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Abstract: We study a third-order partial differential equation in them

TUrtt + O/t — G2 — DU = O, @

that corresponds to the one-dimensional version of the Bi@ibson-Thompson equation arising in high-intensityasiound and
linear vibrations of elastic structures. In contrast witke turrent literature on the subject, we show that when titieadrparameter

y:=a-— % is negative, the equatiori) admits an uniformly continuous, chaotic and topologicaiixing semigroup on Banach

spaces of Herzog's type.
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This paper is dedicated to the memory of Professor These models are of second order in time and
José Sousa Ramos. characterized by the presence of a viscoelastic damping.
The Kuznetsov’s equation had been considered by many
authors as the “classical” acoustics equation. This
1 Introduction equation for the velocity potentigl is:

Basic problems in acoustics for the sound propagation are 2 _(18B 2 2
described in terms of the linear wave equation. For high Y —cAy—odp = (?ﬁw}t) i )t - @
wave amplitudes and intensities, new phenomena such as
wave distortion and formation of shocks appear and thewherecis the sound speed,is the diffusivity of the sound
wave equation must be substituted by a nonlinear partiahndB/A is the parameter of nonlinearity.
differential equation. The wide range of applications in A complete model for a thermo-viscous flow in
bioengineering and industry of high intensity sound compressible fluid relate several physical quantitieshsuc
waves have encouraged investigations to go more deeplgs the scalar sound velocity potential, the acoustic
into this field of researchg]10,26,27,31,32]. pressure, the mass density, the temperature, the heat flux
The classical models of nonlinear acoustics areand the entropy. If the heat flux is described by the
Kuznetsov’s equation, the Westervelt's equation, and theclassical Fourier transfer heat equation, the energy
Kokhlov-Zabolotskaya-Kuznetsov  equation. Severalpropagation has infinite speed. To avoid this paradox,
initial boundary problems for these nonlinear secondother equations were considered to model the heat
order in time partial differential equations have beentransfer in order to obtain a nonlinear acoustics wave
considered very recently by Kaltenbacher and Lasiecka irequation. The Maxwell-Cattaneo equation combined with
collaboration with other authors, see for instan2® 23, fluid physics equations leads to a third order in time
24,25], and by Rozanova-Pierre2, 29]. partial differential equation model. This nonlinear
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equation is known as the critical parametery is negative. Indeed, we prove the
Jordan-Moore-Gibson-Thompson equation: remarkable fact that foy < O the initial value problems)
LB exhibits chaotic behaviour (Theoresnl). Our arguments
2am _(+t Db 2 2 are analitical rather than numercial and gives new insights
T + Yo = CAY — DAY = <02 2A(wt) +10v] )t ’ about the dynamical behaviour in more general situations.
3 Previous effort on the understanding of dynamical
whereb = 6 + 1¢2. behaviour of the solutions of linear partial differential

In this paper we consider the linearized version of thisequations like §) can be found at the literature, see for
third order in time partial differential equation which is instance 1,12,13]. For instance, the dynamical behaviour
usually referred to as Moore-Gibson-Thompson equationjpresented by the solutions of the heat equation was

studied by Herzog 18] on certain spaces of analytic
Tt + Yhe — CCAY — bAY, = 0. (4)  functions with certain growth control; on symmetric

. . . ) ) . spaces of noncompact type ih9; and on Damek-Ricci
This equation displays a variety of dynamical behav'orsspaceQO].

for its solutions that heavily depends on the physical
parameters in the equation.

Surprisingly, the linear equatiod) also arises in the
study of the dynamics of linear vibrations of elastic
structures. Bose and Goraif] [proposed 4) as a model
of vibrations of elastic structure in which the stress is not
proportional to the strain.

We shall consider the one-dimensional version of
equation 4)

A similar treatment to Herzog's approach was done in
[8,17] for the hyperbolic heat transfer equation and the
hyperbolic bioheat equation, a non-homogeneous version
of the first one with internal heat sourceS].[ The
dynamical behaviour presented by the solutions of these
equation becomes richer when the solutions are studied
on certain spaces of analytic functions. On these spaces,
phenomena such as chaos and topologically mixing are
exhibited by the solutions of the hyperbolic heat and
() bioheat equations8[17,9]. However, at the best of the

knowledge of the authors, no study on dynamical
with the initial conditions given by behaviour -particularly chaos- has been done for the
(0.) = 3200, (0.0) = $2(0),ua(0.%) = g(x). x ¢ & Moore-Gibson-Thomson equatiom( In this paper, we
and wherer, a, ¢ andb are positive constants. Several Present first results in this direction for the
stability and well-posedness properties of this third orde On€-dimensional setting, stimulating further analysid an
equation, written even in a more general abstract wayWork in the 2d and 3d situation, as well as in more
have been studied inl],15,16]. We point out that the ~general cases. . _
third order in time model §) exhibits very different This paper is organized as follows: In the Section 2,
qualitative behavior from the familiar second order We recall the definitions and tools needed for the
complete equationt(= 0,a > 0). For third order in time ~ Statement of main result. In particular, we state a useful

