-polynomials (11) and whose solutions
are expressed as αk-power functions as in Definition 6. For this purpose, we start this section by presenting the following
nth order IVP.

Theorem 3.The power function (a+ x)r
αk is the unique solution of the IVP

(a+ x)n
αkDn

αk y(x) = γy(x), (12)

D
j

αk y

(
h

1− q

)
= δ j, j = 0,1, . . . ,n− 1, (13)

if γ,δ j respectively satisfy

γ =

(
t

q
+(1− t)q

) kn(n−1)
2

Pαk [r,n] (14)

and

δ j =

(
t

q
+(1− t)q

)k j( j−1)
2

Pαk [r, j]

(
a+

h

1− q

)r− j

. (15)

Proof.Consider y = (a+ x)r
αk . We use Theorem 2 to compute Dn

αk y and obtain

(a+ x)n
αkDn

αk y− γy =

(
t

q
+(1− t)q

) kn(n−1)
2

Pαk [r,n](a+ x)n
αk(a+αkn(x))r−n

αk − γ(a+ x)r
αk

=



(

t

q
+(1− t)q

)kn(n−1)
2

Pαk [r,n]− γ


(a+ x)r

αk = 0,

where we utilized Theorem 1. Hence the power function y = (a+ x)r
αk satisfies the α-difference equation (12) provided

that r satisfies the equation (14). Now we impose the initial conditions (13). By Proposition 3/(iv), it is clear that for r ∈R,
αr( h

1−q
) = h

1−q
and by Definition 6 we have

y

(
h

1− q

)
=

(
a+

h

1− q

)r

αk

=

(
a+

h

1− q

)r

,

which implies that the first initial condition is satisfied for j = 0 if δ0 =
(

a+ h
1−q

)r

. Inductively, we obtain

D
j

αk y

(
h

1− q

)
=

(
t

q
+(1− t)q

) k j( j−1)
2

Pαk [r, j]

(
a+αk j

(
h

1− q

))r− j

αk

=

(
t

q
+(1− t)q

)k j( j−1)
2

Pαk [r, j]

(
a+

h

1− q

)r− j

.

Therefore, if (15) hold for j = 0,1, . . . ,n− 1, the initial conditions (13) are satisfied. Hence, by [7, Theorem 3.36],
y = (a+ x)r

αk is the unique solution of the IVP (12)-(13).
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4.1 α-Cauchy-Euler equation

In order not to repeat the similar calculations, in this section we restrict x to the case x > h
1−q

. Motivated by the IVP

(12)-(13), we propose the following nth order α-difference equation

Ln(y) := cn(a+ x)n
αkDn

αk y+ cn−1(a+ x)n−1

αk Dn−1

αk y+ . . .+ c1(a+ x)1
αkD1

αk y+ c0y = f (x), (16)

where c j ∈ R for j = 0,1,2, . . . ,n, with the leading coefficient cn 6= 0 and the coefficients (a+ x) j

αk are determined in

terms of the polynomials (11) for j = 0,1,2, . . . ,n.

As (a,q,h)→ (0,1,0), the equation (16) reduces to the ordinary Cauchy-Euler equation

cnxn dny

dxn
+ cn−1xn−1 dn−1y

dxn−1
+ . . .+ c1x

dy

dx
+ c0y = f (x).

Therefore, the equation (16) can be regarded as an α-analogue of Cauchy-Euler equation. The rest of its reductions will
be examined in Remark 4.1.

Proposition 8.If r is a real root of the following characteristic equation

n

∑
j=0

c j

(
t

q
+(1− t)q

) k j( j−1)
2

Pαk [r, j] = 0, (17)

then the power function y1 = (a+ x)r
αk is a solution of Ln(y) = 0.

Proof.We use Theorem 2 to compute D
j

αk(a+ x)r
αk , j = 1,2, . . . ,n.

Ln(a+ x)r
αk =

n

∑
j=0

c j

(
t

q
+(1− t)q

) k j( j−1)
2

Pαk [r, j](a+ x) j

αk(a+αk j(x))r− j

αk .

Then by Theorem 1, if (17) holds, we end up with

Ln(a+ x)r
αk = (a+ x)r

αk

n

∑
j=0

c j

(
t

q
+(1− t)q

) k j( j−1)
2

Pαk [r, j] = 0.

In order to analyze linearly independent solutions of α-difference equations, we introduce the α-analogue of Wronskian
in terms of the shift operator (7).

Definition 7.Let f1, f2, . . . , fn be any real valued functions defined on T
x0
α . We define the Wronskian of the functions

f1, f2, . . . , fn, as follows

Wαk( f1, f2, . . . , fn) :=

∣∣∣∣∣∣∣∣∣

Sαk( f1) Sαk( f2) · · · Sαk( fn)
Sαk(Dαk f1) Sαk(Dαk f2) · · · Sαk(Dαk fn)

...
...

...
...

Sαk(Dn−1

αk f1) Sαk(Dn−1

αk f2) · · · Sαk(Dn−1

αk fn)

∣∣∣∣∣∣∣∣∣
.

Moreover, the functions f1, f2, . . . fn as linearly independent if and only if Wαk( f1, f2, . . . , fn)(x) 6= 0 for all x ∈ T
x0
α .

