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Abstract: The purpose of this paper is the development of an explicit linear sixth algebraic order six-step methods with vanished phase-
lag and its first and second derivatives. The development of the new method is based on a theoretical and computational investigation.
The theoretical investigation consists :

–The construction of the method
–The determination of the local truncation error
–The comparative local truncation error analysis
–The stability analysis

We note here that the stability analysis is is based on a scalar test equation with different frequency than the frequencyof the scalar test
equation used for the phase-lag analysis. The computational investigation of the new proposed method consists the application of the
new obtained method to the resonance problem of the radial time independent Schrödinger equation. Based on the above mentioned
studies we conclude that the new developed linear six-step method is more efficient (computationally and theoretically) than other well
known methods for the approximate integration of the Schrödinger equation and related periodical/oscillatory initial or boundary value
problems.

Keywords: Phase-lag, Derivatives of the phase-lag, initial value problems, oscillating solution, symmetric, multistep, Schr¨odinger
equation

1. Introduction

In this paper we study the numerical solution of special
second-order periodic and/or oscillatory initial or bound-
ary value problems of the form
y′′(x) = f(x, y), y(x0) = y0 and y′(x0) = y′0 (1)

The mathematical models which describe the above
mentioned problems consist from systems of second order
differential equations in which the first derivativey′ does
not appear explicitly (see for numerical methods for these
problems [2] - [99] and references therein).

The numerical methods for the numerical integration
of the one-dimensional time independent Schrödinger equa-
tion and related initial or boundary value problems with
periodical or oscillating solution belong to one of the fol-
lowing categories:

–Methods with Coefficients Dependent on the Frequency
of the periodic/oscillating problem

–Methods with Constant Coefficients

The numerical methods with coefficients dependent on
the frequency of the periodic/oscillating problem belong
into one of the following categories:

–Exponentially Fitted Methods
–Trigonometrically Fitted Methods
–Phase-Fitted and/or Amplification Fitted Methods (with
or without Vanishing of the Derivatives of the Phase-
Lag and/or the Amplification Error)

The numerical methods with constant coefficients be-
long into one of the following categories:

–Symplectic Integrators
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–Other Finite Difference Methods

2. Phase-Lag For Symmetric Multistep Finite
Difference Methods

For the numerical solution of the initial or boundary value
problem1) let us consider the multistep methods of the
form:
k
∑

i=0

ai yn+i = h2
k
∑

i=0

bi f(xn+i, yn+i) (2)

where:

–k are the number of steps over the equally spaced in-
tervals{xi}ki=0 ∈ [xbegin, xend]

–h = |xi+1 − xi|, i = 0(1)k − 1, whereh is called
stepsize of integration

Remark.The finite difference method is called symmetric
if ai = ck−i andbi = bk−i, i = 0(1)⌊k

2 ⌋.

The operator

L(x) =
k
∑

i=0

ci u(x+ i h)− h2
k
∑

i=0

bi u
′′(x+ i h) (3)

whereu ∈ C2, is associated with the multistep finite dif-
ference method (2).

Definition 1.[1] The finite difference multistep method (2)
is called algebraic of orderq if the associated linear oper-
atorL vanishes for any linear combination of the linearly
independent functions1, x, x2, . . . , xq+1.

Application of the symmetric2m-step finite difference
method, (i.e. fori = −m(1)m), to the scalar test equation

y′′ = −ω2 y (4)

leads to the following difference equation:

Am(v) yn+m + ...+A1(v) yn+1 +A0(v) yn

+A1(v) yn−1 + ...+Am(v) yn−m = 0 (5)

where

–v = ω h,
–h is the step lengthAj(v) j = 0(1)m are polynomials
of v.

The characteristic equation which is associated with
(5) is given by:

Am(v)λm + ...+A1(v)λ +A0(v)

+A1(v)λ
−1 + ...+Am(v)λ−m = 0 (6)

The following definition have been introduced by Lam-
bert and Watson [13] :

Definition 2.A symmetric2m-step method with character-
istic equation given by (6) is said to have an interval of
periodicity(0, v20) if, for all v ∈ (0, v20), the rootsλi, i =
1(1)2m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi| ≤ 1, i = 3(1)2m(7)

whereθ(v) is a real function ofv.

Definition 3.[11], [ 12] For any method corresponding to
the characteristic equation (6) the phase-lag is defined as
the leading term in the expansion of

t = v − θ(v) (8)

Then if the quantityt = O(vp+1) as v → ∞, the order of
phase-lag is p.

Definition 4.[23] A method for which the phase-lag van-
ishes (which is the same with: phase-lag equal to zero), is
calledphase-fitted

Remark.A method can also have derivatives of the phase-
lag which are vanished (which is the same with: derivatives
of the phase-lag equal to zero).

