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Abstract: The purpose of this paper is the development of an expliwt sixth algebraic order six-step methods with vanisihede-
lag and its first and second derivatives. The developmerteofhiew method is based on a theoretical and computatioredtigation.
The theoretical investigation consists :

—The construction of the method

—The determination of the local truncation error
—The comparative local truncation error analysis
—The stability analysis

We note here that the stability analysis is is based on arsesieequation with different frequency than the frequenithe scalar test
equation used for the phase-lag analysis. The computafinrestigation of the new proposed method consists theiegifmin of the

new obtained method to the resonance problem of the radial iindependent Schrodinger equation. Based on the abaviomed

studies we conclude that the new developed linear six-stghad is more efficient (computationally and theoretidathan other well

known methods for the approximate integration of the Sdimger equation and related periodical/oscillatory aitir boundary value
problems.

Keywords: Phase-lag, Derivatives of the phase-lag, initial valueblams, oscillating solution, symmetric, multistep, Smtinger
equation

1. Introduction —Methods with Coefficients Dependent on the Frequency

. . . . of the periodic/oscillating problem
In this paper we study the numerical solution of special _pjethods with Constant Coefficients

second-order periodic and/or oscillatory initial or bound
ary value problems of the form The numerical methods with coefficients dependent on
y'(x) = f(z,y), y(zo) =yo and y'(x0) = (1) the frequency of the periodic/oscillating problem belong

The mathematical models which describe the above!rlto one of the following categories:

mentioned problems consist from systems of second order —Exponentially Fitted Methods

differential equations in which the first derivatiyé does —Trigonometrically Fitted Methods
not appear explicitly (see for numerical methods for these —Phase-Fitted and/or Amplification Fitted Methods (with
problems B] - [99] and references therein). or without Vanishing of the Derivatives of the Phase-

The numerical methods for the numerical integration ~ Lag and/or the Amplification Error)
of the one-dimensional time independent Schrodingerequa
tion and related initial or boundary value problems with
periodical or oscillating solution belong to one of the fol-
lowing categories: —Symplectic Integrators

The numerical methods with constant coefficients be-
long into one of the following categories:
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—Other Finite Difference Methods Definition 2.A symmetri@ m-step method with character-
istic equation given by is said to have an interval of
periodicity (0, v3) if, for all v € (0,v3), the roots)\;,i =

2. Phase-Lag For Symmetric Multistep Finite ~ 1(1)2m of Eqg. €) satisfy:
Difference Methods A= €0 Ny = =) and [\| < 1,0 = 3(1)2m(7)

For the numerical solution of the initial or boundary value Wheref(v) is a real function ob.

problem1) let us consider the multistep methods of the Definition 3.[11], [ 12] For any method corresponding to

form: the characteristic equatiordf the phase-lag is defined as
k i the leading term in the expansion of
Z i Ynyi = h Z b; f(x71+i7 yﬂ—&-l’) (2)
i=0 i=0 t=v—06(v) (8)
where: Then if the quantity = O(v?*!) as v — oo, the order of
—k are the number of steps over the equally spaced in_phase-lag 'SP
tervals{gci}f:0 € [Xpegin, Tend) Definition 4.[23] A method for which the phase-lag van-
—h = |w;11 — x|, i = 0(1)k — 1, whereh is called  ishes (which is the same with: phase-lag equal to zero), is
stepsize of integration calledphase-fitted

RemarkThe finite difference method is called symmetric RemarkA method can also have derivatives of the phase-

if a; = cx—; andb; = bg—;, = 0(1) L%J_ lag which are vanished (which is the same with: derivatives
of the phase-lag equal to zero).

The operator

Theorem 1[11] The symmetri€ m-step method with char-

acteristic equation given b) has phase-lag ordey and

k k .
L(z) = Z ciule+ih) — B2 Z b (z + i h) 3) phase-lag constantgiven by
i=0 i=0 —co?? 4 O(vP*h) H9)
whereu € (2, is associated with the multistep finite dif- 24m(v) cos(mv) + ... + 2 4;(v) cos(jv) + ... + Ao(v)
ference method?). 2m2 A (v) + ... +2524;(v) + ... +2 A1 (v)

Definition 1.[1] The finite difference multistep methog)( ~ Remark-or any symmetrie m-step finite difference method
is called algebraic of orderif the associated linear oper- the above mentioned formul8)(gives us a direct method
ator L vanishes for any linear combination of the linearly t0 compute its phase-lag.

i i 2 q+1 . L
independent function$, =, x*, ..., 7T, Proposition 1A symmetric six-step method has phase-lag

Application of the symmetrig m-step finite difference ~ Orderp and phase-lag constantgiven by:
method, (i.e. foi = —m(1)m), to the scalar test equation e 4 O = T
y' =’y (4) T
To =2 As(v) cos(3v) +2 Az(v) cos(2v)

+2 A1 (v) cos(v) + Ap(v)

(10)

leads to the following difference equation:

Am (V) Yntm + o + A1(V) Yng1 + Ao(v) Yn Ty = 18 A3(v) +s Az2(v) +2 Aq1(v)
A ) Yno1 ot A (V) Yom =0 ®) ProofThe above proposition can be proved easily putting
where m = 3 in the formula 9).
—v =wh,
_Zfii_the step lengtti; (v) j = 0(1)m are polynomials 3. A Linear Symmetric Six-Step Method with

Phase-Lag and Its First and Second

The characteristic equation which is associated WithDerivatiVES Equal to Zero

(5) is given by:

3.1. The General Algorithm
Ap (V) A" 4+ .+ Ar(v) A+ Ao (v) o al soluti  orobl " o cal
A A b A, (AT =0 6 For the numerical so ution of problems with mathematica
+AL) et (v) © models of the fornl) with periodical and/ir oscillating so-
The following definition have been introduced by Lam- lution let us consider the symmetric linear six-step method
bert and Watson1[3] : :
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Yn+3 + a2 (Yn+2 + Yn—2) + a1 (Yn+1 + Yn—1) +

+agp Yn = h2 b2 (fn+2 +fn72) +

+01 (frg1 + fao1) +bo fu|  (11)

wheref; = " (z5,v:),i =n—2(1)n+ 2 anday = -2,

a] = 2anda2 = —2.

3.2. Development of the Method with Vanished
Phase-Lag and its First and Second Derivatives

The construction of the new method is based on the algo-

rithm presented below:

-We apply the general method1) to the scalar test
equation §).

—The above application leads to the difference equation
(5) with m = 3 and:

A3(v) = 1, Ao (v) = =24 bp0?,
Al(v) = 2—|—b11}2,
Ap(v) = =2+ by v? (12)

—The associated characteristic equatié)) (ith m =
3, is obtained based on the polynomidlg)

—The direct formulaZO0) for the calculation of the phase-
lag of the symmetric six-step finite difference method
(1) is obtained based on the polynomials(v), j =
0(1)3 presented inX2).

—Requiring the symmetric linear six-step method method
(12) to have the phase-lag equal to zero (i.e. to be phase-
fitted), the following equation is obtained.