In order to present concrete examples for α-Cauchy-Euler equation, we focus on n = 2. By Proposition 8, if r is a root of

c0 + c1[r]αk + c2

(
t

q
+(1− t)q

)k

[r]αk [r− 1]αk = 0, (18)

then y1 = (a+ x)r
αk is a solution of

L2(y) = c2(a+ x)2
αkD2

αk y+ c1(a+ x)1
αkD1

αk y+ c0y = 0. (19)
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Theorem 4.Let r be a root of (18). Then y1 = (a+x)r
αk and y2 = v(x)(a+x)r

αk are linearly independent solutions of (19),

if the non-constant function v(x) solves the α-difference equation

c2(a+ x)r+2

αk D2
αk v(x)+

(
c1 + c2[r]αk

(
1+

(
t

q
+(1− t)q

)k
))

· (a+ x)r+1

αk Dαk v(x) = 0 (20)

and Wαk(y1,y2)(x) 6= 0.

Note that, setting v̄(x) := Dαk v(x), the equation (20) turns out to be a first order α-difference equation.

Proof.By Proposition 8, y1 = (a+ x)r
αk is a solution of (19). In order to derive a second linearly independent solution,

we use the method of reduction of order. Let y2 = v(x)(a+ x)r
αk be the second solution of (19). Using Proposition 5 and

Proposition 4, we calculate D
j

αk(y2) , j = 1,2 and using Theorem 1, the equation (19) turns out to be

v(x)(a+ x)r
αk

2

∑
j=0

c j

(
t

q
+(1− t)q

) k j( j−1)
2

Pαk [r, j]+ c2(a+ x)r+2

αk D2
αk v(x)

+

(
c1 + c2[r]αk

(
1+

(
t

q
+(1− t)q

)k
))

(a+ x)r+1

αk Dαk v(x) = 0,

whose first term vanishes since r is a root of the characteristic equation (18). Therefore, we conclude that the function
v(x) has to solve the equation (20). Moreover, y1 = (a+ x)r

αk and y2 = v(x)(a+ x)r
αk are linearly independent solutions of

(19). Indeed, using Definition 7 and Proposition 5, we compute the Wronskian as

Wαk(y1,y2)(x) =

∣∣∣∣
Sαk(y1) Sαk(y2)

Sαk(Dαk y1) Sαk(Dαk y2)

∣∣∣∣= (a+αk(x))r
αk(a+α2k(x))r

αk Sαk(Dαk v(x)) 6= 0,

provided that Sαk(Dαk v(x)) 6= 0.

Example 1.Let c0 = 1, c1 =−1 and c2 = 1+
(

t
q
+(1− t)q

)k/2

. Then, one can observe that r1 = 1/2 is a root of (18), i.e.,

y1 = (a+ x)
1/2

αk is a solution of

(
1+

(
t

q
+(1− t)q

)k/2
)
(a+ x)2

αkD2
αk y− (a+ x)1

αkD
1
αk y+ y = 0. (21)

For the second solution, we use reduction of order method, i.e., we let y2 = v(x)(a+ x)
1/2

αk and we use Theorem 4. Here

the equation (20) reduces to

(
1+

(
t

q
+(1− t)q

)k/2
)
(a+ x)

5/2

αk D2
αk v(x)+

(
t

q
+(1− t)q

)k

(a+ x)
3/2

αk Dαk v(x) = 0. (22)

One can observe that (22) admits the following solution

v(x) = (a+αk/2(x))
1/2

αk ,

by the use of Proposition 4. By Theorem 1, we conclude that

y2 = v(x)(a+ x)
1/2

αk = (a+αk/2(x))
1/2

αk (a+ x)
1/2

αk = (a+ x)1
αk ,

is the second solution of (21). One can check also that r2 = 1 is another root of (18). Moreover, y1 = (a+ x)1
αk and

y2 =(a+x)
1/2

αk are linearly independent by Theorem 4. Alternatively observing that 1 is a root of (18), one can use a similar

procedure with ȳ2 = w(x)(a+ x)1
αk and conclude that 1/2 is another root of (18) from ȳ2 = (a+αk(x))

−1/2

αk (a+ x)1
αk =

(a+x)
1/2

αk . Similar to this example, once we have a solution of Ln(y) = 0, it is possible to derive other linearly independent

solutions by the reduction of order method.
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Note that, if y1 = (a+ x)r
αk and y2 = v(x)(a+ x)r

αk are linearly independent solutions of (18), but y2 fails to be another

power function with a power different than r, this situation can be regarded as repeated root case for which v(x) has
a logarithmic counterpart. We discuss such a case and introduce α-analogue of logarithm function in the forthcoming
example.

Example 2.Let c0 = 1, c1 =−1 and c2 = 1. Then, one can observe that r = 1 is a root of (18), i.e., y1 = (a+ x)1
αk = a+ x

is a solution of

(a+ x)2
αkD2

αk y− (a+ x)1
αkD

1
αk y+ y = 0. (23)

By Theorem 4, if v(x) satisfies (20), then y2 = v(x)(a+ x) is another solution of (23). Here (20) reduces to

(a+ x)3
αkD

2
αk v(x)+

(
t

q
+(1− t)q

)k

(a+ x)2
αkDαk v(x) = 0,

which can be rewritten by Theorem 1 and Proposition 5

(a+ x)2
αk

(
(a+α2k(x))D2

αk v(x)+

(
t

q
+(1− t)q

)k

Dαk v(x)

)
= (a+ x)2

αkDαk

(
(a+αk(x))Dαk v(x)

)
= 0.

Therefore, the function v(x) needs to satisfy

Dαk v(x) =
c

a+αk(x)
, c ∈ R. (24)

Hence, y2 = v(x)(a + x) is the second solution if (24) holds. Moreover y1 = a+ x and y2 = v(x)(a + x) are linearly
independent since

Wαk(y1,y2)(x) =

∣∣∣∣
a+αk(x) v(αk(x))(a+αk(x))

1 Sαk

(
(a+αk(x))Dαk v(x)+ v(x)

)
∣∣∣∣= c(a+αk(x)) 6= 0,

where we used Proposition 5 and (24).