Theorem 1.[11] The symmetric2m-step method with char-
acteristic equation given by (6) has phase-lag orderp and
phase-lag constantc given by

−cvp+2 +O(vp+4) =(9)

2Am(v) cos(mv) + ...+ 2Aj(v) cos(j v) + ...+A0(v)

2m2 Am(v) + ...+ 2 j2Aj(v) + ...+ 2A1(v)

Remark.For any symmetric2m-step finite difference method
the above mentioned formula (9) gives us a direct method
to compute its phase-lag.

Proposition 1.A symmetric six-step method has phase-lag
orderp and phase-lag constantc given by:

−cvp+2 +O(vp+4) =
T0

T1
(10)

T0 = 2A3(v) cos(3 v) + 2A2(v) cos(2 v)

+2A1(v) cos(v) +A0(v)

T1 = 18A3(v) +8 A2(v) + 2A1(v)

Proof.The above proposition can be proved easily putting
m = 3 in the formula (9).

3. A Linear Symmetric Six-Step Method with
Phase-Lag and Its First and Second
Derivatives Equal to Zero

3.1. The General Algorithm

For the numerical solution of problems with mathematical
models of the form1) with periodical and/ir oscillating so-
lution let us consider the symmetric linear six-step method
:
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yn+3 + a2 (yn+2 + yn−2) + a1 (yn+1 + yn−1) +

+a0 yn = h2

[

b2 (fn+2 + fn−2) +

+b1 (fn+1 + fn−1) + b0 fn

]

(11)

wherefi = y′′ (xi, yi) , i = n− 2(1)n+ 2 anda0 = −2,
a1 = 2 anda2 = −2.

3.2. Development of the Method with Vanished
Phase-Lag and its First and Second Derivatives

The construction of the new method is based on the algo-
rithm presented below:

–We apply the general method (11) to the scalar test
equation (4).

–The above application leads to the difference equation
(5) with m = 3 and:

A3(v) = 1, A2(v) = −2 + b2 v
2,

A1(v) = 2 + b1 v
2,

A0(v) = −2 + b0 v
2 (12)

–The associated characteristic equation (6), with m =
3, is obtained based on the polynomials (12).

–The direct formula (10) for the calculation of the phase-
lag of the symmetric six-step finite difference method
(11) is obtained based on the polynomialsAj(v), j =
0(1)3 presented in (12).

–Requiring the symmetric linear six-step method method
(11) to have the phase-lag equal to zero (i.e. to be phase-
fitted), the following equation is obtained.

T2

2 v2 b1 + 8 v2 b2 + 6
= 0 (13)

where:

T2 = 2 cos (3 v) + 2
(

v2 b2 − 2
)

cos (2 v)

+2
(

v2 b1 + 2
)

cos (v) + v2 b0 − 2

–Requiring the symmetric linear six-step method method
(11) to have the the first derivative of the phase-lag
equal to zero , the following equation is obtained.

− T3

(v2 b1 + 4 v2 b2 + 3)
2 = 0 (14)

where:

T3 = 4 sin (v) cos (v) v4 b1 b2

+16 sin (v) cos (v) v4 b2
2

+sin (v) v4 b1
2 + 4 sin (v) v4 b1 b2

+12 (cos (v))2 sin (v) v2 b1

+48 (cos (v))2 sin (v) v2 b2

+8 (cos (v))
3
v b1

+32 (cos (v))
3
v b2

−8 sin (v) cos (v) v2 b1

−20 sin (v) cos (v) v2 b2

−8 (cos (v))2 v b1

−44 (cos (v))2 v b2 + 2 sin (v) v2 b1

−4 sin (v) v2 b2 + 36 (cos (v))
2
sin (v)

−8 v b1 cos (v)− 8 cos (v) v b2

−24 sin (v) cos (v)

−3 v b0 + 2 v b1 + 14 v b2 − 3 sin (v)

–Requiring the symmetric linear six-step method method
(11) to have the the second derivative of the phase-lag
equal to zero , the following equation is obtained.

T4

(v2 b1 + 4 v2 b2 + 3)
3 = 0 (15)

where:

