
Appl. Math. Inf. Sci.9, No. 5, 2233-2238 (2015) 2233

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090503

Chaotic Behaviour of the Solutions of the Moore-Gibson-
Thompson Equation

J. Alberto Conejero1,∗, Carlos Lizama2 and Francisco Rodenas1
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Abstract: We study a third-order partial differential equation in theform

τuttt +αutt −c2uxx−buxxt = 0, (1)

that corresponds to the one-dimensional version of the Moore-Gibson-Thompson equation arising in high-intensity ultrasound and
linear vibrations of elastic structures. In contrast with the current literature on the subject, we show that when the critical parameter

γ := α − τc2

b is negative, the equation (1) admits an uniformly continuous, chaotic and topologically mixing semigroup on Banach
spaces of Herzog’s type.
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1 Introduction

Basic problems in acoustics for the sound propagation are
described in terms of the linear wave equation. For high
wave amplitudes and intensities, new phenomena such as
wave distortion and formation of shocks appear and the
wave equation must be substituted by a nonlinear partial
differential equation. The wide range of applications in
bioengineering and industry of high intensity sound
waves have encouraged investigations to go more deeply
into this field of research [6,10,26,27,31,32].

The classical models of nonlinear acoustics are
Kuznetsov’s equation, the Westervelt’s equation, and the
Kokhlov-Zabolotskaya-Kuznetsov equation. Several
initial boundary problems for these nonlinear second
order in time partial differential equations have been
considered very recently by Kaltenbacher and Lasiecka in
collaboration with other authors, see for instance [22,23,
24,25], and by Rozanova-Pierrat [28,29].

These models are of second order in time and
characterized by the presence of a viscoelastic damping.
The Kuznetsov’s equation had been considered by many
authors as the ”classical” acoustics equation. This
equation for the velocity potentialψ is:

ψtt − c2∆ψ − δ∆ψt =

(
1
c2

B
2A

(ψt)
2+ |∇ψ |2

)

t
, (2)

wherec is the sound speed,δ is the diffusivity of the sound
andB/A is the parameter of nonlinearity.

A complete model for a thermo-viscous flow in
compressible fluid relate several physical quantities, such
as the scalar sound velocity potential, the acoustic
pressure, the mass density, the temperature, the heat flux
and the entropy. If the heat flux is described by the
classical Fourier transfer heat equation, the energy
propagation has infinite speed. To avoid this paradox,
other equations were considered to model the heat
transfer in order to obtain a nonlinear acoustics wave
equation. The Maxwell-Cattaneo equation combined with
fluid physics equations leads to a third order in time
partial differential equation model. This nonlinear
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equation is known as the
Jordan-Moore-Gibson-Thompson equation:

τψttt +ψtt − c2∆ψ −b∆ψt =

(
1
c2

B
2A

(ψt)
2+ |∇ψ |2

)

t
,

(3)
whereb= δ + τc2.

In this paper we consider the linearized version of this
third order in time partial differential equation which is
usually referred to as Moore-Gibson-Thompson equation:

τψttt +ψtt − c2∆ψ −b∆ψt = 0. (4)

This equation displays a variety of dynamical behaviors
for its solutions that heavily depends on the physical
parameters in the equation.

Surprisingly, the linear equation (4) also arises in the
study of the dynamics of linear vibrations of elastic
structures. Bose and Gorain [5] proposed (4) as a model
of vibrations of elastic structure in which the stress is not
proportional to the strain.

We shall consider the one-dimensional version of
equation (4)

τuttt +αutt − c2uxx−buxxt = 0, (5)

with the initial conditions given by
u(0,x) = ϕ1(x),ut(0,x) = ϕ2(x),utt (0,x) = ϕ3(x), x ∈ R

and whereτ, α, c2 andb are positive constants. Several
stability and well-posedness properties of this third order
equation, written even in a more general abstract way,
have been studied in [11,15,16]. We point out that the
third order in time model (5) exhibits very different
qualitative behavior from the familiar second order
complete equation (τ = 0,α > 0). For third order in time
equations, the critical parameter

γ ≡ α − τc2

b
,

plays a fundamental role in asymptotic behavior, energy
estimates and regularity of solutions [27]. Indeed, all
studies so far requires the positivity assumptionγ > 0.
This is the common case considered in nonlinear
acoustics, wherebγ is equal to the Lighthill’s diffusivity
of sound, which is always positive [20,21].