TUktt + O Uy — C2Uyx — bUoq = 0,

equations, the critical parameter spectral criteria to determine Devaney Chaos for
Co-semigroups. Section 3 contains our main result

1c2 (Theorem 3.1) which states that when the critical

VEG_Tv parametery is negative, the Moore-Gibson-Thomson

_ . _ equation admits chaos.
plays a fundamental role in asymptotic behavior, energy

estimates and regularity of solution27]. Indeed, all
studies so far requires the positivity assumptior O.
This is the common case considered in nonlinear
acoustics, wherby is equal to the Lighthill's diffusivity
of sound, which is always positive(,21]. We recall that a family{ T }+>o of linear and continuous
However, and excepting few results on the subject, theoperators on a Banach spacé is said to be a
analysis of the behavior of4) in casey < 0 remains  Co-semigroupif To = Id, T;Ts = Ty, s for all t,s > 0, and
largely open. Numerical calculations reveal that if the limisTix = Tsx for all x € X and s > 0. Given a
conditions y > 0,c > 0 do not hold and also for Co-semigroup{Ti}i>o, it can be shown that an operator
y > 0,c = 0 the system5) is unstable 24, Sec. 6]. Inthe defined by Ax := IimHO%(Ttx —X) exists on a dense
same paper, it was also shown that equat®ra@mits a  subspace ofX denoted byD(A). Then A, or rather
strongly continuous group on Hilbert spaces, which is(A,D(A)), is called the(infinitesimal) generatorof the
exponentially stable wheny > 0,c > 0 and not semigroup. It can also be shown that the infinitesimal
exponentially stable in the complementary region, seegenerator determines the semigroup uniquely. It is
[24, Theorem 1.2]. well-known that the generatdyis bounded if and only if
Our main contribution in this paper gives new and the semigroup is uniformly continuous, and in such case
interesting information about the behaviour of the is expressed agT;}>o = {€4}1>0, See for instancelf,
equation 8) in the one-dimensional case and when theTh. II.1.5].

2 Preliminaries
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The link between semigroups and differential spaces:
equations is via the infinitesimal generator. The unique
solution of the abstract Cauchy problem

0

Ho={f:R=C; (0= zo%mx)",(an)nzoecomo)}

{ U = Au ©) = 7)
u(0,x) = ¢(x), with p > 0 and beingcy(Np) the Banach space of all
complex-valued sequences tending to 0. These are
Banach spaces when endowed with the norm

[| ]| = sup=olan|. In other words, the spacé,, p > 0,

whereA is the generator of &€y-semigroup{T;}i>o, is
given by u(t,x) = Ti¢(x) wheneverg € D(A). In that
sensel(t,x) is called aclassical solutiorof the abstract 5.6 Banach spaces of analytic functions with certain
Cauchy problem§). , , increasing control at infinity. The spaced, were

In linear chaos, several notions can be qons'dereéntroduced by Herzodl[g] in connection with the study of
when studying the linear dynamics of @-semigroup  gynamical behaviour of the heat equation. Observe that
{Tt}t>0, for further information regarding this topic see ¢5, any p fixed, the spacéi, is naturally isomorphic to
[17, Ch.7]. . . . co(Np). In particular, its dualH} is isomorphic to the

We say tha{ T; }+~¢ is hypercyclicf there exists some Banach space I (No) whicph consists  of  all

x € X such that its orbit under the semigroyfix : t > ) w
0} is dense inX. A vectorx € X is said to be a periodic complex-valued sequences) such thal _o[an| < e

point for {T; }+>o if there is somég > 0 such thafl;,x = . i

X. A Co-sgm}}g?oup is said to bBevaney chaotiéf it is ~ Example 1Givenb ¢ C, the fuant'Onf(X) = cost{vbx)

hypercyclic and the set of periodic points is densirs ~ P€longs toHy if and only if p= > |b|. Analogously, the