T

=0
20v2b1 +8v2by + 6

(13)

where:

Ty = 2 cos(3v) +2 (v* by — 2) cos (20)
2 (v?by +2) cos (v) + v* by — 2

—Requiring the symmetric linear six-step method method

T3 = 4 sin (v) cos (v) v? by by
+16 sin (v) cos (v) v* by?
+sin (v) v* b + 4 sin (v) v* by by

+12 (cos (v))? sin (v) v2 by
+48 (COb( ))? sin (v) v2 by
8 (cos (v))® vby

+32 (cos (v))* vby

—8 sin (v) cos (v) v? by
—20 sin (v) cos (v) v? by

8 (cos (v))? vby

—44 (cos (v))? vby + 2 sin (v) V2 by

—4 sin (v) v2 by + 36 (cos (v))* sin (v)

—8wby cos (v) — 8 cos (v) vbe

—24 sin (v) cos (v)

—3vby+2vby + 14vby — 3 sin (v)
—Requiring the symmetric linear six-step method method

(12) to have the the second derivative of the phase-lag
equal to zero , the following equation is obtained.

T,
(v2by + 402 by + 3)3

where:

(15)

Ty = —72 — 120 cos (v) v? by by — 48 sin (v) v by
—864 (cos (v))* v? by — 48 sin (v) v by
+192 (cos (v))* v? by by

—32 sin (v) cos (v) v3 by ?

+768 sin (v) (cos (v))* v by?

+48 sin (v) (cos (v))? v° by 2

—288 (cos (v))® v* by by

—16 cos (v) v° by by? — 8 cos (v) 08 b2 by
—8 (cos (v))* v b1% by

—64 (cos( 0?00 by by?

—304 sin (v) cos (v) v by by + 400 by? by
—528 (cos (v))? v by?

—64 sin (v) v® by? — 24 cos (v) v? by
—324 (cos (v))” + 3200 by by?

(12) to have the the first derivative of the phase-lag —42by — 24 (cos (v))2 v2 b2
equal to zero , the following equation is obtained. 3 9, 9
+24 (cos (v))” v by
T2 TBQ 7 = (14) +16 (cos (v))* v* by
(v2by + 402 by + 3) —576 (cos (v))® v? by?
where: +384 (cos (v))* v? by?
(@© 2015 NSP
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—128 (cos (v))* v0 by®

—cos (v) ¥8b1® 4 600 cos (v) v2 by

—6by + 80 (cos (v))* v by by

—704 sin (v) cos (v) v3 by?

—80 sin (v) v® by by

+144 (cos (v))* sin (v) v by

+576 (cos (v))* sin (v) v by

—96 sin (v) cos (v) vby — 528 sin (v) cos (v) v by
—36 (cos (v))® v* b2 — 36 w2 by by

+66 v by by + 9 by

+400 cos (v) v* by® + 312 (cos (v))* v2 by
+225 cos (v) + 144 (cos (v))* + 60 by
4168 % by® 4 176 cos (v) v* by by

—320" by® — 156 v* by — 80 by

—228 (cos (v))? v2 by by — 40 v* by by
+132 (cos (v))? by + 24 by cos (v)

+24 cos (v) by — 4802 by — 216 (cos (v))® v2 by
+141 cos (v) v? by + 96 (cos (v))* v? by
+64 (cos (v))* v? by? — 16 sin (v) v° by?
—9v% by by + 19 cos (v) vt by ?

+384 sin (v) (cos (v))? v by by

—96 cos (v) v by? — 24 (cos (v))* by

—96 (cos (v))” by + 24 (cos (v))? by
+64 05 by

—The solution of the system of equatiork3) - (15)
leads to the determination of the coefficients =
0(1)2 of the symmetric linear six-step method method

1AD:
Ts
bo = . .
3vtsin (v) — vtsin (3v)
b = Lo
"7 3vsin (v) — v¥sin (30)
17
by = - .
3vtsin (v) — vt sin (3v)
where
Ts = 6v?sin (v) — 15v%sin (2v) + v? sin (6 v)
+6v?sin (4v) — 2v%sin (3v) + 50 cos (v) v
—2v cos (5v) +3v cos (6v) + 13v cos (4v)
—12v cos (3v) — 25v cos (2v) + 6 sin (v)
—15sin (2v) — 3 sin (6v) — 15 sin (4 v)

+6 sin (bv) + 24 sin (3v) — 27w
Ts = 9v*sin (v) — 3v? sin (5v) + 202 sin (3v)

(16)

+32 cos (v) v — 8w cos (5v) + 8w cos (4 v)
—8wv cos(2v) 4 6 sin (v) — 12 sin (2 v)
—12sin(4v) 4+ 6 sin (5v) + 12 sin (3v) — 24 v
Ty = 6v%sin (v) — 60 sin (2v) + 302 sin (4v)
—29?sin (3v) + 12 cos (v) v + 5o cos (4v)
—6v cos (3v) — 5w cos(2v) — 3 sin (2v)

—3 sin(4v) 4+ 6 sin(3v) — 6w

The above mentioned formulae (given y6)) may
subject to heavy cancelations for some valudslofin

this case the following Taylor series expansions should
be used :

y 9T 205, 9559
0= 40 224Y T 22400 "

679541 5 300755069
6652800 24216192000
1936967 30681216749,
1845043200 592812380160000
11352810559 .,
3942202328064000
- 1786305431 10
14867734494412800000
_ ISMGT544202363
17234677825923317760000 a
, _ 3L 275 5 10901
Y7 730 " 336 50400
50009 21107707
2851200 18162144000
L 1389683 o 134286989 o,
174356582400 34200714240000
18277572601
47306427936768000
1667121262381
33452402612428300000
| 156882478087937 4
25852016738884976640000
,, 317215, 1T
27 9240 1344 403200
22753 o B00ISTL
39916800 145297152000
452200 4, 5876029
63402393600 6599024640000
260344639 ”
2365321396838400 *
3596712394753 "

"~ 267619220899430400000
2 741177
5825500 B @)

~ 5442529839765258240000

The behavior of the coefficients is given in the follow-
ing Figure 1.

In the below mentioned formula we give the local trun-
cation error of the new developed methdd)((men-
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Figure 1 Behavior of the coefficients of the new proposed
method given byX6) for several values af = w h.

=
3

p—

tioned asSixStep M ethod) with the coefficients given
by (16)-(17):

275 h8
. ) b ()
LTELGear Six Step 4032 (yn +
+3w Yl + 3wty +

+w y ) + O (hlo) (18)

4. Comparative Local Truncation Error
Analysis

We will investigate the following methods :

4.1. Classical Method(i.e. the methddl) with
constant coefficients)

275
LTEq;, = 7_h

(8) 10
4032 +0 (h )

(19)
4.2. The Phase-Fitted Method Produced 9]

<y518) +

W y,<3>> +0 (h)

275 h8

LTELinear Six Step PF — 4032

(20)

4.3. The Method with Vanished Phase-Lag and
its First Derivative Produced Obtained ir39]

(yff)

275 h8

e (@)
4032 3wy

LTELinear Sixz Step —

4.4. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Developed in Section 3

(yff) +

+3w?y® + 3wyl +

4wl g ) + O (h')

275 h8

LTELinear Six Step — 4032

(22)

The following steps are followed in order to obtain the
asymptotic expansions of the Local Truncation Error for
the algorithms mentioned above :
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—In this step we compute the derivatives of the function
yn (approximation of the functiog(x) atz,,). These
derivatives are based on the main derivatixgé?? =
(V(z) — Ve + G) y(x) which s followed from the math-
ematical model of the problem. The above mentioned
derivatives are occurred in the formulae of the Local

+12 (g (z) + G)? (%M@) 729 (@)

+(9(2) +G) 'y (@)

Truncation Errors. Therefore we have:

9(@)+ (9 () + G Sy (2)

W0 = (45500 1) +4 (500)) 2y @)

2 2
@)+ Qo) o+ (0@ v

+66@)+6) (1@ Lo

Lo +(9(@) + O 1y ()

6 5

i = (s9@) w0 +6 (20 (o)

H169(0) + )y (@) G0 +26 (o)) (o)
3

3
9@ 21 0@+ 6) (1) 139(0)

+15 <dd—;2g (;v))2 y(z) + 48 <%g (x))
(50) 200+ 2 (9 0) + 6Py 0)

d2

dz?? da?