Inspired by (24) and Example 4, we introduce the α-analogue of logarithm function.

Definition 8.The αk-logarithm function is defined by

Logαk(a+ x) :=





[k]α

(
t
q
+(1− t)q− 1

)

k ln
(

t
q
+(1− t)q

) ln

∣∣∣∣x−
h

1− q

∣∣∣∣ if a =− h
1−q

,

∫

[ h
1−q ,x]

dαk τ

a+ τ
if a 6=− h

1−q
,

(25)

where αk-integral (see Definition 10) and its properties are presented in Appendix.

Remark. (i)If a =− h
1−q

, then using l’Hôpital’s rule, we have the following limit

lim
(q,h)→(1,0)

Logαk

(
−

h

1− q
+ x

)
= ln |x|.

(ii)If h = 0, t = 0, k = 1, (25) reduces to q-logarithm

Logαk(x) =
(q− 1)

lnq
ln |x|,

which coincides with the logarithm function presented in [23].
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(iii)If a 6= − h
1−q

, then 1
a+x

is bounded near h
1−q

and it follows from Definition 10 that α-logarithm function is a well-

defined function with Logαk(a+ h
1−q

) = 0 and can be presented as the following series

Logαk(a+ x) =

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)
·

∞

∑
j=0

(
t

q
+(1− t)q

)k j
1

a+αk j(x)
,

which is absolutely convergent for
(

t
q
+(1− t)q

)k

< 1. Furthermore, Theorem 10 implies that Dαk Logαk(a+ x) =
1

a+x
. To visualize the α-logarithm function, we refer to Figure 2. One can observe that, the green graphs (for t = 0.5

on the left graph and for t = 0.4 on the right graph) best approximate the ordinary logarithm function. Note that, on
the left graph the blue and red graphs (when t = 0 and t = 1) coincide while on the right graph, blue and purple graphs
(when t = 0 and t = 1) coincide. Furthermore, the left and the right graphs can be considered as approximations to h-
and q-logarithm functions, respectively. For Python codes see [32].

Fig. 2: Graph of α-logarithm function for several parameters

(iv)The equation (23) can be understood as a repeated root example whose linearly independent solutions are

y1 = (a+ x)1
αk , y2 = Logαk(a+αk(x))(a+ x)1

αk ,

since by Proposition (4) Dαk Logαk(a+αk(x)) =
( t

q+(1−t)q)k

a+αk(x)
which is consistent with (25).

Theorem 5.Let y j, j = 1,2, . . . ,n, be linearly independent solutions of the homogeneous equation Ln(y) = 0. Then the
particular solution yp of the nonhomogeneous equation (16) is presented as

yp(x) =
n

∑
j=1

y j

∫
det(A j)dαk x

Wαk(y1,y2, . . . ,yn)(x)
. (26)

Here A j is the matrix which is determined by interchanging the jth column of the matrix

A =




Sαk(y1) Sαk(y2) · · · Sαk(yn)
Sαk(Dαk y1) Sαk(Dαk y2) · · · Sαk(Dαk yn)

...
...

...
...

Sαk(Dn−1

αk y1) Sαk(Dn−1

αk y2) · · · Sαk(Dn−1

αk yn)




with the vector

(
0,0, . . . , f (x)

cn(a+x)n

αk

)T

.
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Proof.For the proof, we use the method of variation of parameters. Assume that

yp(x) =
n

∑
j=1

u j(x)y j(x),

is a solution of (16), where u j’s are the functions to be determined for j = 1,2, . . . ,n. Proposition 5 implies that

Dαk(yp) =
n

∑
j=1

u jDαk(y j)+ Sαk(y j)Dαk(u j).

We assume that the functions u j, j = 1,2, . . . ,n satisfy the equation

n

∑
j=1

Sαk(y j)Dαk(u j) = 0. (27)

Under the assumption (27),

Dαk(yp) =
n

∑
j=1

u jDαk(y j). (28)

Inductively, for l = 0,1, . . . ,n− 2 we assume

n

∑
j=1

Sαk(Dl
αk y j)Dαk (u j) = 0, (29)

which implies

Dl+1

αk (yp) =
n

∑
j=1

(
u jD

l+1

αk (y j)+ Sαk(Dl
αk y j)Dαk(u j)

)
=

n

∑
j=1

u jD
l+1

αk (y j). (30)

Accordingly, Dn
αk(yp) is derived as

Dn
αk(yp) =

n

∑
j=1

(
u jD

n
αk(y j)+ Sαk(Dn−1

αk y j)Dαk(u j)
)
. (31)

Finally, plugging the related derivatives (28), (30), (31) of yp in (16), we end up with

Ln(yp) =
n

∑
j=1

u jLn(y j)+ cn(a+ x)n
αk

n

∑
j=1

Sαk(Dn−1

αk y j)Dαk(u j) = f (x)

from which we derive
n

∑
j=1

Sαk(Dn−1

αk y j)Dαk(u j) =
f (x)

cn(a+ x)n
αk

(32)

since Ln(y j) = 0 for j = 1,2, . . . ,n. Taking equations (27), (29) and (32) into account, we conclude with




Sαk(y1) Sαk(y2) · · · Sαk(yn)
Sαk(Dαk y1) Sαk(Dαk y2) · · · Sαk(Dαk yn)

...
...

...
...