Co-semigroup{T; }=o is called topologicallynixingif, for ~ functiong(x) = e”* belongs tcH, if and only if p > [b].

any pairU,V of nonempty open subsets Xf there exists

sometp > 0 such thafl;(U) NV # 0 for allt > to. Using the notationi; = u, u, = %, anduz = ZTZ;‘, the
The following result is an useful consequence of thethird order in time Cauchy problem iB) can be rewritten

Hypercyclicity Criterion forCy-semigroups17]. Let X* as a first-order differential equation.

denote the dual space of of linear and continuous

functionals onX. We recall that by a weakly analytic 0 I 0

function f : U — X on an open subset) ¢ C we g (U 0 0 I U
understand arX-valued function such that, for every 2] =129 po2 al U, (8)
x* € X*, the complex valued functioa — (f(2),x*) is Us T T1C T Us

analytic onU. In the sequel] is a nonempty index set. X

Theorem 2.1([17, Theorem 7.30]) Let X be a complex with the initial conditions given by

separable Banach space afd; }i~o a Cy-semigroup on
X with generator(A,D(A)). Ess}ufne that there exists an U2(%: X)f: 91(x), u2(0, X% = $2(X), u3(0,x) = ¢3(x),x]§ R.
open connected subset U and weakly analytic functionsSlnce or eacrp >0 the operatoD : H, — H, defined
fi:U — X, j € J, such that by Df (x ) is clearly bounded, it follows that the
() UNiR £0 operator vafued matnx; in (Els_)I is S bomlilnded Imgar
\ ) , operator on any spac, := Hy ® Hp ® Hp, p >
(ﬂ:)) ffojr(){l{%E)I((*eg);(l*_if\z]f-(}r)\e)v)?*ry)\—%?()’rJaﬁ ;J\’EU and Therefore, {¢A}t~o is an uniformly continuous
e t%en 2 —6 WEL2 = semigroup on these spaces. Note that it contrast with the
] ’ - results in R4] where it was proved thaf\ generates a
Then{T; }+>0 is Devaney chaotic and topologically mixing. strongly continuous group or semigroup in several phase
spaces. Using the representation8h ¢f the initial value
This result can be compared with the problem, we can obtain the Devaney chaos of its solution
Desch-Schappacher-Webb Criteridk2[ Th 3.1], or any  semigroup under certain hypothesis on the parameters

of its extensions 7,7]. Furthermore, either the ¢ b, c, andt. The proof follows ideas given ir8[17], and
Desch-Schappacher-Webb criterion or the Eigenvalugts an application of Theore@ 1

criterion for chaos imply distributional chaos3, [Rem.

3.8], see also4]. Theorem 3.1. Let 1,b > 0 and a > 0 be given. Assume
yi=ao— % < 0. Then A generates a uniformly
continuous, Devaney chaotic and topologically mixing

. 4
semigroup on X for eachp? > WZTCT%.

3 Devaney chaos for the
Moore-Gibson-Thompson equation

. . 2C2b2
We are going to consider the soluti6g-semigroup of the Proof. LetU be the open disk of radiug = ZTprzb:«;

Moore-Gibson-Thompson equation on the following centered at zero. Then, condition 2.1.(i) holds directlg. W
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define analytic functions of the form

=9 Rn X2n+1

ZEEALY _ZOZO 2n)! “1\/—20 2n1 1)

= zocosh( R,\x) +zlsinh( RAX) , XER,

. )

wherel € C,2,z; € R, andR, := %41 So that, for
any p > 0, the functionsf) , , U — X;, 20,21 € R,

defined by
¢/\,zo7zl
Az = ()‘2‘1’/\,20721
A ¢)\ 120,21

satisfy thatAf) , , =Af) 5, foreveryA € C,z,z € R.
Clearly, the functions, ,, ,, are weakly analytic ob. Let
us prove thatf , , are well defined orX, for all p >0
andA €U and then condition of Theoreg(ii) will hold.

In order to do that, it is enough to prove thfat , ,, € Hp.
Indeed, fix an arbitrary > 0 andA € U. Sincerg also

fulfills the conditionrg < %, then we have

(10)

@<r a N rg
p2 %\ p2(c—bry) ' p?(c2—brg) )’

On the one hand, due to the choicegfwe have

(11)

Tro P
p2(2—brg)  2¢* (12)
On the other hand, usind?) we get
a — atro 'i_a_bz_i (13)
p2(c2—brg)  p2(c2—brg) Trg 2c* Trg

Combining equations1@),(12), and (@3) with the
conditionrg < 3 andy < 0 we have

ab? ¢* b?