T4 = −72− 120 cos (v) v2 b1 b2 − 48 sin (v) v b1

−864 (cos (v))3 v2 b2 − 48 sin (v) v b2

+192 (cos (v))
3
v2 b1 b2

−32 sin (v) cos (v) v3 b1
2

+768 sin (v) (cos (v))2 v3 b2
2

+48 sin (v) (cos (v))2 v3 b1
2

−288 (cos (v))
3
v4 b1 b2

−16 cos (v) v6 b1 b2
2 − 8 cos (v) v6 b1

2 b2

−8 (cos (v))2 v6 b1
2 b2

−64 (cos (v))
2
v6 b1 b2

2

−304 sin (v) cos (v) v3 b1 b2 + 4 v6 b1
2 b2

−528 (cos (v))
2
v2 b2

2

−64 sin (v) v3 b2
2 − 24 cos (v) v2 b1

2

−324 (cos (v))
3
+ 32 v6 b1 b2

2

−42 b2 − 24 (cos (v))
2
v2 b1

2

+24 (cos (v))3 v2 b1
2

+16 (cos (v))2 v4 b1
2

−576 (cos (v))
3
v4 b2

2

+384 (cos (v))
3
v2 b2

2
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−128 (cos (v))
2
v6 b2

3

− cos (v) v6 b1
3 + 600 cos (v) v2 b2

−6 b1 + 80 (cos (v))
2
v4 b1 b2

−704 sin (v) cos (v) v3 b2
2

−80 sin (v) v3 b1 b2

+144 (cos (v))
2
sin (v) v b1

+576 (cos (v))
2
sin (v) v b2

−96 sin (v) cos (v) v b1 − 528 sin (v) cos (v) v b2

−36 (cos (v))
3
v4 b1

2 − 36 v2 b0 b2

+66 v2 b1 b2 + 9 b0

+400 cos (v) v4 b2
2 + 312 (cos (v))2 v2 b2

+225 cos (v) + 144 (cos (v))
2
+ 6 v2 b1

2

+168 v2 b2
2 + 176 cos (v) v4 b1 b2

−32 v4 b2
2 − 156 v2 b2 − 8 v4 b1

2

−228 (cos (v))
2
v2 b1 b2 − 40 v4 b1 b2

+132 (cos (v))
2
b2 + 24 b1 cos (v)

+24 cos (v) b2 − 48 v2 b1 − 216 (cos (v))
3
v2 b1

+141 cos (v) v2 b1 + 96 (cos (v))2 v2 b1

+64 (cos (v))
2
v4 b2

2 − 16 sin (v) v3 b1
2

−9 v2 b0 b1 + 19 cos (v) v4 b1
2

+384 sin (v) (cos (v))
2
v3 b1 b2

−96 cos (v) v2 b2
2 − 24 (cos (v))3 b1

−96 (cos (v))
3
b2 + 24 (cos (v))

2
b1

+64 v6 b2
3

–The solution of the system of equations (13) - (15)
leads to the determination of the coefficientsbi i =
0(1)2 of the symmetric linear six-step method method
(11):

b0 =
T5

3 v4 sin (v)− v4 sin (3 v)

b1 =
T6

3 v4 sin (v)− v4 sin (3 v)

b2 =
T7

3 v4 sin (v)− v4 sin (3 v)
(16)

where

T5 = 6 v2 sin (v)− 15 v2 sin (2 v) + v2 sin (6 v)

+6 v2 sin (4 v)− 2 v2 sin (3 v) + 50 cos (v) v

−2 v cos (5 v) + 3 v cos (6 v) + 13 v cos (4 v)

−12 v cos (3 v)− 25 v cos (2 v) + 6 sin (v)

−15 sin (2 v)− 3 sin (6 v)− 15 sin (4 v)

+6 sin (5 v) + 24 sin (3 v)− 27 v

T6 = 9 v2 sin (v)− 3 v2 sin (5 v) + 2 v2 sin (3 v)

+32 cos (v) v − 8 v cos (5 v) + 8 v cos (4 v)

−8 v cos (2 v) + 6 sin (v)− 12 sin (2 v)

−12 sin (4 v) + 6 sin (5 v) + 12 sin (3 v)− 24 v

T7 = 6 v2 sin (v)− 6 v2 sin (2 v) + 3 v2 sin (4 v)

−2 v2 sin (3 v) + 12 cos (v) v + 5 v cos (4 v)

−6 v cos (3 v)− 5 v cos (2 v)− 3 sin (2 v)

−3 sin (4 v) + 6 sin (3 v)− 6 v

The above mentioned formulae (given by (16)) may
subject to heavy cancelations for some values of|v|. In
this case the following Taylor series expansions should
be used :

b0 =
97

40
− 275

224
v2 +

9559

22400
v4

− 679541

6652800
v6 +

300755969

24216192000
v8

− 1936967

1845043200
v10 +

30681216749

592812380160000
v12

− 11352810559

3942202328064000
v14

− 1786305431

14867734494412800000
v16

− 184467544202363

17234677825923317760000
v18 + . . .

b1 = −31

30
+

275

336
v2 − 10901

50400
v4

+
50009

2851200
v6 − 21107707

18162144000
v8

+
1389683

174356582400
v10 − 134286989

34200714240000
v12

− 18277572601

47306427936768000
v14

− 1667121262381

33452402612428800000
v16

− 156882478987937

25852016738884976640000
v18 + . . .