Sαk(Dn−1

αk y1) Sαk(Dn−1

αk y2) · · · Sαk(Dn−1

αk yn)







Dαk(u1)
Dαk(u2)

...

Dαk(un)



=




0
0
...

f (x)
cn(a+x)n

αk



.

By Cramer’s Rule, each unknown Dαk(u j) can be determined as follows

Dαk(u j(x)) =
det(A j)

Wαk(y1,y2, . . . ,yn)(x)
,

since detA =Wαk(y1,y2, . . . ,yn)(x) 6= 0. To sum up, the particular solution of (16) is computed as (26).

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 5, 1051-1074 (2024) / www.naturalspublishing.com/Journals.asp 1065

Example 3.Consider the nonhomogenous problem

L2(y) :=
1

[2]αk

(a+ x)2
αkD2

αk y− (a+ x)1
αkD

1
αk y+ y = (a+ x)s

αk , s ∈R. (33)

One can show that y1(x) = (a+ x)1
αk and y2(x) = (a+ x)2

αk are solutions of L2(y) = 0 and they are linearly independent
since

Wαk(y1,y2)(x) =

(
t

q
+(1− t)q

)k

(a+αk(x))2
αk 6= 0.

Assuming yp(x) = u1(x)(a+ x)1
αk + u2(x)(a+ x)2

αk and using Theorem 5, we obtain

Dαk u1 =−
[2]αk(a+α2k(x))s−2

αk

(
t
q
+(1− t)q

)k
and Dαk u2 =

[2]αk(a+α3k(x))s−3

αk

(
t
q
+(1− t)q

)k

from which we acquire

u1 =−
[2]αk(a+αk(x))s−1

αk

(
t
q
+(1− t)q

)2k

[s− 1]αk

and u2 =
[2]αk(a+α2k(x))s−2

αk

(
t
q
+(1− t)q

)3k

[s− 2]αk

.

Then by the use of Theorem 1, the particular solution of (33) is derived as

yp(x)=[2]αk(a+ x)s
αk




1
(

t
q
+(1− t)q

)3k

[s− 2]αk

−
1

(
t
q
+(1− t)q

)2k

[s− 1]αk


.

Remark.The α-Cauchy-Euler equation (16) is a generic equation which unifies well-known discrete Cauchy-Euler
equations and their generators for t ∈ {0,1} and it allows their extensions for t ∈ (0,1).

(i)If t = 0, the coefficients (11) and the αk-derivative (6) turn out to be

(a+ x)n
(q,h,k) =

n−1

∏
j=0

(a+ qk jx+ h[k j]q), Dαk f (x) = D(q,h,k) f (x)

respectively. These reductions demonstrate that the α-Cauchy-Euler equation (16) reduces to

n

∑
j=0

c j(a+ x) j

(q,h,k)
D

j

(q,h,k)
y = f (x)

which can be regarded as the generator of delta-(q,h)-Cauchy-Euler equation since for k = 1, it recovers the delta-

(q,h)-Cauchy-Euler equation
n

∑
j=0

c j(a+ x)
j

(q,h)D
j

(q,h)y = f (x).

(ii)If t = 1, the coefficients (11) and the αk-derivative (6) result in respectively

(a+ x)n

(q̃,h,k)
=

n−1

∏
j=0

(
a+

x− h[ jk]q
q jk

)
, Dαk f (x) = D̃(q,h,k) f (x),

providing the generator of nabla-(q,h)-Cauchy-Euler equation

n

∑
j=0

c j(a+ x) j

(q̃,h,k)
D̃

j

(q,h,k)
y = f (x)

since for k = 1 it produces the nabla-(q,h)-Cauchy-Euler equation
n

∑
j=0

c j(a+ x)
j

(q̃,h)
D̃(q,h)y = f (x).
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(iii)If h = 0, then αk(x) =

(
t

q
+(1− t)q

)k

x, which leads the q-polynomial and q-derivative generators:

(a+ x)n
q,t,k :=

n−1

∏
j=0

(
a+

(
t

q
+(1− t)q

)k j

x

)
, Dq,t,k f (x) :=

f

((
t
q
+(1− t)q

)k

x

)
− f (x)

(
t
q
+(1− t)q

)k

x− x

.

Hence (16) evolves into
n

∑
j=0

c j(a+ x) j
q,k,tD

j
q,k,ty = f (x). (34)

(a)Additionally, if t = 0, then αk(x) = qkx, (a+ x)n
αk = (a+ x)n

q,k, Dαk f (x) = Dq,k f (x). In this case (34) takes the

form
n

∑
j=0

c j(a+x)
j
q,kD

j
q,ky = f (x) which can be considered as the generator of delta q-Cauchy-Euler equation. The

case k = 1, a = 0 n = 2 and c2 = q leads to delta q-Cauchy-Euler equation whose second order form is studied in
[10]

xσ(x)D2
qy+ c1xDqy+ c0y = 0.

(b)On the other hand, if t = 1, then αk(x) = q−kx, (a+ x)n
αk = (a+ x)n

q̃,k
and Dαk f (x) = D̃q,k f (x). Here, the equation

(34) yields to the generator of nabla q-Cauchy-Euler equation
n

∑
j=0

c j(a+ x)
j

q̃,k
D̃

j
q,ky = f (x) which provides nabla

q-Cauchy-Euler equation for k = 1.

(iv)If q = 1, then αk(x) = x− (2t− 1)kh, and the h-polynomial and h-derivative generators follow:

(a+ x)n
αk = (a+ x)n

h,k,t and Dαk f (x) = Dh,k,t f (x).