However, and excepting few results on the subject, the
analysis of the behavior of (4) in caseγ ≤ 0 remains
largely open. Numerical calculations reveal that if the
conditions γ ≥ 0,c > 0 do not hold and also for
γ > 0,c= 0 the system (5) is unstable [24, Sec. 6]. In the
same paper, it was also shown that equation (5) admits a
strongly continuous group on Hilbert spaces, which is
exponentially stable whenγ > 0,c > 0 and not
exponentially stable in the complementary region, see
[24, Theorem 1.2].

Our main contribution in this paper gives new and
interesting information about the behaviour of the
equation (3) in the one-dimensional case and when the

critical parameterγ is negative. Indeed, we prove the
remarkable fact that forγ < 0 the initial value problem (5)
exhibits chaotic behaviour (Theorem3.1). Our arguments
are analitical rather than numercial and gives new insights
about the dynamical behaviour in more general situations.

Previous effort on the understanding of dynamical
behaviour of the solutions of linear partial differential
equations like (5) can be found at the literature, see for
instance [1,12,13]. For instance, the dynamical behaviour
presented by the solutions of the heat equation was
studied by Herzog [18] on certain spaces of analytic
functions with certain growth control; on symmetric
spaces of noncompact type in [19]; and on Damek-Ricci
spaces[30].

A similar treatment to Herzog’s approach was done in
[8,17] for the hyperbolic heat transfer equation and the
hyperbolic bioheat equation, a non-homogeneous version
of the first one with internal heat sources [9]. The
dynamical behaviour presented by the solutions of these
equation becomes richer when the solutions are studied
on certain spaces of analytic functions. On these spaces,
phenomena such as chaos and topologically mixing are
exhibited by the solutions of the hyperbolic heat and
bioheat equations [8,17,9]. However, at the best of the
knowledge of the authors, no study on dynamical
behaviour -particularly chaos- has been done for the
Moore-Gibson-Thomson equation (4). In this paper, we
present first results in this direction for the
one-dimensional setting, stimulating further analysis and
work in the 2d and 3d situation, as well as in more
general cases.

This paper is organized as follows: In the Section 2,
we recall the definitions and tools needed for the
statement of main result. In particular, we state a useful
spectral criteria to determine Devaney Chaos for
C0-semigroups. Section 3 contains our main result
(Theorem 3.1) which states that when the critical
parameterγ is negative, the Moore-Gibson-Thomson
equation admits chaos.

2 Preliminaries

We recall that a family{Tt}t≥0 of linear and continuous
operators on a Banach spaceX is said to be a
C0-semigroupif T0 = Id, TtTs = Tt+s for all t,s≥ 0, and
limt→sTtx = Tsx for all x ∈ X and s ≥ 0. Given a
C0-semigroup{Tt}t≥0, it can be shown that an operator
defined by Ax := limt→0

1
t (Ttx − x) exists on a dense

subspace ofX denoted byD(A). Then A, or rather
(A,D(A)), is called the(infinitesimal) generatorof the
semigroup. It can also be shown that the infinitesimal
generator determines the semigroup uniquely. It is
well-known that the generatorA is bounded if and only if
the semigroup is uniformly continuous, and in such case
is expressed as{Tt}t≥0 = {etA}t≥0, see for instance [14,
Th. II.1.5].
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The link between semigroups and differential
equations is via the infinitesimal generator. The unique
solution of the abstract Cauchy problem

{
ut = Au

u(0,x) = ϕ(x), (6)

whereA is the generator of aC0-semigroup{Tt}t≥0, is
given by u(t,x) = Ttϕ(x) wheneverϕ ∈ D(A). In that
sense,u(t,x) is called aclassical solutionof the abstract
Cauchy problem (6).

In linear chaos, several notions can be considered
when studying the linear dynamics of aC0-semigroup
{Tt}t≥0, for further information regarding this topic see
[17, Ch. 7].