b2 =
317

240
− 275

1344
v2 +

1177

403200
v4

− 22753

39916800
v6 − 8001571

145297152000
v8

− 452299

63402393600
v10 − 5876029

6599024640000
v12

− 260344639

2365321396838400
v14

− 3596712394753

267619220899430400000
v16

− 8825566741177

5442529839765258240000
v18 + . . . (17)

The behavior of the coefficients is given in the follow-
ing Figure 1.
In the below mentioned formula we give the local trun-
cation error of the new developed method (11) (men-
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Figure 1 Behavior of the coefficients of the new proposed
method given by (16) for several values ofv = ω h.

tioned asSixStepMethod) with the coefficients given
by (16)-(17):

LTELinear Six Step =
275 h8

4032

(

y(8)n +

+3ω2 y(6)n + 3 ω4 y(4)n +

+ω6 y(2)n

)

+O
(

h10
)

(18)

4. Comparative Local Truncation Error
Analysis

We will investigate the following methods :

4.1. Classical Method(i.e. the method (11) with
constant coefficients)

LTECL =
275 h8

4032
y(8)n +O

(

h10
)

(19)

4.2. The Phase-Fitted Method Produced in [39]

LTELinear Six Step PF =
275 h8

4032

(

y(8)n +

ω6 y(2)n

)

+O
(

h10
)

(20)

4.3. The Method with Vanished Phase-Lag and
its First Derivative Produced Obtained in [39]

LTELinear Six Step =
275 h8

4032

(

y(8)n − 3ω4 y(4)n

−2 ω6 y(2)n

)

+O
(

h10
)

(21)

4.4. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Developed in Section 3

LTELinear Six Step =
275 h8

4032

(

y(8)n +

+3ω2 y(6)n + 3 ω4 y(4)n +

+ω6 y(2)n

)

+O
(

h10
)

(22)

The following steps are followed in order to obtain the
asymptotic expansions of the Local Truncation Error for
the algorithms mentioned above :
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–In this step we compute the derivatives of the function
yn (approximation of the functiony(x) at xn). These

derivatives are based on the main derivative :y
(2)
n =

(V (x)− Vc +G) y(x) which is followed from the math-
ematical model of the problem. The above mentioned
derivatives are occurred in the formulae of the Local
Truncation Errors. Therefore we have:

y(2)n = (V (x) − Vc +G) y(x)

y(3)n =

(

d

dx
g (x)

)

y (x) + (g (x) +G)
d

dx
y (x)

y(4)n =

(

d2

dx2
g (x)

)

y (x) + 2

(

d

dx
g (x)

)

d

dx
y (x)

+ (g (x) +G)
2
y (x)

y(5)n =

(

d3

dx3
g (x)

)

y (x) + 3

(

d2

dx2
g (x)

)

d

dx
y (x)

+4 (g (x) +G) y (x)
d

dx
g (x) + (g (x) +G)

2 d

dx
y (x)

y(6)n =

(

d4

dx4
g (x)

)

y (x) + 4

(

d3

dx3
g (x)

)

d

dx
y (x)

+7 (g (x) +G) y (x)
d2

dx2
g (x) + 4

(

d

dx
g (x)

)2

y (x)

+6 (g (x) +G)

(

d

dx
y (x)

)

d

dx
g (x)

+ (g (x) +G)
3
y (x)

y(7)n =

(

d5

dx5
g (x)

)

y (x) + 5

(

d4

dx4
g (x)

)

d

dx
y (x)

+11 (g (x) +G) y (x)
d3

dx3
g (x) + 15

(

d

dx
g (x)

)

y (x)

d2

dx2
g (x) + 13 (g (x) +G)

(

d

dx
y (x)

)

d2

dx2
g (x)

+10

(

d

dx
g (x)

)2
d

dx
y (x) + 9 (g (x) +G)

2
y (x)

d

dx
g (x) + (g (x) +G)

3 d

dx
y (x)

y(8)n =

(

d6

dx6
g (x)

)

y (x) + 6

(

d5

dx5
g (x)

)

d

dx
y (x)

+16 (g (x) +G) y (x)
d4

dx4
g (x) + 26

(

d

dx
g (x)

)

y (x)

d3

dx3
g (x) + 24 (g (x) +G)

(

d

dx
y (x)

)

d3

dx3
g (x)

+15

(

d2

dx2
g (x)

)2

y (x) + 48

(

d

dx
g (x)

)

(

d

dx
y (x)

)

d2

dx2
g (x) + 22 (g (x) +G)

2
y (x)

d2

dx2
g (x) + 28 (g (x) +G) y (x)

(

d

dx
g (x)

)2

+12 (g (x) +G)
2

(

d

dx
y (x)

)

d

dx
g (x)

+ (g (x) +G)4 y (x)

. . .