These reductions result in the equation (16) to be in the form

n

∑
j=0

c j(a+ x)
j
h,k,tD

j
h,k,ty = f (x). (35)

If t = 0, then (35) reduces to the generator of delta h-Cauchy-Euler equation
n

∑
j=0

c j(a+ x) j
h,kD

j
h,ky = f (x) which

produces delta h-Cauchy-Euler equation for k = 1. On the other hand, if t = 1, then the equation (35) conforms into
n

∑
j=0

c j(a+ x) j

h̃,k
D̃

j
h,ky = f (x) which may be interpreted as the generator of nabla h-Cauchy-Euler equation, since for

k = 1, it leads to nabla h-Cauchy-Euler equation. The differential difference analogue of Cauchy-Euler equation is
studied in [11].

(v)If t ∈ (0,1), new extension for discrete derivatives and polynomials are accomplished. For instance, if |s| < 1 and

t = q2−qs+1

q2−1
, then t ∈ (0,1) for which (4) and (6) imply novel extensions respectively

αk(x) = qskx+ h[s]q[k]α , Dαk f (x) =
f (qskx+ h[s]q[k]α)− f (x)

(qsk − 1)x+ h[s]q[k]α
, (36)

for k ∈ Z, |s|< 1. The α-Cauchy-Euler equation (16) equipped with (36) produces new extensions.

4.2 BVP with two point unmixed boundary conditions

We propose the following BVP for the second order α-Cauchy-Euler equation with two point unmixed boundary
conditions

L2(y) := c2(a+ x)2
αkD2

αk y+ c1(a+ x)1
αkDαk y+ c0y = f (x), (37)

B1y(γ) := β11y(γ)+β12Dαk y(γ) = 0, (38)

B2y(δ ) := β21y(δ )+β22Dαk y(δ ) = 0, (39)
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where γ,δ ∈ T
x0
α , the constants βi j ∈ R satisfy the conditions β 2

11 +β 2
12 > 0 and β 2

21 +β 2
22 > 0. Using Theorem 5 and the

forthcoming lemma, we present the solution of BVP (37)-(39) by means of Green’s functions.

Lemma 1.Let

G(x,s) :=





y1(x)Sαk y2(s)

c2Wαk(y1,y2)(s)(a+ s)2
αk

if x ∈ (α2k(γ),s),

y2(x)Sαk y1(s)

c2Wαk(y1,y2)(s)(a+ s)2
αk

if x ∈ (x,δ ].

(40)

Then G(x,s) solves the BVP (37)-(39) for f (x) = 0.

Proof.Since y1 and y2 form the fundamental set of solutions, then L2(y j) = 0, for j = 1,2. It is straightforward to
conclude that L2(G(x,s)) = 0. Moreover, boundary conditions (38) and (39) allow us to have B1y1(γ) = 0 and
B2y2(δ ) = 0, respectively. Hence

B1G(γ,s) = B2G(δ ,s) = 0. (41)

The function G(x,s) can be referred as the α-analogue of Green’s function [29].

Theorem 6.Let

φ(x) :=
∫

[γ,δ ]
G(x,s) f (s)dαk s, (42)

where G is defined by (40). Then φ(x) solves the BVP (37)-(39).

Proof.We define

K j(s) :=
Sαk y j(s) f (s)

c2Wαk(y1,y2)(s)(a+ s)2
αk

, j = 1,2.

Then (42) can be written as

φ(x) =

∫

[γ,δ ]
G(x,s) f (s)dαk s =

∫

[γ,x]
y2(x)K1(s)dαk s+

∫

(x,δ ]
y1(x)K2(s)dαk s. (43)

Using Proposition 9, we derive

Dαk φ(x) = Dαk

{∫

[γ,x]
y2(x)K1(s)dαk s

}
−Dαk

{∫

[δ ,x)
y1(x)K2(s)dαk s

}

= Sαk y2(x)K1(x)+
∫

[γ,x]
Dαk y2(x)K1(s)dαk s− Sαky1(x)K2(x)−

∫

[δ ,x)
Dαk y1(x)K2(s)dαk s

=

∫

[γ,x]
Dαk y2(x)K1(s)dαk s+

∫

(x,δ ]
Dαk y1(x)K2(s)dαk s. (44)

Similarly, we also achieve

D2
αk φ(x) =

∫

[γ,x]
D2

αk y2(x)K1(s)dαk s+ Sαk(Dαk y2(x))K1(x)+

∫

(x,δ ]
D2

αk y1(x)K2(s)dαk s− Sαk(Dαk y1(x))K2(x). (45)

Using Definition 7, we obtain

Sαk(Dαk y2(x))K1(x)− Sαk(Dαk y1(x))K2(x) =
f (x)

c2(a+ s)2
αk

,

from which the equation (45) becomes

D2
αk φ(x) =

∫

[γ,x]
D2

αk y2(x)K1(s)dαk s+

∫

(x,δ ]
D2

αk y1(x)K2(s)dαk s+
f (x)

c2(a+ s)2
αk

. (46)

Substituting (43), (44) and (46) in (37), we end up with L2φ = f . We emphasize that the boundary conditions B1φ(γ) =
B2φ(δ ) = 0 hold by (41). Hence, φ(x) defined by (42), solves the BVP (37)-(39).
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5 Appendix: α-Integration

This section is dedicated to αk-integration and its analysis. Let f be any real valued function with Dαk F(x) = f (x) for all

x 6= h
1−q

, it follows from the definition of the αk-derivative and the shift operator (7) that

(1− Sαk)F(x) = (x−αk(x)) f (x)

and hence by Proposition 3/(iii), we get

F(x) =
1

1− Sαk

(
(x−αk(x)) f (x)

)
=

∞

∑
j=0

S
j

αk

(
(x−αk(x)) f (x)

)
=

∞

∑
j=0

S
j

αk

((
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)
f (x)

)

=

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(x)). (47)

To be more precise, F can be written more explicitly as,

F(x) =

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)

×
∞

∑
j=0

(
t

q
+(1− t)q

)k j

f

((
t

q
+(1− t)q

)k j(
x−

h

1− q

)
+

h

1− q

)

Now we show the convergence of the series (47) under certain conditions.

