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Abstract: This paper contains a complete procedure for calculating the value of a conditional quantile estimator. The concept is based
on the nonparametric kernel estimator method, which frees the algorithm from the random variables’ distributions. Theprocedure was
worked out in a ready-to-use form – specific formulas for functions and the parameter used were given. The practical implementation
of this method is very simple, and its computational complexity is linear with respect to random sample size as well as thedimension
of conditioning variable. Thanks to a clear, near intuitiveinterpretation it can easily be modified or generalized depending on the
individual needs of atypical applications. In particular,conditioning variables can be taken into account, not only continuous (real), but
also binary, discrete and categorized, or any of their combinations.
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1 Introduction

Consider for initial illustration – without mathematical
formality for the moment – a random variable with real
values. The quantile of the assumed orderr ∈ (0,1) is the
numberqr ∈ R, such that the probability of the random
variable taking values less than or equal toqr is r, while
for those greater than or equal is 1− r. In a particular case
when r = 0.5 the quantileq0.5 is called a median and
plays the analogical role to the expectation value.
Similarly, the difference of the quantile of the orders of
0.75 and 0.25, i.e. q0.75 − q0.25, referred to as quarter
deviation, fulfills the role of a standard deviation.

In comparisons of the median and quarter deviation
properties with the classic expectation value and standard
deviation, the former often prevails in practical
applications. First, they are robust with respect to outliers
often arising from so-called gross errors. If for example
a decimal point is mistakenly omitted in giving a person’s
height, then instead of 1.84 we get 184, which
significantly changes the estimator of the expected value

calculated on this basis, and especially – due to squaring
– of the standard deviation. This type of error can occur
quite often in the ubiquitous case of automating data
collection, unchecked by humans. The above mistake will
have a much smaller effect on the estimation of the
quantile, if the erroneous value of 184 will be treated here
solely as one of the large values, with no consequences
resulting from the fact that it is bigger by a hundred times.

The median has one other valuable property, which is
seeing ever more application as robust systems develop;
namely, the estimation errors of parameters in complex
systems can have an asymmetrical influence on their
quality. For example for the case of control of
a mechanical object, underestimation of its mass leads to
adverse limit cycles, while overestimation results in
a more effective sliding trajectory [1]. In this situation,
instead of estimating the mass by expected value or
median, it is worth using a quantile of order greater than
0.5, to increase the probability of a more advantageous
overestimation in place of underestimation. The expected
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value does not possess any parameter allowing
overestimation to be preferred to underestimation or
vice-versa.

In specific practical applications, the quality of
estimation of all possible characteristics of probability
distribution can effectively increase through selection of
quantities bearing significant influence on the examined
phenomena and their appropriate introduction to the
algorithm. Later consideration – in specific calculations –
of definite values (for example in heating, the current
outside temperature, or the current exchange rate in
marketing and management) makes the obtained result
significantly more precise. With respect to the quantile,
the above leads to the notion of a conditional quantile.
This will be exactly formulated and interpreted below.

Let the one-dimensional random variableY be given,
with a distribution characterized by the densityfY. A
quantile of the orderr ∈ (0,1) is every numberqr ∈ R,
such that

∫ qr

−∞
fY(y)dy= r . (1)

If the support of the functionfY is connected (e.g. when
fY is positive), then the quantile is unique.

The above definition will now be generalized for the
conditional case. Here, besides the basic (sometimes
termed the describing) one-dimensional random variable
Y, let also be given thenW-dimensional random variable
W, called hereinafter the conditioning random variable.

Their compositionZ =

[

Y
W

]

is a random variable of the

dimension nW + 1. Assume that distributions of the
variables Z and, in consequence,W have densities,
denoted below as fZ : R

nW+1 → [0,∞) and
fW : RnW → [0,∞), respectively. Let also be given the
so-called conditioning value, that is the fixed value of
a conditioning random variablew∗ ∈ R

nW , such that

fW(w∗)> 0 . (2)

Then the functionfY|W=w∗ : R→ [0,∞) given by

fY|W=w∗(y) =
fX(y,w∗)
fW(w∗)

for everyy∈ R (3)

constitutes a conditional density of probability
distribution of the random variableY for the conditioning
valuew∗. The conditional densityfY|W=w∗ can therefore
be treated as a “classic” densityfY, whose form has been
made more accurate in practical applications withw∗ –
a concrete value taken by the conditioning variableW in
a given situation.

Next, a quantile of the orderr ∈ (0,1) with the
conditionw∗ ∈ R

nW is every numberqr|w∗ ∈ R , such that
∫ qr|w∗

−∞
fY|W=w∗(y)dy= r . (4)

Similarly to the above unconditional case, if the support
of the function fY|W=w∗ is connected, then the quantile is

unique. The conditional quantileqr|w∗ constitutes
therefore the refinement of the “classic” quantileqr by
using the information that the conditioning random
variable, in a specific situation, took the valuew∗.