RemarKThe above expressions of the derivatives of the
functiony,, are finally dependent frol&@ = V, — E
which is dependent from the energy

—Based on the above mentioned remark it is easy for
one to see that the expressions of the derivatives of the
functiony,, helps the formulae of the Local Truncation
Error to be expressed as functions of the enefgy
This is happened via its substitution in the formulae
of the Local Truncation Error of the derivatives of the
functiony,, mentioned above.

—The study of the obtained via the above procedure for-
mulae of the Local Truncation Errors contains two main
cases in terms of the value 6f:

1.G =V, — E = 0. In this case the Energy is close
to the potential. Therefore and sinée = 0 and
consequenthz", n = 1,2,... = 0 ,all the terms
of G in the formulae of the Local Truncation Er-
ror analysis are equal to zero. Therefore, only the
terms of the formulae of the Local Truncation Er-
rors which are free frondz are considered. Thus,
for these values of7, the methods are afompa-
rable accuracy. The reason is explained below via
the mentioned Remark.

Remarkin the case of formulae of Local Trunca-
tion Errors for whichG = 0, the behavior of the
methods of the family are similar. This is due to the
fact that forG = 0 for this family of methods the
free fromG terms of the polynomials are the same
(and this for both of cases of methods of the family
with constant coefficients or methods of the family
with coefficients dependent from the frequency of
the problem).

2.G >> 0 orG << 0. Then|G| is a large number.
In this case we take into account all the terms in the
formulae of the Local Truncation Error analysis.
—Finally the asymptotic expansions of the Local Trun-
cation Errors are computed

Based on the analysis presented above, the following

asymptotic expansions of the Local Truncation Errors are
produced :

4 5. Classical Method

275

(2) +28 (g(2) + Q) y () < d (x))2 LTEcy = h® <m y(z) Gy .. ) +0 (hlo) (23)
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4.6. The Phase-Fitted Method Produced®®] 5. Stability Analysis

In this section we will investigate the stability (inten
ITE s 275 periodicity) of the new methods. The main idea is that the
Linear Siz Step PF = 13447 9(2) scalar test equation which we will use for the stability anal
ysis will have different frequency than the scalar test equa
tion used for the phase-lag analysis (mentioned in Section
3 10
y(a) G° - ) +0 (h'7) (24) 2). Therefore, we apply the new obtained method to the

scalar test equation:

4.7. The Method with Vanished Phase-Lag and y'=—9"y. (27)
its First Derivative Produced Obtained ir39] whereg # w.

The above mentioned application leads to the follow-

ing difference equation :

275 ([ d
LTE iz Step Linear — h8 Py -
Six Step L [(672 (dxg(x)>

A3 (5,0) (Ynt3 + Yn—3) + A2 (5,0) (Ynt2 + Yn—2)

d 5225 [ d? A . e Aoy (5,0) yp, = 0(28
%y(x) + ST (@g (x)) Where+ 1(8,0) Yns1 +Yn—1) + Ao (s,v) y (28)
275
y(z) + 1314 (9(x))?
y (@) ) @+ + 0 (h'9) (25) 5.1. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives

Produced in Section 3

4.8. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Developed in Section 3 Az (s,v) =1,

Ty
A = =2
P 2 (5,0) T 3T (v) — vtsin (3v)’
275
LTELinear Six Step — h8 <— <_g ('T)> A = Tg
1008 \ da? 180) = S os (0) 1) o
1 Tho
2 10 A = —— 29
y(x) G7+ - ) +0(h'7) (26) 0 (s,v) 2 sin (v) (cos (v) + 1) v* (29)
From the above equations we have the following theo-where
rem:
Theorem 2For the Classical Linear Six-Step Explicit Method, ) - 5
the error increases as the four power @f For the Lin- Ts = s°( 6v”sin(v) — 6v”sin(2v)
ear Six-Step Explicit Phase-Fitted Method developed in
[39], the error increases as the third power @f For the +3v%sin (4v) — 2v%sin (3v) + 12 cos (v) v

Linear Six-Step Explicit Method with Vanished Phase-lag
and its First Derivative which is developed i&9], the er-
ror increases as the second power@®f Finally, for the
Linear Six-Step Explicit Method with Vanished Phase-lag
and its First and Second Derivatives which is developed

+5vcos (4v) —6v cos (3v) — Huvcos (2v)

—3 sin (2v) — 3 sin (4v) 4 6 sin (3v) —61})

in Section 3, the error increases as the second power of Ty = 12 sin (v) (cos (v))° 5”0
G but with lower coefficient than the error the Linear Six- +12 sin (v) (cos (U))2 2,2
Step Explicit Method with Vanished Phase-lag and its First 9

Derivative which is developed ir8g]. So, for the numer- +32 570 (cos (v))" — 24 sin (v)
ical solution of the time independent radial Setinger (cos (v))? 5% + sin (v) cos (v) 20>

equation the New Developed Method with Vanished Phase- . ] 4 9 ] 3
Lag and its First and Second Derivative is the most effi- +2 sin (v) cos (v) v* + 16 570 (cos (v))

cient from theoretical point of view, especially for large +sin (v) s?v? 4+ 2v* sin (v) — 24 s%v (cos (v))?
values of G| = [V, — E|. +6 sin (v) cos (v) 52 — 4 cos (v) s%v — 252

(@© 2015 NSP
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Tyo = 12 sin (v) (cos (v))? s2v?

+8 sin (v) cos (v) s?v* 4 4 sin (v) cos (v) v*
+20 520 (cos (v))® — 12 sin (v)

(cos (v))* 2 — 4 sin (v) s?v?

+4v* sin (v) + 8 %0 (cos (v))?

—17 cos (v) 80 + 3 sin (v) s? — 2 5%

ands = ¢ h.

bt o e il st lseLsy 1 S D

RemarkThe investigation of the stability is based on the
scalar test equatior2{) with frequency of the ¢, which

is not equal with the frequency of the scalar test equatior
(4), w, of the phase-lag analysis i©.# ¢.

Based on the analysis presented in Section 2, we hav
the following definitions:

Definition 5.(see [L3]) A method is called P-stable if its
interval of periodicity is equal t¢0, co).