We say that{Tt}t≥0 is hypercyclicif there exists some
x ∈ X such that its orbit under the semigroup,{Ttx : t ≥
0} is dense inX. A vectorx ∈ X is said to be a periodic
point for {Tt}t≥0 if there is somet0 ≥ 0 such thatTt0x =
x. A C0-semigroup is said to beDevaney chaoticif it is
hypercyclic and the set of periodic points is dense inX. A
C0-semigroup{Tt}t≥0 is called topologicallymixingif, for
any pairU,V of nonempty open subsets ofX, there exists
somet0 > 0 such thatTt(U)∩V 6= /0 for all t ≥ t0.

The following result is an useful consequence of the
Hypercyclicity Criterion forC0-semigroups [17]. Let X∗

denote the dual space ofX of linear and continuous
functionals onX. We recall that by a weakly analytic
function f : U → X on an open subsetU ⊂ C we
understand anX-valued function such that, for every
x∗ ∈ X∗, the complex valued functionz 7→ 〈 f (z),x∗〉 is
analytic onU . In the sequel,J is a nonempty index set.

Theorem 2.1.([17, Theorem 7.30]) Let X be a complex
separable Banach space and{Tt}t≥0 a C0-semigroup on
X with generator(A,D(A)). Assume that there exists an
open connected subset U and weakly analytic functions
f j : U → X, j ∈ J, such that

(i) U ∩ iR 6= /0,
(ii) f j(λ ) ∈ ker(λ I −A) for everyλ ∈U, j ∈ J,
(iii) for any x∗ ∈ X∗, if 〈 f j (λ ),x∗〉 = 0 for all λ ∈ U and

j ∈ J, then x∗ = 0.

Then{Tt}t≥0 is Devaney chaotic and topologically mixing.

This result can be compared with the
Desch-Schappacher-Webb Criterion [12, Th 3.1], or any
of its extensions [2,7]. Furthermore, either the
Desch-Schappacher-Webb criterion or the Eigenvalue
criterion for chaos imply distributional chaos, [3, Rem.
3.8], see also [4].

3 Devaney chaos for the
Moore-Gibson-Thompson equation

We are going to consider the solutionC0-semigroup of the
Moore-Gibson-Thompson equation on the following

spaces:

Hρ =
{

f :R→C ; f (x)=
∞

∑
n=0

an

n!
(ρx)n,(an)n≥0∈ c0(N0)

}

(7)
with ρ > 0 and beingc0(N0) the Banach space of all
complex-valued sequences tending to 0. These are
Banach spaces when endowed with the norm
|| f || = supn≥0 |an|. In other words, the spacesHρ , ρ > 0,
are Banach spaces of analytic functions with certain
increasing control at infinity. The spacesHρ were
introduced by Herzog [18] in connection with the study of
dynamical behaviour of the heat equation. Observe that
for any ρ fixed, the spaceHρ is naturally isomorphic to
c0(N0). In particular, its dualH∗

ρ is isomorphic to the
Banach space l1(N0) which consists of all
complex-valued sequences(an) such that∑∞

n=0 |an|< ∞.

Example 1.Given b ∈ C, the function f (x) = cosh(
√

bx)
belongs toHρ if and only if ρ2 > |b|. Analogously, the
functiong(x) = ebx belongs toHρ if and only if ρ > |b|.

Using the notationu1 = u, u2 =
∂u
∂ t , andu3 =

∂ 2u
∂ t2

, the
third order in time Cauchy problem in (5) can be rewritten
as a first-order differential equation.