Theorem 7.Suppose that
(

t
q
+(1− t)q

)k

< 1 and

∣∣∣
(

x− h
1−q

)r

f (x)
∣∣∣<M on 0<

∣∣∣x− h
1−q

∣∣∣< a for some 0≤ r < 1, M > 0

and a > 0. Then the following properties hold.

(i)For any b > a, the series (47) is uniformly absolutely convergent on

∣∣∣x− h
1−q

∣∣∣< b. Hence it is absolutely convergent

for all x.

(ii)The function F given by (47) is continuous at the accumulation point h
1−q

with F
(

h
1−q

)
= 0.

(iii)The function F is an αk-antiderivative of f for x 6= h
1−q

. If lim
x→ h

1−q
f (x) = L ∈R, then F is also differentiable at h

1−q

with (Dαk F)
(

h
1−q

)
= L. In particular, if f is continuous at h

1−q
, then (Dαk F)

(
h

1−q

)
= f

(
h

1−q

)
.

Proof. (i)Let b > a be arbitrary and |x− h
1−q

|< b. Set

c j(x) :=

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)(
t

q
+(1− t)q

)k j

f (αk j(x)).

Our aim is to show that |c j(x)| is dominated by a convergent numerical series. Note that

∣∣∣∣α
k j(x)−

h

1− q

∣∣∣∣=
(

t

q
+(1− t)q

)k j ∣∣∣∣x−
h

1− q

∣∣∣∣<
(

t

q
+(1− t)q

)k j

b < b for all j ∈ N0,

and therefore either we have |αk j(x)− h
1−q

|< a or a ≤ |αk j(x)− h
1−q

|< b. Since
(

t
q
+(1− t)q

)k j

→ 0 as j → ∞, the

latter case occurs only for finitely many j’s. More precisely, if we choose m so that
(

t
q
+(1− t)q

)k j

< a
b

for j ≥ m,

then |αk j(x)− h
1−q

|< a for all j ≥m and so a≤ |αk j(x)− h
1−q

|< b holds for at most m times. When |αk j(x)− h
1−q

|< a,

the condition implies

∣∣∣∣
(

αk j(x)−
h

1− q

)r

f (αk j(x))

∣∣∣∣=
(

t

q
+(1− t)q

)k jr ∣∣∣∣x−
h

1− q

∣∣∣∣
r

| f (αk j(x))|< M, (48)
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and so

|c j(x)|<

(
1−

(
t

q
+(1− t)q

)k
)(

t

q
+(1− t)q

)(1−r)k j

b1−rM.

When a ≤ |αk j(x)− h
1−q

|< b,

|c j(x)|<

(
1−

(
t

q
+(1− t)q

)k
)

bC,

where C = max{| f (αk j(x))| : αk j(x) ∈ ( h
1−q

− b, h
1−q

+ b) \ ( h
1−q

− a, h
1−q

+ a)}. Note that such a maximum exists

because for only finitely many j’s, αk j(x) lie in ( h
1−q

− b, h
1−q

+ b)\ ( h
1−q

− a, h
1−q

+ a). If we set

c j :=





(
1−
(

t
q
+(1− t)q

)k
)(

t
q
+(1− t)q

)(1−r)k j

b1−rM if |αk j(x)− h
1−q

|< a,
(

1−
(

t
q
+(1− t)q

)k
)

bC if a ≤ |αk j(x)− h
1−q

|< b,

we obtain |c j(x)|< c j and

∞

∑
j=0

c j ≤

((
1−

(
t

q
+(1− t)q

)k
)

b1−rM
∞

∑
j=0

(
t

q
+(1− t)q

)(1−r)k j
)
+m

(
1−

(
t

q
+(1− t)q

)k
)

bC < ∞.

Therefore the series converges uniformly by the Weierstrass M-test.
(ii)It follows from (47) that

F

(
h

1− q

)
=

(
1−

(
t

q
+(1− t)q

)k
)(

h

1− q
−

h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

f

(
h

1− q

)
= 0.

When |x− h
1−q

|< a, we have |αk j(x)− h
1−q

|< a for all j and hence as in (48), we get

|F(x)| ≤

(
1−

(
t

q
+(1− t)q

)k
)∣∣∣∣x−

h

1− q

∣∣∣∣
1−r

M
∞

∑
j=0

(
t

q
+(1− t)q

)k(1−r) j

,

and this shows F tends to 0 as x tends to h
1−q

and hence F is continuous at h
1−q

.