Ryl L
2c*t - b2 2¢t

ab 1
ra "2

— =1
22t 2

(14)

<rg=——

NI =
+
NI =

Therefore, we can rewrite

Pr 202 (X) = ZoCOSh(PX\/g) +zlsinh(px %)

:z;"zoan()\)(prﬁ)n, X€R,
(15)
n/2
where an(A) = zo if n = 024.. and
R/
an(A) = zvR, if n=1,3,5,... Observe that by

(14) the sequencean( ))n>0 belongs tocy(Np) for each
A €U fixed. This yieldsp, ,,,, € Hp forall p > 0.

Now, it only remains to see that condition of Theorem

2.1(jii) holds. Let x* = (x3,X3,X3) € X5 be fixed and
denotex; = (X'n)n>o for i =1,2,3. Since the spadd, is

isomorphic to cp(Np), then X; is
¢1(Np) @ ¢1(Np) @ ¢1(Np). Suppose that

0= <f)\7zo7zlaX*>
= (02 202:X1) T (A2 202 %5) + (A°Bh 2020, %)

(16)
forall A €U andzy,z; € R.
This last equation can be rewritten in terms of the
isomorphic spacesy(Np) and/1(Np) instead ofH, and
H,. So that, we have

isomorphic to

0= a(A)Xin+A Y an(A)xg,+A% zoan(A )X
n=0 n=

7)
forall A € U andz,z € R.
Itis clear that 0= U andR, = 0 whenA = 0. Observe

thatAo := —< € U becaus@? > % by hypothesis.

It can be seen th&, , = 0. We also note tha,%2 equals to
o - Az _
T atA =0 andm equalsto 0 ak = 0.

Step 0: We evaluate inX7) at A = 0 and we obtain
(foz02,,X") = a0(0)x] o = 2015 = 0 for all o € R.
Therefore , = 0.

Step 1:We evaluate in17) atA = Ag and we obtain

AoZo%5 0+ A§20X50 = O, (18)
forall zp € R.
Step 2:We divide (7) by /R, and we get
0= = (ShomnA X, A i 0m(A )%,
(19)

A2 oA, )

We evaluate in19) atA = 0. Thenwe obtair%zlx’iﬁ
\/C_zoxgo = 0 for all z,z € R. Thereforex] ; = X3, =0.
In particular, we deduce froni§) thatxz, = 0. So that,
equation 19) can be reduced to

_ * 21 ) 2% D Py
O— EAX271+ F)\ X371+? R)\XLZ

+HVRIAK  + BVRIAKG

Step 3:We evaluate inZ0) atA = Ag and we obtain

(20)

AozaXs 1 + A§z1xs =0, (21)
forall zy € R.
Step 4:We divide @0) by /R, and we get
21 C
- X21"’zo X12=0, (22)

pVa

forall p,z € R. Thenx] , = X3 ; = 0, and coming back to
(18) we getx; ; = 0.
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Proceeding inductively we can deduce tkigt= 0 for [12] W. Desch, W. Schappacher, and G. F. Webb. Hypercyclic

i =1,2,3 andn € N, and therx* = 0. By Theoren®.1lthe and chaotic semigroups of linear operatdgyodic Theory
result follows. Dynam. System47(4):793-819, 1997.
[13] S. El Mourchid, G. Metafune, A. Rhandi, and J. Voigt. On
RemarkThe assumptiop < 0 in the statement of Theorem the chaotic behaviour of size structured cell populatidns.
Math. Anal. Appl. 339(2):918-924, 2008.

: ; 2c¢*ra
3.1directly yleldsbz(rCLbOO >0 [14] K.-J. Engel and R. NagelOne-parameter semigroups for

Finally, we point out that one can also study the linear evolution equationsvolume 194 ofGraduate Texts
S . in Mathematics Springer-Verlag, New York, 2000. With
dynam|c§ of the solutions Of. the non-hqmqgeneus contributions by S. Brendle, M. Campiti, T. Hahn, G.
Moore-Gibson-Thompson equation for certain internal Metafune. G. Nickel D. Pallara. C. Perazzoli. A. Rhandi
sources appear, in the same way as this research is g romanelliand R. Schnaubelt. ' '
conducted in9]. [15] C. Fernandez, C. Lizama, and V. Poblete. Maximal
regularity for flexible structural systems in Lebesgue spac
Math. Probl. Eng,. pages Art. ID 196956, 15, 2010.
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