∂
∂ t





u1
u2
u3



 =






0 I 0
0 0 I

c2

τ
∂ 2

∂x2

b
τ

∂ 2

∂x2 −αI
τ






︸ ︷︷ ︸

A





u1
u2
u3



 ,
(8)

with the initial conditions given by
u1(0,x) = ϕ1(x),u2(0,x) = ϕ2(x),u3(0,x) = ϕ3(x),x∈ R.
Since for eachρ > 0 the operatorD : Hρ → Hρ defined

by D f (x) = ∂ 2

∂x2 f (x) is clearly bounded, it follows that the
operator-valued matrixA in (8) is a bounded linear
operator on any spaceXρ := Hρ ⊕ Hρ ⊕ Hρ , ρ > 0.
Therefore, {etA}t≥0 is an uniformly continuous
semigroup on these spaces. Note that it contrast with the
results in [24] where it was proved thatA generates a
strongly continuous group or semigroup in several phase
spaces. Using the representation in (8) of the initial value
problem, we can obtain the Devaney chaos of its solution
semigroup under certain hypothesis on the parameters
α,b,c, andτ. The proof follows ideas given in [8,17], and
its an application of Theorem2.1.

Theorem 3.1. Let τ,b > 0 and α ≥ 0 be given. Assume
γ := α − τc2

b < 0. Then A generates a uniformly
continuous, Devaney chaotic and topologically mixing
semigroup on Xρ for eachρ2 > 2c4τα

b2(τc2−bα)
.

Proof. LetU be the open disk of radiusr0 =
ρ2c2b2

2τc4+ρ2b3

centered at zero. Then, condition 2.1.(i) holds directly. We
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define analytic functions of the form

ϕλ ,z0,z1
(x) := z0

∞

∑
n=0

Rn
λ x2n

(2n)!
+ z1

√

Rλ

∞

∑
n=0

Rn
λ x2n+1

(2n+1)!

= z0cosh
(√

Rλ x
)

+ z1sinh
(√

Rλ x
)

, x∈ R,

(9)
whereλ ∈ C,z0,z1 ∈ R, andRλ := αλ 2+τλ 3

c2+bλ . So that, for
any ρ > 0, the functionsfλ ,z0,z1

: U → Xρ , z0,z1 ∈ R,
defined by

fλ ,z0,z1
:=





ϕλ ,z0,z1
λ ϕλ ,z0,z1

λ 2ϕλ ,z0,z1



 (10)

satisfy thatA fλ ,z0,z1
= λ fλ ,z0,z1

for everyλ ∈C,z0,z1 ∈R.
Clearly, the functionsfλ ,z0,z1

are weakly analytic onU. Let
us prove thatfλ ,z0,z1

are well defined onXρ for all ρ > 0
andλ ∈U and then condition of Theorem2.1(ii) will hold.
In order to do that, it is enough to prove thatϕλ ,z0,z1

∈ Hρ .
Indeed, fix an arbitraryρ > 0 andλ ∈ U . Sincer0 also

fulfills the conditionr0 <
c2

b , then we have

|Rλ |
ρ2 < r2

0

(
α

ρ2(c2−br0)
+

τr0

ρ2(c2−br0)

)

. (11)

On the one hand, due to the choice ofr0, we have

τr0

ρ2(c2−br0)
=

b2

2c4 . (12)

On the other hand, using (12) we get

α
ρ2(c2−br0)

=
ατr0

ρ2(c2−br0)
· 1

τr0
=

αb2

2c4 · 1
τr0

(13)

Combining equations (11),(12), and (13) with the
conditionr0 <

c2

b andγ < 0 we have

|Rλ |
ρ2 < r0

αb2

2c4τ
+

c4

b2 ·
b2

2c4+<
αb

2c2τ
+

1
2
<

1
2
+

1
2
= 1.

(14)
Therefore, we can rewrite

ϕλ ,z0,z1
(x) = z0cosh

(

ρx
√

Rλ
ρ2

)

+ z1sinh
(

ρx
√

Rλ
ρ2

)

= ∑∞
n=0an(λ ) (ρx)n

n! , x∈ R,
(15)

where an(λ ) := z0
Rn/2

λ
ρn if n = 0,2,4, ... and

an(λ ) := z1
√

Rλ
R
(n−1)/2
λ

ρn if n = 1,3,5, ... Observe that by
(14) the sequence(an(λ ))n≥0 belongs toc0(N0) for each
λ ∈U fixed. This yieldsϕλ ,z0,z1