Remark.The above expressions of the derivatives of the
functionyn are finally dependent fromG = Vc − E
which is dependent from the energyE.

–Based on the above mentioned remark it is easy for
one to see that the expressions of the derivatives of the
functionyn helps the formulae of the Local Truncation
Error to be expressed as functions of the energyE.
This is happened via its substitution in the formulae
of the Local Truncation Error of the derivatives of the
functionyn mentioned above.

–The study of the obtained via the above procedure for-
mulae of the Local Truncation Errors contains two main
cases in terms of the value ofE :

1.G = Vc − E ≈ 0. In this case the Energy is close
to the potential. Therefore and sinceG = 0 and
consequentlyGn, n = 1, 2, . . . = 0 ,all the terms
of G in the formulae of the Local Truncation Er-
ror analysis are equal to zero. Therefore, only the
terms of the formulae of the Local Truncation Er-
rors which are free fromG are considered. Thus,
for these values ofG, the methods are ofcompa-
rable accuracy. The reason is explained below via
the mentioned Remark.

Remark.In the case of formulae of Local Trunca-
tion Errors for whichG = 0, the behavior of the
methods of the family are similar. This is due to the
fact that forG = 0 for this family of methods the
free fromG terms of the polynomials are the same
(and this for both of cases of methods of the family
with constant coefficients or methods of the family
with coefficients dependent from the frequency of
the problem).

2.G >> 0 or G << 0. Then|G| is a large number.
In this case we take into account all the terms in the
formulae of the Local Truncation Error analysis.

–Finally the asymptotic expansions of the Local Trun-
cation Errors are computed

Based on the analysis presented above, the following
asymptotic expansions of the Local Truncation Errors are
produced :

4.5. Classical Method

LTECL = h8

(

275

4032
y (x) G4 + · · ·

)

+O
(

h10
)

(23)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1771-1785 (2015) /www.naturalspublishing.com/Journals.asp 1777

4.6. The Phase-Fitted Method Produced in [39]

LTELinear Six Step PF = h8

(

275

1344
g (x)

y (x) G3 + · · ·
)

+O
(

h10
)

(24)

4.7. The Method with Vanished Phase-Lag and
its First Derivative Produced Obtained in [39]

LTESixStep Linear = h8

[(

275

672

(

d

dx
g (x)

)

d

dx
y (x) +

5225

4032

(

d2

dx2
g (x)

)

y (x) +
275

1344
(g (x))

2

y (x)

)

G2 + · · ·
]

+O
(

h10
)

(25)

4.8. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Developed in Section 3

LTELinear Six Step = h8

(

275

1008

(

d2

dx2
g (x)

)

y (x) G2 + · · ·
)

+O
(

h10
)

(26)

From the above equations we have the following theo-
rem:

Theorem 2.For the Classical Linear Six-Step Explicit Method,
the error increases as the four power ofG. For the Lin-
ear Six-Step Explicit Phase-Fitted Method developed in
[39] , the error increases as the third power ofG. For the
Linear Six-Step Explicit Method with Vanished Phase-lag
and its First Derivative which is developed in [39], the er-
ror increases as the second power ofG. Finally, for the
Linear Six-Step Explicit Method with Vanished Phase-lag
and its First and Second Derivatives which is developed
in Section 3, the error increases as the second power of
G but with lower coefficient than the error the Linear Six-
Step Explicit Method with Vanished Phase-lag and its First
Derivative which is developed in [39]. So, for the numer-
ical solution of the time independent radial Schrödinger
equation the New Developed Method with Vanished Phase-
Lag and its First and Second Derivative is the most effi-
cient from theoretical point of view, especially for large
values of|G| = |Vc − E|.

5. Stability Analysis

In this section we will investigate the stability (intervalof
periodicity) of the new methods. The main idea is that the
scalar test equation which we will use for the stability anal-
ysis will have different frequency than the scalar test equa-
tion used for the phase-lag analysis (mentioned in Section
2). Therefore, we apply the new obtained method to the
scalar test equation:

y′′ = −φ2 y. (27)

whereφ 6= ω.
The above mentioned application leads to the follow-

ing difference equation :

A3 (s, v) (yn+3 + yn−3) +A2 (s, v) (yn+2 + yn−2)

+A1 (s, v) (yn+1 + yn−1) +A0 (s, v) yn = 0 (28)

where

5.1. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Produced in Section 3

A3 (s, v) = 1,

A2 (s, v) = −2 +
T8

3 v4 sin (v)− v4 sin (3 v)
,

A1 (s, v) =
T9

sin (v) (cos (v) + 1) v4

A0 (s, v) = −1

2

T10

sin (v) (cos (v) + 1) v4
(29)

where

T8 = s2

(

6 v2 sin (v)− 6 v2 sin (2 v)