Definition 6.A method is called singularly almost P-stable

if its interval of periodicity is equal tq0, oo) — S* only

Whehn tPe frequencfy r?f the plhase Ia}g ana}ly3|s is the SamEigure 2 s — v plane of the the new obtained method with van-
as the frequency of the stability analysis, ke= v. ished phase-lag and its first and second derivatives

In Figure 2 we present the— w plane for the method
developed in Section 3 (Method with Vanished Phase-lag
and its First and Second Derivative).
—is of six algebraic order,

RemarkThe white area denotes the- v region where the —has the phase-lag and its first and second derivatives
method is unstable while the shadowed area denotes the equal to zero
s — v region where the method is stable. —have an interval of periodicity equal t@, 4.4), when

the frequency of the stability analysis is equal with the

Remarki-or many real problems the frequency of the phase- frequency of phase-lag analysis.

lag analysis is equal to the frequency of the stability anal-
ysis. For these kind of of real problems it is necessary to
observethe surroundings of the first diagonal of the .
s — v plane. In these problems and in order to apply a 6. Numerical results

method with frequency dependent coefficients, it is nec- o ] ) S
essary to define one frequency of the problem (becausghe application of the new obtalne.d linear expll'CIt Six-
the frequency of the phase-lag analysis is equal to the freStép methods to the numerical solution of the radial time-
lems belong many problems in sciences and engineerin§'€Nncy-

(for example the time independent Schrodinger equation),  We can write the model of the radial time independent
Schroddinger equation as :

For the problems of the above mentioned remark we , ) 9
study now the case where the frequency of the stabilityy’ (") = [[(L+1)/r" + V(r) = E7Jy(r). (30)
analysis is equal with the frequency of phase-lag analysisyys js 4 houndary value problem with the following bound-
i.e. we investigate the case wheare- v (more specifically ary conditions :
we investigate the case seeing the surroundings of the first

diagonal of thes — v plane). From this investigation we y(0) =0 (31)

have that the interval of periodicity of the new method is .

equal t0:(0, 4.4). and another boundary condition, for large values,afe-
The above study leads to the following theorem: termined by physical considerations.

The following definitions help us to understand the de-
Theorem 3The method developed in this paper (Sectiontails of the mathematical model :

3):
) 1.The functionV (r) = (I +1)/r? + V() is calledthe
! whereS is a set of distinct points effective potentialT his satisfie$V (r) — 0 asr — oo,
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2.The quantity:? is a real number denotirthe energy The discrete approximation of a potential is an impor-
3.The quantity is a given integer representing thegu-  tant subject of the research literature (sk@1] and [L02]
lar momentum and references therein).

4.V is a given function which denotes tpetential ) S o
RemarkA discrete approximation of a potential is an ap-

The new obtained algorithm is belonged into the cat-proximation of this potential via determination of critica
egory of numerical methods with coefficients dependentpoints of this potential.
on the frequency of the problem. For this, it is necessary N )
to define the value of the parameterThe determination It iS critical for the form of the picture of the poten-
of the above mentioned parameter is dependent from th&al the accurate knowledge of the points of the discrete
problem we have to solve. For the specific case of the théPProximation.

radial time independent Schrédinger equation the parame-  For the specific numerical example we chose the dis-
terw is given by (forl = 0) : crete approximation of the parameter Based on 10Q

we determine the critical points for the Woods-Saxon po-

w=+|V({r)—k|=|V(r)—E| (32) tential. Therefore, we chooseas follows (see for details
[101] and [102):
whereV (r) is the potential and’ is the energy. VIBOTE, forr€[0,65— 21,
V=37T5+FE, forr=6.5—h
) . p=¢ V-25+F, forr==6.5 (34)
6.1. Woods-Saxon potential IO TE. forr =654 h
VE, for r € [6.5 + 2h, 15]

In order to solve the radial time independent Schrodinger
equation, we have to determine the potential which we will For examp|e' in the point of the integration regioﬁ:
use in the mathematical model. For the purpose of the nug 5 — p, the value ofp is equal to/—37.5 + E. So,w =
merical tests of this paper we will use the well known 41, — /=375 + E h. In the point of the integration re-
Woods-Saxon potential. The Woods-Saxon potential caryions = 6.5 — 3 i, the value ofp is equal to:/—50 + E,
be written as : etc.
_ W Yog
1+q a(l+q)?

V(r) (33)

6.2. Radial Schirdinger Equation - The
with ¢ = exp [==22], ug = —50, a = 0.6, andX, =  Resonance Problem
7.0.

The behavior of Woods-Saxon potential is shown in The investigation of the efficiency of the new obtained
Figure 5. method is taken place via the application of the new devel-
oped method to the numerical solution of the radial time
independent Schrodinger equati@0) using the Woods-
Saxon potential33).

Since the approximate solution of the radial time inde-
pendent Schrodinger equatiad(} is a problem with infi-
nite interval of integration and in order to apply the new
» u produced method, we have to replace this infinite interval
of integration with a finite one. For the purposes of our nu-
merical investigations we select as interval of integratio
the interval0, 15].

We study the equatior8Q) for a large domain of ener-
gies, i.e..E' € [1,1000].

For our numerical experiments, we investigate the case
of positive energies. In this case we have that k2 and
the potential decays faster than the te%i‘;i). In such
cases the radial Schrddinger equation effectively resluce
to

The Wods- Saxon Potential

v o+ (=150 e =0 (@)

for r greater than some value
Figure 3 The Woods-Saxon potential. The above mentioned problem has linearly indepen-
dent solutiongcrj; (kr) andkrn, (kr), wherej; (kr) and
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n; (kr) are the spherical Bessel and Neumann functions —The classical form of the sixth algebraic order six-step
respectively. Thus, the asymptotic form of the solution of  method developed in Section 4, which is indicated as

equation 80) (whenr — oc) is given by: Method NMCL6 2.
] —The Phase-Fitted Method (Case 1) developedljn |
y (r) = Akrji (kr) — Bkrny (kr) which is indicated adethod NMPF1
N . I ) I —The Phase-Fitted Method (Case 2) developedljn |
~ AC {bm (’” - 7) + tan d; cos (’” - 3)} (36) which is indicated adethod NMPF2
. ) —The Phase-Fitted Method developed 88][ which is
whered, is the phase shift that may be calculated fromthe  jndicated asMethod N6SMPF
formula —The Method with vanished phase-lag and its first deriva-
tive developed in39], which is indicated a®lethod
tan s, = Yy (7’2) S (7"1) -y (7"1) S (7’2) (37) NGSMPFDp ?[ ]
y(r1) C(r1) —y(r2) C(r2) —The New Obtained Method with vanished phase-lag

- o . . and its first and second derivatives developed in Sec-
for r; andrs distinct points in the asymptotic region (we tion 3. which is indicated aslethod N6SMPEDD
chooser; as the right hand end point of the interval of '

integration andry = r; — h) with S (r) = krj (kr)
andC (r) = —krny (kr). The problem we consider in
our experiments is treated as an initial-value problem. In
this caswe we must defing, j = 0(1)5 in order to be-
gin the application of a six-step method. From the initial
condition, we obtainyy. The valuesy;, i = 1(1)5 are ob- °]
tained by using high order Runge-Kutta-Nystrom meth- ,_
ods(see18] and [19]). Based on these starting values, we
can evaluate the phase shiftat v, of the asymptotic re-
gion. 55
The resonance problem is defined for positive energies.&
This problem consists either 7