(iii)First, let us show that Dαk F(x) = f (x) for x 6= h
1−q

. Using Proposition 3/(iii),(vi), we obtain

αk(x)− h
1−q

=
(

t
q
+(1− t)q

)k

(x− h
1−q

) and αk(x)− x = [k]α (
t
q
+(1− t)q− 1)(x− h

1−q
), and so

Dαk F(x) =
F(αk(x))−F(x)

αk(x)− x

=−
∞

∑
j=0

(
t

q
+(1− t)q

)k( j+1)

f (αk( j+1)(x))+
∞

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(x)) = f (x).
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Now, suppose lim
x→ h

1−q
f (x) = L ∈R. By definition of the derivative at the limit point and using uniform convergence

proved in part (i), we obtain

(Dαk F)

(
h

1− q

)
= lim

x→ h
1−q

x∈T
x0
α

F(x)−F( h
1−q

)

x− h
1−q

= lim
x→ h

1−q

x∈T
x0
α

(
1−
(

t
q
+(1− t)q

)k
)(

x− h
1−q

)
∑∞

j=0

(
t
q
+(1− t)q

)k j

f (αk j(x)).

x− h
1−q

=

(
1−

(
t

q
+(1− t)q

)k
)

∞

∑
j=0

(
t

q
+(1− t)q

)k j

lim
x→ h

1−q

x∈T
x0
α

f (αk j(x))

=

(
1−

(
t

q
+(1− t)q

)k
)

∞

∑
j=0

(
t

q
+(1− t)q

)k j

L = L.

The following example shows that the condition

∣∣∣
(

x− h
1−q

)r

f (x)
∣∣∣ < M in Theorem 7 cannot be weakened. To be more

precise, the sufficiency condition r < 1 cannot be replaced with r ≤ 1.

Example 4.Let F(x) = A ln

∣∣∣x− h
1−q

∣∣∣ with A =
[k]α

(
t
q+(1−t)q−1

)

k ln
(

t
q+(1−t)q

) . Then, we have

Dαk F(x) =
1

x− h
1−q

.

This shows that F is an αk-antiderivative of f (x) = 1

x− h
1−q

for x 6= h
1−q

. It follows from Proposition 3/(iii) that

f (αk j(x)) =
1

(
t
q
+(1− t)q

)k j (
x− h

1−q

) ,

and hence the series
∞

∑
j=0

(
t

q
+(1− t)q

)k j

f
(

αk j(x)
)
=

∞

∑
j=0

1

x− h
1−q

diverges. Clearly, for any a > 0, f does not satisfy the condition

∣∣∣
(

x− h
1−q

)r

f (x)
∣∣∣< M on the interval 0 <

∣∣∣x− h
1−q

∣∣∣< a

for some M > 0 and 0 < r < 1, but it satisfies for r = 1. Note also that, F is not continuous at h
1−q

.

Definition 9.For any function f satisfying the condition of Theorem 7, the indefinite αk-integral of f is defined by

∫
f (x)dαk x :=

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)
×

∞

∑
j=0

(
t

q
+(1− t)q

)k j

f
(

αk j(x)
)
+C

where C is a constant.

Example 5.Let f (x) =
(

x− h
1−q

)r

, r ∈ R+. Then, we have

∫
f (x)dαk x =

(
1−

(
t

q
+(1− t)q

)k
)(

x−
h

1− q

)
×

∞

∑
j=0

(
t

q
+(1− t)q

)k j(
αk j(x)−

h

1− q

)r

+C

=

(
x− h

1−q

)r+1

[r+ 1]αk

+C.
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Before we introduce the definite αk-integral, we want to make a convention on interval notation. Since we deal with
functions either defined on (−∞, h

1−q
] or [ h

1−q
,∞), for a,b with |a− h

1−q
| ≤ |b− h

1−q
|, we define open, closed, and half-open

intervals as follows

[a,b] :=

{
x :

∣∣∣∣a−
h

1− q

∣∣∣∣≤
∣∣∣∣x−

h

1− q

∣∣∣∣≤
∣∣∣∣b−

h

1− q

∣∣∣∣
}
,

(a,b] :=

{
x :

∣∣∣∣a−
h

1− q

∣∣∣∣<
∣∣∣∣x−

h

1− q

∣∣∣∣≤
∣∣∣∣b−

h

1− q

∣∣∣∣
}
,

[a,b) :=

{
x :

∣∣∣∣a−
h

1− q

∣∣∣∣≤
∣∣∣∣x−

h

1− q

∣∣∣∣<
∣∣∣∣b−

h

1− q

∣∣∣∣
}
,

(a,b) :=

{
x :

∣∣∣∣a−
h

1− q

∣∣∣∣<
∣∣∣∣x−

h

1− q

∣∣∣∣<
∣∣∣∣b−

h

1− q

∣∣∣∣
}
.

Note that when a,b 6= h
1−q

, if
(

t
q
+(1− t)q

)
< 1, then (a,b] = [α−1(a),b], [a,b] = (α(a),b], etc. and if

(
t
q
+(1− t)q

)
>

1, then (a,b] = [α(a),b], [a,b] = (α−1(a),b], etc.

Definition 10.For f satisfying the condition of Theorem 7 and a,b,c 6= h
1−q

, the definite αk-integral of f on ( h
1−q

,c] or

[ h
1−q

,c] is defined by

∫

( h
1−q ,c]

f (x)dαk x :=
∫

[ h
1−q ,c]

f (x)dαk x =

(
1−

(
t

q
+(1− t)q

)k
)(

c−
h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(c)),

and the definite αk-integral of f on (a,b] is defined by

∫

(a,b]

f (x)dαk x :=

∫

[ h
1−q ,b]

f (x)dαk x−

∫

[ h
1−q ,a]

f (x)dαk x.

Theorem 8.If F is an αk-antiderivative of f that is continuous at h
1−q

,
(

t
q
+(1− t)q

)k

< 1 and a,b,c are as in Definition

10, then ∫

( h
1−q ,c]

f (x)dαk x = F(c)−F

(
h

1− q

)
and

∫

(a,b]

f (x)dαk x = F(b)−F(a).