+3 v2 sin (4 v)− 2 v2 sin (3 v) + 12 cos (v) v

+5 v cos (4 v)− 6 v cos (3 v)− 5 v cos (2 v)

−3 sin (2 v)− 3 sin (4 v) + 6 sin (3 v)− 6 v

)

T9 = 12 sin (v) (cos (v))
3
s2v2

+12 sin (v) (cos (v))
2
s2v2

+32 s2v (cos (v))
4 − 24 sin (v)

(cos (v))
3
s2 + sin (v) cos (v) s2v2

+2 sin (v) cos (v) v4 + 16 s2v (cos (v))3

+sin (v) s2v2 + 2 v4 sin (v)− 24 s2v (cos (v))
2

+6 sin (v) cos (v) s2 − 4 cos (v) s2v − 2 s2v
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T10 = 12 sin (v) (cos (v))
2
s2v2

+8 sin (v) cos (v) s2v2 + 4 sin (v) cos (v) v4

+20 s2v (cos (v))3 − 12 sin (v)

(cos (v))2 s2 − 4 sin (v) s2v2

+4 v4 sin (v) + 8 s2v (cos (v))
2

−17 cos (v) s2v + 3 sin (v) s2 − 2 s2v

ands = φh.

Remark.The investigation of the stability is based on the
scalar test equation (27) with frequency of the ,φ, which
is not equal with the frequency of the scalar test equation
(4), ω, of the phase-lag analysis i.e.ω 6= φ.

Based on the analysis presented in Section 2, we have
the following definitions:

Definition 5.(see [13]) A method is called P-stable if its
interval of periodicity is equal to(0,∞).

Definition 6.A method is called singularly almost P-stable
if its interval of periodicity is equal to(0,∞) − S1 only
when the frequency of the phase lag analysis is the same
as the frequency of the stability analysis, i.e.s = v.

In Figure 2 we present thes− w plane for the method
developed in Section 3 (Method with Vanished Phase-lag
and its First and Second Derivative).

Remark.The white area denotes thes− v region where the
method is unstable while the shadowed area denotes the
s− v region where the method is stable.

Remark.For many real problems the frequency of the phase-
lag analysis is equal to the frequency of the stability anal-
ysis. For these kind of of real problems it is necessary to
observethe surroundings of the first diagonal of the
s − v plane. In these problems and in order to apply a
method with frequency dependent coefficients, it is nec-
essary to define one frequency of the problem (because
the frequency of the phase-lag analysis is equal to the fre-
quency of the stability analysis). In this category of prob-
lems belong many problems in sciences and engineering
(for example the time independent Schrödinger equation).

For the problems of the above mentioned remark we
study now the case where the frequency of the stability
analysis is equal with the frequency of phase-lag analysis,
i.e. we investigate the case wheres = v (more specifically
we investigate the case seeing the surroundings of the first
diagonal of thes − v plane). From this investigation we
have that the interval of periodicity of the new method is
equal to:(0, 4.4).

The above study leads to the following theorem:

Theorem 3.The method developed in this paper (Section
3):

1 whereS is a set of distinct points

Figure 2 s− v plane of the the new obtained method with van-
ished phase-lag and its first and second derivatives

–is of six algebraic order,
–has the phase-lag and its first and second derivatives
equal to zero

–have an interval of periodicity equal to(0, 4.4), when
the frequency of the stability analysis is equal with the
frequency of phase-lag analysis.

6. Numerical results

The application of the new obtained linear explicit six-
step methods to the numerical solution of the radial time-
independent Schrödinger equation is the study of its effi-
ciency.

We can write the model of the radial time independent
Schrödinger equation as :

y′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (30)

This is a boundary value problem with the following bound-
ary conditions :

y(0) = 0 (31)

and another boundary condition, for large values ofr, de-
termined by physical considerations.

The following definitions help us to understand the de-
tails of the mathematical model :

1.The functionW (r) = l(l+1)/r2 + V (r) is calledthe
effective potential. This satisfiesW (r) → 0 asr → ∞,
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2.The quantityk2 is a real number denotingthe energy,
3.The quantityl is a given integer representing theangu-

lar momentum,
4.V is a given function which denotes thepotential.

The new obtained algorithm is belonged into the cat-
egory of numerical methods with coefficients dependent
on the frequency of the problem. For this, it is necessary
to define the value of the parameterω. The determination
of the above mentioned parameter is dependent from the
problem we have to solve. For the specific case of the the
radial time independent Schrödinger equation the parame-
terω is given by (forl = 0) :

ω =
√

|V (r) − k2| =
√

|V (r)− E| (32)

whereV (r) is the potential andE is the energy.