Err for the resonance 341.495874
T, fO7 the Tesonance 341485874

1 Method QT8
O—0—0 Method QT10
A—ac—A Method QT12
W Mothod MCRA
Y=ok Method RA
B—B—H Method MCR6
1l Method NMPF1
E—E—E Method NMPF2

—of finding the phase-shifi; or
—finding thoseF, for E € [1,1000], at whichd; = 7.

|

44— Method N6SMPFDD

We actually solve the latter problem, knowrths res-

onance problem B v
The boundary conditions for this problem are: CPU time (in seconds)
y(0) =0, y(r) = cos (\/ET) for large . (38)  Figure 4 Accuracy (Digits) for several values @fPU Time

(in Seconds) for the eigenvaluge, = 341.495874. The nonexis-
We compute the approximate positive eigenenergies ofence of a value of Accuracy (Digits) indicates that for traue

the Woods-Saxon resonance problem using: of CPU, Accuracy (Digits) is less than
—The eighth order multi-step method developed by Quin-
IS?_Sand TremaineZ], which is indicated as/ethod We compare the computationally obtained eigenener-
: . . gies with the reference valuésIn Figures 5 and 6, we
Lze;ﬁgtq_gggi&%“ :Vtr?igmit?:gigaet\éﬁlzgagtaﬁgu'n present the maximum absolute erfrr,, ., = |logio (Err) |
QT10 ' where
—The twelfth order multi-step method developed by QuinErr = | Ecaicutated — Eaccurate! (39)

Is_rll_laznd Tremained, which is indicated adethod of the eigenenergids, = 341.495874andFE; = 989.701916

. respectively, for several values 6P U time (in seconds).
—The fourth algebraic order method of Chawla and Rao, X ;
. - i ST We note that th&€PU time (in seconds) counts the com-
VI\\/III(E}Th?CIinI\I/ImCall?Ehase lag104, which is indicated as putational cost for each method.

—The exponentially-fitted method of Raptis and Allison 2 with the term classical we mean the method of Section 4 with
[103, which is indicated aMethod MRA constant coefficients

—The hybrid sixth algebraic order method developed by 2 we define as reference values the computed using the well
Chawla and Rao with minimal phase-laf, which known two-step method of Chawla and R46% with small step
is indicated ad/ethod MCR6 size for the integration
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1.The classical form of the sixth algebraic order six-step
method developed in Section 4, which is indicated as
Method NMCL6 has approximately the same efficiency
than the the exponentially-fitted method of Raptis and

) Err,, for the resonance 585.701915 Allison [103, which is indicated asethod MRA..
e 2.The tenth algebraic order multistep method developed
A ethod ari2 by Quinlan and Tremaine2], which is indicated as

i DI Method QT10 is more efficient than the fourth alge-

& B—E—Elethod ke braic order method of Chawla and Rao with minimal

B—8—H Method NMPF1
23

phase-lag104, which is indicated aMethod MCRA4.

o—o—o
et TheMethod QT10is also more efficient than the eighth
—0—9 Method NesMPFD order multi-step method developed by Quinlan and Tremaine
47 Method NesWPFOD [2], which is indicated asMethod QT8. Finally, the
. Method QT10 is more efficient than the hybrid sixth
0 08 algebraic order method developed by Chawla and Rao

CPU time (in seconds)

with minimal phase-lag105, which is indicated as
Method MCRG6 for large CPU time and less efficient
than theMethod MCR6 for small CPU time.

Figure 5 Accuracy (Digits) for several values & PU Time 3.The twelfth algebraic order multistep method devel-
(in Seconds) for the eigenvalug; = 989.701916. The nonexis- oped by Quinlan and Tremaing][ which is indicated
tence of a value of Accuracy (Digits) indicates that for tratue asMethod QT12is more efficient than the tenth order
of CPU, Accuracy (Digits) is less than multistep method developed by Quinlan and Tremaine

[2], which is indicated aMethod QT10
4.The Phase-Fitted Method (Case 1) developedijn [
which is indicated adMethod NMPF1 is more effi-
7. Conclusions cient than the classical form of the fourth algebraic or-
der four-step method developed in Section 3, which is
The development of an explicit linear sixth algebraic order ~ indicated aslethod NMCL6, the exponentially-fitted
six-step method is investigated in this paper. More specifi- Method of Raptis and Allison1p3 and the Phase-
Ca”y we studied the f0||owing Fitted Method (Case 2) developed ﬂ.‘],[Wthh IS IN-
) ) . dicated asMethod NMPF2
1.Construction of the methods. The main requirements 5 The Linear Six-Step Eight Algebraic Order Phase-Fitted

are: Method developed ird9], which is indicated aMethod
—The algebraic order of the new six-step method to  N6SMPF is more efficient than all the methods men-
be maximized tioned above
—The phase-lag of the new six-step method to be 6.The Linear Six-Step Eight Algebraic Order Method
vanished with Vanished Phase-Lag and its First Derivative which
—The first derivative of the phase-lag of the new six-  developedin39] and is indicated aslethod N6SMPFD
step method to be also vanished is more efficient than all the methods mentioned above.

—Finally, the second derivative of the phase-lag of 7.Finally, the new obtained Linear Six-Step Eight Alge-
the new six-step method to be also equal to zero  braic Order Method with Vanished Phase-Lag and its

(i.e. vanished). First and Second Derivatives which developed in Sec-
2.Theoretical study of the new obtained method. This  tion 3 and is indicated aglethod N6SMPFDD is the
consists of: most efficient one.

—Comparative Local Truncation Error Analysis (for Al computations were carried out on a IBM PC-AT
comparison reason we use the corresponding metheompatible 80486 using double precision arithmetic with

ods of the literature) ~ 16 significant digits accuracy (IEEE standard).
—Stability Analysis (using a scalar test equation with

frequency which is different than the frequency of
the scalar test equation for phase-lag analysis)  References

3.ldentification of the theoretical study. This was taken
place via the numerical approximation of the resonance [1] Z. A. Anastassi and T.E. Simos, A parametric symmetric
problem of the radial time independent Schrodinger linear four-step method for the efficient integration of the
equation and related problems. Schrodinger equation and related oscillatory probledns,
Comput. Appl. Math2363880-3889 (2012)
From the obtained numerical experiments presented on[2] G.D. Quinlan and S. Tremaine, Symmetric Multistep Meth-
the figures mentioned above , we can make the following  ods for the Numerical Integration of Planetary Orbifbe
remarks: Astronomical Journall001694-1700 (1990)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1782 NS 2 T. E. Simos : Explicit Linear Six-Step Methods with Vanisheldase-Lag and Its Derivatives...

[3]J.M. Franco, M. Palacios, High-order P-stable mulfiste [26] T.E. Simos, Exponentially fitted Runge-Kutta-Nystro

methods,J. Comput. Appl. Mat30 1-10 (1990) method for the numerical solution of initial-value prob-
[4] J.D.LambertNumerical Methods for Ordinary Differential lems with oscillating solutionsAppl. Math. Lett.15 217-

Systems, The Initial Value Problerrages 104-107, John 225(2002).

Wiley and Sons. (1991) [27] T.E. Simos, J. Vigo-Aguiar, Exponentially fitted sym-
[5] E. Stiefel, D.G. Bettis, Stabilization of Cowell's meiti, plectic integratoRhysics Review E67 016701(1)-

Numer. Math13154-175 (1969) 016701(7)(2003).