Proof.For any c 6= h
1−q

, it follows from Proposition 3/(v),(vi) and the continuity of F at h
1−q

that

∞

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(c)) = lim
N→∞

N

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(c))

= lim
N→∞

N

∑
j=0

(
t

q
+(1− t)q

)k j
F(αk(αk j(c)))−F(αk j(c))

αk(αk j(c))−αk j(c)

= lim
N→∞

N

∑
j=0

(
t

q
+(1− t)q

)k j
F(αk( j+1)(c)))−F(αk j(c))

(
t
q
+(1− t)q

)k j

[k]α(
t
q
+(1− t)q− 1)(c− h

1−q
)

=
1

[k]α (
t
q
+(1− t)q− 1)(c− h

1−q
)

lim
N→∞

N

∑
j=0

(
F(αk( j+1)(c)))−F(αk j(c))

)

=
1

[k]α (
t
q
+(1− t)q− 1)(c− h

1−q
)

lim
N→∞

(
F(αk(N+1)(c))−F(c)

)

=
1

[k]α (
t
q
+(1− t)q− 1)(c− h

1−q
)

(
F

(
h

1− q

)
−F(c)

)
,
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and hence

∫

( h
1−q ,c]

f (x)dαk x =

(
1−

(
t

q
+(1− t)q

)k
)(

c−
h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

f (αk j(c)) = F(c)−F

(
h

1− q

)
.

Similary,
∫

( h
1−q ,b]

f (x)dαk x = F(b)−F
(

h
1−q

)
and

∫

( h
1−q ,a]

f (x)dαk x = F(a)−F
(

h
1−q

)
and hence

∫

(a,b]

f (x)dαk x =

(
F(b)−F

(
h

1− q

))
−

(
F(a)−F

(
h

1− q

))
= F(b)−F(a).

Theorem 9(Fundamental theorem of αk-integral I). If f is continuous at h
1−q

,
(

t
q
+(1− t)q

)k

< 1 and a,b,c are as in

Definition 10, then

∫

( h
1−q ,c]

Dαk f (x)dαk x = f (c)− f

(
h

1− q

)
and

∫

(a,b]

Dαk f (x)dαk x = f (b)− f (a).

Proof.We apply Theorem 8 fo Dαk f .

Theorem 10(Fundamental theorem of αk-integral II). Let f be continuous at h
1−q

, then

Dαk




∫

[ h
1−q ,x]

f (s)dαk s


= f (x).

Proof.By Theorem 47, f has an antiderivative F that is also continuous at h
1−q

and then by Theorem 8,

∫

[ h
1−q ,x]

f (x)dαk x = F(x)−F

(
h

1− q

)
.

The result follows by taking the αk-derivative of each side.

We need the following form of Leibniz’s rule of differentiation under the integral sign. Below we use the notation ∂ x
αk

to denote the partial αk-derivative with respect to the variable x.

Proposition 9.If g and ∂ x
αk g are continuous with respect to s at h

1−q
, for x 6= h

1−q
,

Dαk




∫

[ h
1−q ,x]

g(x,s)dαk s


 = g

(
αk(x),x

)
+

∫

[ h
1−q ,x]

∂ x
αk g(x,s)dαk s.

Proof.By definition of the αk derivative, we have

Dαk




∫

[ h
1−q ,x]

g(x,s)dαk s


=

∫

[ h
1−q ,α

k(x)]

g(αk(x),s)dαk s−
∫

[ h
1−q ,x]

g(x,s)dαk s

αk(x)− x
.

If
(

t
q
+(1− t)q

)k

< 1, then |αk(x)− h
1−q

|< |x− h
1−q

|, and so

∫

[ h
1−q ,α

k(x)]

g(αk(x),s)dαk s =
∫

[ h
1−q ,x]

g(αk(x),s)dαk s−
∫

(αk(x),x]

g(αk(x),s)dαk s.
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Noting ∫

[ h
1−q ,x]

g(αk(x),s)− g(x,s)

αk(x)− x
dαk s =

∫

[ h
1−q ,x]

∂ x
αk g(x,s)dαk s,

we’re done if we show that ∫

(αk(x),x]

g(αk(x),s)dαk s

αk(x)− x
=−g

(
αk(x),x

)
.

By Definition 10,
∫

(αk(x),x]

g(αk(x),s)dαk s =

(
1−

(
t

q
+(1− t)q

)k
)
(I1 − I2)

where

I1 : =

(
x−

h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

g(αk(x),αk j(x)),

I2 : =

(
αk(x)−

h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k j

g(αk(x),αk j(αk(x))).

Using Proposition 3/(iii), we get

I2 =

(
x−

h

1− q

) ∞

∑
j=0

(
t

q
+(1− t)q

)k( j+1)

g(αk(x),αk( j+1)(x)),

and so I1 − I2 =
(

x− h
1−q

)
g(αk(x),x). Finally, applying Proposition 3/(vi), we obtain

∫

(αk(x),x]

g(αk(x),s)dαk s

αk(x)− x
=

(
1−
(

t
q
+(1− t)q

)k
)(

x− h
1−q

)
g(αk(x),x)

[k]α(
t
q
+(1− t)q− 1)

(
x− h

1−q

) =−g
(

αk(x),x
)
.

6 Conclusion

In this article, our primary objectives are to accomplish αk-power function, to propose and solve α-Cauchy-Euler
equation. We discovered α-logarithm function which arises in the solution of a second order α-Cauchy-Euler equation.
We will address the α-analogue of exponential function, the relation between α-analogues of logarithm and exponential
functions, further algebraic properties of α-logarithm and some special functions (gamma, beta, hypergeometric
functions) as a separate paper.
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