6.1. Woods-Saxon potential

In order to solve the radial time independent Schrödinger
equation, we have to determine the potential which we will
use in the mathematical model. For the purpose of the nu-
merical tests of this paper we will use the well known
Woods-Saxon potential. The Woods-Saxon potential can
be written as :

V (r) =
u0

1 + q
− u0 q

a (1 + q)
2 (33)

with q = exp
[

r−X0

a

]

, u0 = −50, a = 0.6, andX0 =
7.0.

The behavior of Woods-Saxon potential is shown in
Figure 5.

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r

The Woods-Saxon Potential

Figure 3 The Woods-Saxon potential.

The discrete approximation of a potential is an impor-
tant subject of the research literature (see [101] and [102]
and references therein).

Remark.A discrete approximation of a potential is an ap-
proximation of this potential via determination of critical
points of this potential.

It is critical for the form of the picture of the poten-
tial the accurate knowledge of the points of the discrete
approximation.

For the specific numerical example we chose the dis-
crete approximation of the parameterω. Based on [100]
we determine the critical points for the Woods-Saxon po-
tential. Therefore, we chooseω as follows (see for details
[101] and [102]):

φ =























√
−50 + E, for r ∈ [0, 6.5− 2h],√
−37.5 + E, for r = 6.5− h√
−25 + E, for r = 6.5√
−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(34)

For example, in the point of the integration regionr =
6.5− h, the value ofφ is equal to:

√
−37.5 + E. So,w =

φh =
√
−37.5 + E h. In the point of the integration re-

gionr = 6.5− 3 h, the value ofφ is equal to:
√
−50 + E,

etc.

6.2. Radial Schr̈odinger Equation - The
Resonance Problem

The investigation of the efficiency of the new obtained
method is taken place via the application of the new devel-
oped method to the numerical solution of the radial time
independent Schrödinger equation (30) using the Woods-
Saxon potential (33).

Since the approximate solution of the radial time inde-
pendent Schrödinger equation (30) is a problem with infi-
nite interval of integration and in order to apply the new
produced method, we have to replace this infinite interval
of integration with a finite one. For the purposes of our nu-
merical investigations we select as interval of integration,
the interval[0, 15].

We study the equation (30) for a large domain of ener-
gies, i.e.,E ∈ [1, 1000].

For our numerical experiments, we investigate the case
of positive energies. In this case we have thatE = k2 and
the potential decays faster than the terml(l+1)

r2
. In such

cases the radial Schrödinger equation effectively reduces
to

y′′ (r) +

(

k2 − l(l + 1)

r2

)

y (r) = 0 (35)

for r greater than some valueR.
The above mentioned problem has linearly indepen-

dent solutionskrjl (kr) andkrnl (kr), wherejl (kr) and
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nl (kr) are the spherical Bessel and Neumann functions
respectively. Thus, the asymptotic form of the solution of
equation (30) (whenr → ∞) is given by:

y (r) ≈ Akrjl (kr)−Bkrnl (kr)

≈ AC

[

sin

(

kr − lπ

2

)

+ tan dl cos

(

kr − lπ

2

)]

(36)

whereδl is the phase shift that may be calculated from the
formula

tan δl =
y (r2)S (r1)− y (r1)S (r2)

y (r1)C (r1)− y (r2)C (r2)
(37)

for r1 andr2 distinct points in the asymptotic region (we
chooser1 as the right hand end point of the interval of
integration andr2 = r1 − h) with S (r) = krjl (kr)
andC (r) = −krnl (kr). The problem we consider in
our experiments is treated as an initial-value problem. In
this caswe we must defineyj , j = 0(1)5 in order to be-
gin the application of a six-step method. From the initial
condition, we obtainy0. The valuesyi, i = 1(1)5 are ob-
tained by using high order Runge-Kutta-Nyström meth-
ods(see [18] and [19]). Based on these starting values, we
can evaluate the phase shiftδl at r2 of the asymptotic re-
gion.

The resonance problem is defined for positive energies.
This problem consists either

–of finding the phase-shiftδl or
–finding thoseE, for E ∈ [1, 1000], at whichδl = π

2 .

We actually solve the latter problem, known asthe res-
onance problem.

The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for large r. (38)

We compute the approximate positive eigenenergies of
the Woods-Saxon resonance problem using:

–The eighth order multi-step method developed by Quin-
lan and Tremaine [2], which is indicated asMethod
QT8.

–The tenth order multi-step method developed by Quin-
lan and Tremaine [2], which is indicated asMethod
QT10.

–The twelfth order multi-step method developed by Quin-
lan and Tremaine [2], which is indicated asMethod
QT12.

–The fourth algebraic order method of Chawla and Rao
with minimal phase-lag [104], which is indicated as
Method MCR4

–The exponentially-fitted method of Raptis and Allison
[103], which is indicated asMethod MRA

–The hybrid sixth algebraic order method developed by
Chawla and Rao with minimal phase-lag [105], which
is indicated asMethod MCR6

–The classical form of the sixth algebraic order six-step
method developed in Section 4, which is indicated as
Method NMCL6 2.