[6] G.A. Panopoulos, Z.A. Anastassi and T.E. Simos: Two New [28] A. Tocino and J.V. Aguiar, Symplectic Conditions forfix
Optimized Eight-Step Symmetric Methods for the Efficient nential Fitting Runge-Kutta-Nystrom methoddathemati-
Solution of the Schrodinger Equation and Related Prob- cal and Computer Modelling2 873-876 (2005).
lems,MATCH Commun. Math. Comput. Che#0, 773-785  [29] P.J. Van Der Houwen, B.P. Sommeijer, Explicit Runge-
(2008) Kutta(-Nystrom) methods with reduced phase errors for

[7] http://www.burtleburtle.net/bob/math/multistep.htmI Computing osci”a’[ing 30|ution§|AM Journal of Numeri-

[8] T.E. Simos and P.S. Williams, Bessel and Neumann fitted cal Analysis24595-617 (1987).

equationComputers and Chemist@ 175-179 (1977) ified Runge-Kutta-Nystrom method for the numerical in-
O] TE. Simos and Jesus Vigo-Aguiar, A dissipative tegration of orbital problems\ew AstronomyL0 261-269
exponentially-fitted method for the numerical solution (2005).

of the Sch.rt‘)dinger quatign and related proble@em- [31] H. Van de Vyver, A symplectic Runge-Kutta-Nystrom
puter Physics Communicatiod$2274-294 (2003) ) method with minimal phase-laghysics Letters 867 16-

[10] T. Lyche, Chebyshevian multistep methods for Ordinary 24 (2007).

Differential EqationsNum. Math.1965-75 (1972) [32] H. Van de Vyver, Fourth order symplectic integration

[11] T.E. Simos and P.S. Williams, A finite-difference medtfor with reduced phase errdnternational Journal of Modern
the numerical solution of the Schrdinger equatidnCom- Physics C19 1257-1268 (2008).
put. Appl. Math.79 189205 (1997).

[12] R.M. Thomas, Phase properties of high order almost P-
stable formulaeBIT 24 225238(1984).

[13] J.D. Lambert and I.A. Watson, Symmetric multistep meth
ods for periodic initial values problem3, Inst. Math. Appl.
18189202 (1976)

[14]Z. A. Anastassi, T.E. Simos, A dispersive-fitted and
dissipative-fitted explicit Runge-Kutta method for the nu-
merical solution of orbital problemd\ew Astronomyl0
(2004) 31-37.

[33] J. Vigo-Aguiar, T. E. Simos, A. Tocino, An adapted sym-
plectic integrator for Hamiltonian systembjternational
Journal of Modern Physics €2225-234 (2001).

[34] Z. A. Anastassi, T. E. Simos, An optimized Runge-Kutta
method for the solution of orbital problems, Comput.
Appl. Math, 1751-9 (2005)

[35] Ch. Tsitouras, A Tenth Order Symplectic Runge-Kutta-
Nystrm Method,Celestial Mechanics and Dynamical As-
tronomy74, 223-230 (1999).

[15] L. Brusa, L.Nigro, A one-step method for direct intetipa [36] G Ps_,ihoyio_s, TE 5‘“?05' A fourth algebraic order trigon_o
of structural dynamic equationiternational Journal for met.rlcglly fltted‘predlctor?corrector scheme for IVPs with
Numerical Methods in Engineeririg} (1980) 685-699. oscillating solutions,). Comput. Appl. Math175 137-147

[16] M.P. Calvo, J.M. Sanz-Serna, Order Conditions for G&no (2005). . . .
cal Runge-Kutta-Nystrom metho@T 32 131-142 (1992). [37] A. D. Raptis, T E._Slmos,_A four-step phase-flt_te_o_l meltho

[17] J.R. Dormand and P.J. Prince, Runge-Kutta-Nystrom for the numerical integration of second order initial-\&lu

Triples,Comp. Math. Applic.12 937-949 (1987). problemsBIT Numerical Mathemati¢c81, 160-168 (1991).
[18] J.R. Dormand, M.E. El-Mikkawy and P.J. Prince, Fangilie [38] T Allahviranloo, N Ahmady, E Ahmady, Numerical solu-

of Runge-Kutta-Nystrom FormulavA Journal of Numer- tion of fuzzy differential equations by predictor-correct

ical Analysis7 235-250 (1987). method,Information Scienced 77, 1633-1647 (2007).

Kutta formulae,). Comput. Appl. Mat6 19-26 (1980). phase-lag and its first and second derivatives for the numer-
[20] J.R. Dormand, M.E. El-Mikkawy, P.J. Prince, High-Orde ical integration of the Schrdinger equatiah Math. Chem.

Embeded Runge-Kutta-Nystrom Formult#tdA Journal of 48,1092-1143 (2010).

Numerical Analysig 423-430 (1987). [40] A. Konguetsof and T.E. Simos, A generator of hybrid sym-
[21] E. Hairer, Ch. Lubich, G. WanneGeometric Numerical In- metric four-step methods for the numerical solution of the

tegration Springer-Verlag, 2002. Schrodinger equation). Comput. Appl. Math158 93-
[22] Th. Monovasilis, Z. Kalogiratou, T. E. Simos, Symplect 106(2003) N _

Partitioned Runge-Kutta Methods with minimal phase-lag, [41] Z. Kalogiratou, T. Monovasilis and T.E. Simos, Symplec

Computer Physics Communicati®811251-1254 (2010). tic integrators for the numerical solution of the Schriggin

[23] A.D. Raptis, T.E. Simos, A four step phase-fitted method equationJ. Comput. Appl. Math15883-92 (2003)
for the numerical integration of second order initialalu [42] Z. Kalogiratou and T.E. Simos, Newton-Cotes formulae f

problemsBIT 31160-168 (1991). long-time integrationJ. Comput. Appl. Math158 75-82
[24] Ruth R.D., A canonical integration techniquEEE Trans- (2003)

actions on Nuclear Sciend¢S 302669-2671 (1983). [43] G. Psihoyios and T.E. Simos, Trigonometrically fitted
[25] J.M. Sanz-Serna, M.P. Calvdumerical Hamiltonian Prob- predictor-corrector methods for IVPs with oscillating ol

lem, Chapman and Hall, London, 1994. tions,J. Comput. Appl. Mathl58 135-144 (2003)
(© 2015 NSP

Natural Sciences Publishing Cor.


http://www.burtleburtle.net/bob/math/multistep.html

Appl. Math. Inf. Sci.9, No. 4, 1771-1785 (2015)www.naturalspublishing.com/Journals.asp NS = 1783

[44] T.E. Simos, I.T. Famelis and C. Tsitouras, Zero disipa [61] D.P. Sakas, T.E. Simos, A family of multiderivative rnetls

explicit Numerov-type methods for second order IVPs with for the numerical solution of the Schrodinger equatidn,
oscillating solutionsNumer. Algorithm$4 27-40 (2003) Math. Chen87 317-331 (2005)

[45] T.E. Simos, Dissipative trigonometrically-fitted rhets for [62] T.E. Simos, A new Numerov-type method for the numeri-
linear second-order IVPs with oscillating solutioAppl. cal solution of the Schrodinger equatighMath. Chem46
Math. Lett.17 601-607 (2004) 981-1007(OCT 2009)