∈ Hρ for all ρ > 0.
Now, it only remains to see that condition of Theorem

2.1(iii) holds. Let x∗ = (x∗1,x
∗
2,x

∗
3) ∈ X∗

ρ be fixed and
denotex∗i = (x∗i,n)n≥0 for i = 1,2,3. Since the spaceHρ is

isomorphic to c0(N0), then X∗
ρ is isomorphic to

ℓ1(N0)⊕ ℓ1(N0)⊕ ℓ1(N0). Suppose that

0 = 〈 fλ ,z0,z1
,x∗〉

=
〈
ϕλ ,z0,z1

,x∗1
〉
+
〈
λ ϕλ ,z0,z1

,x∗2
〉
+
〈
λ 2ϕλ ,z0,z1

,x∗3
〉

(16)
for all λ ∈U andz0,z1 ∈ R.

This last equation can be rewritten in terms of the
isomorphic spacesc0(N0) andℓ1(N0) instead ofHρ and
H∗

ρ . So that, we have

0=
∞

∑
n=0

an(λ )x∗1,n+λ
∞

∑
n=0

an(λ )x∗2,n+λ 2
∞

∑
n=0

an(λ )x∗3,n

(17)
for all λ ∈U andz0,z1 ∈ R.

It is clear that 0∈U andRλ = 0 whenλ = 0. Observe
thatλ0 :=−α

τ ∈U becauseρ2 > 2c4τα
b2(τc2−bα)

by hypothesis.

It can be seen thatRλ0
= 0. We also note thatλ

2

Rλ
equals to

c2

α atλ = 0 and λ 2√
Rλ

equals to 0 atλ = 0.

Step 0: We evaluate in (17) at λ = 0 and we obtain
〈 f0,z0,z1,x

∗〉 = a0(0)x∗1,0 = z0x∗1,0 = 0 for all z0 ∈ R.

Thereforex∗1,0 = 0.
Step 1:We evaluate in (17) atλ = λ0 and we obtain

λ0z0x∗2,0+λ 2
0z0x∗3,0 = 0, (18)

for all z0 ∈R.
Step 2:We divide (17) by

√
Rλ and we get

0 = 1√
Rλ

(

∑∞
n=0an(λ )x∗1,n+λ ∑∞

n=0an(λ )x∗2,n

+λ 2∑∞
n=0an(λ )x∗3,n

)

.

(19)

We evaluate in (19) atλ = 0. Then we obtain1ρ z1x∗1,1+
c√
α z0x∗2,0 = 0 for all z0,z1 ∈ R. Thereforex∗1,1 = x∗2,0 = 0.

In particular, we deduce from (18) that x∗3,0 = 0. So that,
equation (19) can be reduced to

0 = z1
ρ λx∗2,1+

z1
ρ λ 2x∗3,1+

z0
ρ2

√
Rλ x∗1,2

+ z0
ρ2

√
Rλ λx∗2,1+

z0
ρ2

√
Rλ λx∗3,1+ . . .

(20)

Step 3:We evaluate in (20) atλ = λ0 and we obtain

λ0z1x∗2,1+λ 2
0z1x∗3,1 = 0, (21)

for all z1 ∈R.
Step 4:We divide (20) by

√
Rλ and we get

z1

ρ
c√
α

x∗2,1+
z0

ρ2x∗1,2 = 0, (22)

for all z0,z1 ∈R. Thenx∗1,2 = x∗2,1 = 0, and coming back to
(18) we getx∗3,1 = 0.
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Proceeding inductively we can deduce thatx∗i,n = 0 for
i = 1,2,3 andn∈ N, and thenx∗ = 0. By Theorem2.1the
result follows.

Remark.The assumptionγ <0 in the statement of Theorem
3.1directly yields 2c4rα

b2(rc2−bα)
> 0

Finally, we point out that one can also study the
dynamics of the solutions of the non-homogeneus
Moore-Gibson-Thompson equation for certain internal
sources appear, in the same way as this research is
conducted in [9].
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posedness and exponential decay for the Westervelt equation
with inhomogeneous Dirichlet boundary data. InParabolic
problems, volume 80 of Progr. Nonlinear Differential
Equations Appl., pages 357–387. Birkhäuser/Springer Basel
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