–The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1

–The Phase-Fitted Method (Case 2) developed in [1],
which is indicated asMethod NMPF2

–The Phase-Fitted Method developed in [39], which is
indicated asMethod N6SMPF

–The Method with vanished phase-lag and its first deriva-
tive developed in [39], which is indicated asMethod
N6SMPFD

–The New Obtained Method with vanished phase-lag
and its first and second derivatives developed in Sec-
tion 3, which is indicated asMethod N6SMPFDD

CPU time (in seconds)

E
rr

m
a

x

Figure 4 Accuracy (Digits) for several values ofCPU Time
(in Seconds) for the eigenvalueE2 = 341.495874. The nonexis-
tence of a value of Accuracy (Digits) indicates that for thisvalue
of CPU, Accuracy (Digits) is less than0

We compare the computationally obtained eigenener-
gies with the reference values3. In Figures 5 and 6, we
present the maximum absolute errorErrmax = |log10 (Err) |
where

Err = |Ecalculated − Eaccurate| (39)

of the eigenenergiesE2 = 341.495874andE3 = 989.701916
respectively, for several values ofCPU time (in seconds).
We note that theCPU time (in seconds) counts the com-
putational cost for each method.

2 with the term classical we mean the method of Section 4 with
constant coefficients

3 we define as reference values the computed using the well
known two-step method of Chawla and Rao [105] with small step
size for the integration
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CPU time (in seconds)

E
rr

m
a

x

Figure 5 Accuracy (Digits) for several values ofCPU Time
(in Seconds) for the eigenvalueE3 = 989.701916. The nonexis-
tence of a value of Accuracy (Digits) indicates that for thisvalue
of CPU, Accuracy (Digits) is less than0

7. Conclusions

The development of an explicit linear sixth algebraic order
six-step method is investigated in this paper. More specifi-
cally we studied the following

1.Construction of the methods. The main requirements
are:

–The algebraic order of the new six-step method to
be maximized

–The phase-lag of the new six-step method to be
vanished

–The first derivative of the phase-lag of the new six-
step method to be also vanished

–Finally, the second derivative of the phase-lag of
the new six-step method to be also equal to zero
(i.e. vanished).

2.Theoretical study of the new obtained method. This
consists of:

–Comparative Local Truncation Error Analysis (for
comparison reason we use the corresponding meth-
ods of the literature)

–Stability Analysis (using a scalar test equation with
frequency which is different than the frequency of
the scalar test equation for phase-lag analysis)

3.Identification of the theoretical study. This was taken
place via the numerical approximation of the resonance
problem of the radial time independent Schrödinger
equation and related problems.

From the obtained numerical experiments presented on
the figures mentioned above , we can make the following
remarks:

1.The classical form of the sixth algebraic order six-step
method developed in Section 4, which is indicated as
Method NMCL6 has approximately the same efficiency
than the the exponentially-fitted method of Raptis and
Allison [103], which is indicated asMethod MRA .

2.The tenth algebraic order multistep method developed
by Quinlan and Tremaine [2], which is indicated as
Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal
phase-lag [104], which is indicated asMethod MCR4.
TheMethod QT10 is also more efficient than the eighth
order multi-step method developed by Quinlan and Tremaine
[2], which is indicated asMethod QT8. Finally, the
Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao
with minimal phase-lag [105], which is indicated as
Method MCR6 for large CPU time and less efficient
than theMethod MCR6 for small CPU time.

3.The twelfth algebraic order multistep method devel-
oped by Quinlan and Tremaine [2], which is indicated
asMethod QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine
[2], which is indicated asMethod QT10

4.The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1 is more effi-
cient than the classical form of the fourth algebraic or-
der four-step method developed in Section 3, which is
indicated asMethod NMCL6 , the exponentially-fitted
method of Raptis and Allison [103] and the Phase-
Fitted Method (Case 2) developed in [1], which is in-
dicated asMethod NMPF2

5.The Linear Six-Step Eight Algebraic Order Phase-Fitted
Method developed in [39], which is indicated asMethod
N6SMPF is more efficient than all the methods men-
tioned above

6.The Linear Six-Step Eight Algebraic Order Method
with Vanished Phase-Lag and its First Derivative which
developed in [39] and is indicated asMethod N6SMPFD
is more efficient than all the methods mentioned above.

7.Finally, the new obtained Linear Six-Step Eight Alge-
braic Order Method with Vanished Phase-Lag and its
First and Second Derivatives which developed in Sec-
tion 3 and is indicated asMethod N6SMPFDD is the
most efficient one.

All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).
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