[46] K. Tselios and T.E. Simos, Runge-Kutta methods with-min [63] T.E. Simos, A two-step method with vanished phase-fa) a
imal dispersion and dissipation for problems arising from its first two derivatives for the numerical solution of the
computational acousticg, Comput. Appl. Math175 173- Schrodinger equatiod, Math. Chem49 2486-2518 (2011)
181 (2005) [64] T.E. Simos, New high order multiderivative explicituie

[47] D.P. Sakas and T.E. Simos, Multiderivative methods of  Step methods with vanished phase-lag and its derivatives fo
eighth algrebraic order with minimal phase-lag for the nu- the approximate solution of the Schrodinger equationt Par
merical solution of the radial Schrodinger equatidnCom- I: Construction and theoretical analysks,Math. Chem51
put. Appl. Math175161-172 (2005) 194-226 (2013)

[48] G. Psihoyios and T.E. Simos, A fourth algebraic order [65] K. Tselios, T.E. Simos, Symplectic methods for the ntme
trigonometrically fitted predictor-corrector scheme 6Pk ical solution of the radial Shrodinger equatioh, Math.
with oscillating solutionsy. Comput. Appl. Math175137- Chem34 83-94 (2003) _ .

147 (2005) [66] K. Tselios, T.E. Simos, Symplectlc_ method; of fifth orc_zle

[49] Z. A. Anastassi and T.E. Simos, An optimized Runge-Kutt for the numerical solution of the radial Shrodinger equatio
method for the solution of orbital problemd, Comput. J. Math. Chen8555-63 (2004)

Appl. Math.1751-9 (2005) [67] ;I’ Monovas_ilis and TE Sim_os, New secor_wd-_order expene
ially and trigonometrically fitted symplectic integrasdior
the numerical solution of the time-independent Schroeling
equation). Math. Chen?12535-545 (2007)

[68] T. Monovasilis, Z. Kalogiratou , T.E. Simos, Exponexity
fitted symplectic methods for the numerical integration of
the Schrodinger equatiah Math. Chen87 263-270 (2005)

[69] T. Monovasilis, Z. Kalogiratou , T.E. Simos, Trigonothe
rically fitted and exponentially fitted symplectic methods
for the numerical integration of the Schrodinger equation
J. Math. Chen#0257-267 (2006)

[TO]T.E. Simos, High order closed Newton-Cotes
trigonometrically-fitted formulae for the numerical so-
lution of the Schrodinger equatioppl. Math. Comput.
209137-151 (2009)

[50] T.E. Simos, Closed Newton-Cotes trigonometricaltyefi
formulae of high order for long-time integration of orbital
problems Appl. Math. Lett22 1616-1621(2009)

[51] S. Stavroyiannis and T.E. Simos, Optimization as a func
tion of the phase-lag order of nonlinear explicit two-step P
stable method for linear periodic IVP&ppl. Numer. Math.
592467-2474 (2009)

[52] T.E. Simos, Exponentially and Trigonometrically it
Methods for the Solution of the Schrodinger Equati@ota
Appl. Math.1101331-1352(2010)

[53] T. E. Simos, New Stable Closed Newton-Cotes Trigonemet
rically Fitted Formulae for Long-Time IntegratioApstract
and Applied Analysi®012 Article ID 182536, 15 pages,

doi:10.1155/2012/182536 - . .
; o . [71] T.E. Simos, Closed Newton-Cotes Trigonometricalifter
[54] T. E. Simos, Optimizing a Hybrid Two-Step Method for the Formulae for the Solution of the Schrodinger Equation,

Numerical Solution of the Schrodinger Equation and Re-

lated Problems with Respect to Pha%e-thAppl. Math, ('\g'gggH Commun. Math. Comput. CherBi0 787-801

Article ID 420387, doi:10.1155/2012/420382012(2012). [72] T.E. Simos, Closed Newton-Cotes trigonometricaltiefi
[55] Z.A. Anastassi and T.E. Simos, A parametric Symmetric * " t5:m15¢ of high order for the numerical integration of the

linear f(_)ur-step me_thod for the efﬂcnen_t integration of the Schrodinger equatiod, Math. Chem44 483-499 (2008)

Schrddinger equation and related oscillatory probledns, [73] T.E. Simos, New Closed Newton-Cotes Type Formulae as

Comput. Appl. Math23638803889(2012) o Multilayer Symplectic IntegratorsJournal Of Chemical
[56] A.A._ KOSII, Z.A. Anastassi and_ T..E. Simos, An optimized Physics133Article Number: 104108 (2010)

explicit Runge-Kutta method with increased phase-lagrorde [74] T.E. Simos, High order closed Newton-Cotes exponéptia

for the numerical solution of the Schrodinger equation and and trigonometrically fitted formulae as multilayer syntple

related problems). Math. Chem47 315-330(2010) tic integrators and their application to the radial Scimger
[57] Z.A. Anastassi, T.E. Simos, Trigonometrically fittediRje- equation,). Math. Chen501224-1261 (2012)

Kutta methods for the numerical solution of the Schrodinge [75] z. Kalogiratou, Th. Monovasilis and T.E. Simos, New mod

equation). Math. Chen87 281-293 (2005) . ified Runge-Kutta-Nystrom methods for the numerical inte-
[58] Z.A. Anastassi, T.E. Simos, A family of exponentiafijted gration of the Schrddinger equatioBomput. Math. Appl.

Runge-Kutta methods with exponential order up to three for 601639-1647 (2010)

the numerical solution of the Schrodinger equatibiMath.  [76] T.E. Simos, A family of trigonometrically-fitted symririe

Chem4179-100 (2007) methods for the efficient solution of the Schrodinger equa-
[59] Ch. Tsitouras, 1.Th. Famelis and T.E. Simos, On Modified tion and related problenis Math. Chen84 39-58 JUL 2003

Runge-Kutta Trees and MethodSpmput. Math. Appl62 [77] T.E. Simos, Exponentially - fitted multiderivative rhetds

2101-2111 (2011) for the numerical solution of the Schrodinger equatidn,
[60] T.E. Simos, I.T. Famelis and C. Tsitouras, Zero Dissipa Math. ChenB6 13-27 (2004)

tive, Explicit Numerov-Type Methods for second order IVPs [78] T.E. Simos, A four-step exponentially fitted method floe

with Oscillating SolutionsiNumerical Algorithms34, 27-40 numerical solution of the Schrodinger equatidn,Math.

(2003) Chem40305-318 (2006)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1784 NS 2 T. E. Simos : Explicit Linear Six-Step Methods with Vanisheldase-Lag and Its Derivatives...

[79] T.E. Simos, A family of four-step trigonometricallyited [94] Ibraheem Alolyan and T. E. Simos, A family of ten-step
methods and its application to the Schrodinger equation methods with vanished phase-lag and its first derivative for
Math. Chemd4 447-466 (2009) the numerical solution of the Schrodinger equatibriviath.

[80] Z.A. Anastassi and T.E. Simos, A family of two-stage Chem, 491843-1888 (2011)
two-step methods for the numerical integration of the [95] A.A. Kosti, Z.A. Anastassi and T. E. Simos, Construntio

Schrodinger equation and related IVPs with oscillating so of an optimized explicit Runge-Kutta-Nystrom method for
lution J. Math. Chent151102-1129 (2009) the numerical solution of oscillatory initial value probis,

[81] G. Psihoyios, T.E. Simos, Sixth algebraic order trigomet- Comput. Math. App)613381-3390 (2011)
rically fitted predictor-corrector methods for the numatic  [96] Ibraheem Alolyan and T. E. Simos, A family of eight-step
solution of the radial Schrodinger equatignMath. Chem methods with vanished phase-lag and its derivatives for the
37295-316 (2005) numerical integration of the Schrodinger equatidniyiath.

[82] G. Psihoyios, T.E. Simos, The numerical solution of tae Chem, 49711-764 (2011)
dial Schradinger equation via a trigonometrically fittadt ~ [97] Ioraheem Alolyan and T. E. Simos, On Eight-Step Meth-
ily of seventh algebraic order Predictor-Corrector method ods with Vanished Phase-Lag and Its Derivatives for the
J. Math. Chen#0 269-293 (2006) Numerical Solution of the Schrodinger equatidnATCH

[83] Z.A. Anastassi and T.E. Simos, A family of two-stage Commun. Math. Comput. Cher6473-546 (2011)
two-step methods for the numerical integration of the [98] Ibraheem Alolyan and T. E. Simos, High algebraic order
Schrodinger equation and related IVPs with oscillating so methods with vanished phase-lag and its first derivative for
lution, J. Math. Chemd45 1102-1129 (2009) the numerical solution of the Schrodinger equatibiMath.

[84] G.A. Panopoulos, Z.A. Anastassi and T.E. Simos, Two op- ___ Chem,48925-958 (2010) _ _
timized symmetric eight-step implicit methods for initial [99] Ibraheem Alolyan and T. E. Simos, Mulitstep methodswit

value problems with oscillating solutiond, Math. Chem. vanished phase-lag and its first and second derivatives for
46 604-620 (2009) the numerical integration of the Schrodinger equatian,

[85] Ibraheem Alolyan and T. E. Simos, A new four-step hybrid Math. Chem.481092-1143 (2010)
type method with vanished phase-lag and its first deriva-[100] L. Gr. Ixaru and M. Rizea, Comparison of some four-
tives for each level for the approximate integration of the ~ SteP methods for the numerical solution of the Schrodinger
Schradinger equatiod, Math. Chem512542-2571 (2013) equation,Computer Physics Communicatio88, 329-337

. 1985)

[86] Ibraheem Alolyan and T. E. Simos, A RungeKutta type four ( . L . .
step method with vanished phase-lag and its first and seconljlm]cl"etr' |I>|(ar?tatnd :(\/Ipr:\/llcu Té)p'(;]s n Ihleg;gtlcal Physics
derivatives for each level for the numerical integratiomhef entral Institute ot Fhysics, Bucharest, - )

Schrodinger equatiod, Math. Chem.52917-947 (2014) [102] L.Gr..lxaru anq M. Rizea, A l\!_umerov-llke spherne for the

[87] Ibraheem Alolyan and T. E. Simos, A new four-step Runge- num_erlcal solution of the Schr_odmger equatlon_ln the deep
Kutta type method with vanished phase-lag and its first, sec- ?ﬁ:g;ﬂg;@e%uzn; ?Igzrg;rgle@pmputer Physics Com-
ond and third derivatives for the numerical solution of the 7 7 e
Schrodinger equatiod, Math. Chem511418-1445 (2013) [103] A. D. Raptis ano! A.C. AII_|son, Exponentlal_-flttlng nhEt.

[88] Ibraheem Alolyan an;j - E Simos, High order four-step ods for the numerical solution of the Schrodinger equation

. ) : - o Computer Physics Communicatiodd, 1-5 (1978)
hybrid methoq with vanls_hed phase'lag. a_nd Its derlvatlves[104] M.M. Chawla and P.S. Rao, An Noumerov-typ method
for the approximate solution of the Schrodinger equation,

Math. Chem,51 532-555 (2013) with minimal phase-lag for the integration of second order

; . periodic initial-value problems Il Explicit Method, Com-
[89] Ibraheem Alolyan and T. E. Simos, A new high order two- put. Appl. Math 15 329-337 (1986)

step method with vanished phase-lag and its derivatives for[105] M.M. Chawla and P.S. Rao, An explicit sixth - order
the numerical integration of the Schrodinger equatidn, meiho'd with phase-lagi o'f ordér cight fof — f(t,y), J.

Math. Chem.502351-2373 (2012) _ Comput. Appl. Math17 363-368 (1987)
[90] Ibraheem Alolyan and T. E. Simos, A new hybrid two-step

method with vanished phase-lag and its first and second
derivatives for the numerical solution of the Schrodinger
equation and related problems, Math. Chem.50 1861-
1881 (2012)

[91] Ibraheem Alolyan and T. E. Simos, New open modi-
fied trigonometrically-fitted Newton-Cotes type multilaye
symplectic integrators for the numerical solution of the
Schrodinger equatiod, Math. Chem.50 782-804 (2012)

[92] I. Alolyan, Z.A. Anastassi and T. E. Simos, A new family
of symmetric linear four-step methods for the efficientinte
gration of the Schrodinger equation and related osciljato
problems Appl. Math. Comput.2185370-5382 (2012)

[93] Ibraheem Alolyan and T. E. Simos, A family of high-order
multistep methods with vanished phase-lag and its deriva-
tives for the numerical solution of the Schrodinger ecurati
Comput. Math. Appl62 3756-3774 (2011)

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1771-1785 (2015)www.naturalspublishing.com/Journals.asp

£ s

Theodore E. Simos
(b. 1962 in Athens, Greece)
is a \Visiting Professor
within  the Distinguished
Scientists Fellowship
Program at the Department
of Mathematics, College
of Sciences, King Saud
University, P. O. Box 2455,
Riyadh 11451, Saudi Arabia
and Professor at the Laboratory of Computational
Sciences of the Department of Computer Science and
Technology, Faculty of Sciences and Technology,
University of Peloponnese, GR-221 00 Tripolis, Greece.
He holds a Ph.D. on Numerical Analysis (1990) from the
Department of Mathematics of the National Technical
University of Athens, Greece. He is Highly Cited
Researcher in Mathematicsttp://isihighlycited.com/
and http://highlycited.com/ Active Member of the
European Academy of Sciences and Arts, Active
Member of the European Academy of Sciences and
Corresponding Member of European Academy of
Sciences, Arts and Letters. He is Editor-in-Chief of three
scientific journals and editor of more than 25 scientific
journals. He is reviewer in several other scientific
journals and conferences. His research interests are in
numerical analysis and specifically in numerical solution
of differential equations, scientific computing and
optimization. He is the author of over 400 peer-reviewed
publications and he has more than 2000 citations
(excluding self-citations).

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp
http://isihighlycited.com/
http://highlycited.com/

	Introduction
	Phase-Lag For Symmetric Multistep Finite Difference Methods
	A Linear Symmetric Six-Step Method with Phase-Lag and Its First and Second Derivatives Equal to Zero
	Comparative Local Truncation Error Analysis
	Stability Analysis
	Numerical results
	Conclusions