The estimation of the quantile value is not a simple
task, nor has it been elaborated sufficiently. A survey of
classic methods for the unconditional case can be found
in the publications [2,3]. For typical simple applications,
positional estimators [4] can be recommended, as can
kernel [5,6]. In the case of the conditional quantile the
most commonly applied is the quantile regression method
[7]. This consists of treating conditioning variables as
arguments of regressive function and calculating its value
which best approximates that of the quantile of a given
order. Here, the linear [8] and kernel-based [9] models are
most often used. This offers satisfactory results for the
majority of practical cases and is rightly considered as the
leading method at this time. However, as usual, there are
also disadvantages. For example for two different orders
of quantile, the regression functions can intersect, which
implies that for a fixed condition, and for two orders of
the quantiler1 < r2 it may occur that the estimator of
quantile qr1 is greater that ofqr2, which contradicts
monotonicity – a basic feature of quantiles with respect to
their order. This leads to many difficulties in application
and interpretational misunderstandings. Moreover, to
write a program alone which realizes this procedure is not
easy, nor its analysis of the method allowing a study of
errors and the creation of mutations adapted to individual
needs. The above implies the research into many different
concepts, some of which lie beyond statistical methods,
e.g. [10,11].

This paper presents a procedure for calculating the
estimator of a conditional quantile, based on the statistical
kernel estimator methodology. Its nonparametric nature
implies the worked out procedure is independent of types
of random variable distributions. The key advantage is,
however, its simplicity and ease of interpretation. The
former allows the presentation in Section 3 of a basic
version of the algorithm for continuous random variables,
in ready-to-use form, so that a user wishing to employ it
does not have to go into the mathematical foundations
discussed below in Section 2, merely apply the formulas
from the third section consecutively. Section 4 describes
the results of numerical simulation, while the final
Section 5 summarizes the subject material and – thanks to
its simplicity of interpretation – offers the possibilities of
creating individual modifications suitable in practice for
specific particular applications, especially the potential
increase in estimation accuracy and generalization of
conditioning variables, not only the continuous (real) but,
it should be clearly underlined, also binary, discrete and
categorical (ordered and unordered), as well as their
compositions.
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2 Conditional quantile estimator

This section presents the mathematic foundations of the
proposed method. Readers not very interested in the
formal aspects, can find a description of the investigated
procedure in its-ready-to-use form within Section 3.

Let the n-dimensional random variableX be given,
with a distribution characterized by the densityf . Its
kernel estimator f̂ : R

n → [0,∞), calculated using
experimentally obtained values for them-element random
sample

x1,x2, . . . ,xm , (5)

in its basic form is defined as

f̂ (x) =
1

mhn

m

∑
i=1

K

(

x− xi

h

)

, (6)

where m ∈ N\{0}, the coefficient h > 0 is called
a smoothing parameter, while the measurable function
K : R

n → [0,∞) of unit integral
∫

Rn K(x)dx = 1,
symmetrical with respect to zero and having a weak
global maximum in this place, takes the name of a kernel.
The choice of form of the kernelK and the calculation of
the smoothing parameterh is made most often with the
criterion of the mean integrated square error.

Thus, the choice of the kernel form has – from
a statistical point of view – no practical meaning and
thanks to this, it becomes possible to take into account
primarily properties of the estimator obtained, or
calculational aspects, both advantageous from the point of
view of the applicational problem under investigation; for
broader discussion see [12] – Section 3.1.3; [13] –
Sections 2.7 and 4.5. In practice, for the one-dimensional
case (i.e. whenn = 1), the functionK is assumed most
often to be the density of a common probability
distribution. In the multidimensional case, two natural
generalizations of the above concept are used: radial and
product kernels. However, the former is somewhat more
effective, although from an applicational point of view,
the difference is immaterial and the product kernel –
significantly more convenient in analysis – is often
favored in practical problems. Then-dimensional product
kernelK can be expressed as

K(x) = K

















x1
x2

...
xn

















= K1(x1)K2(x2) . . .Kn(xn) , (7)

where Ki for i = 1,2, . . . ,n denotes the
previously-mentioned one-dimensional kernels, while the
expressionhn appearing in the basic formula (6) should
be replaced byh1 · h2 · . . . · hn, the product of the
smoothing parameters for particular coordinates.

The fixing of the smoothing parameterh has significant
meaning for quality of estimation. Fortunately – from the
applicational point of view – many suitable procedures for

calculating the value of the parameterh on the basis of
random sample (5) have been worked out, although most
of them are time-consuming, especially with large sample
sizesm. For broader discussion of the above tasks see [12,
13,14].

The kernel estimators technique will now be used
below for the task of conditional quantile estimation,
formulated in the Introduction. Let – as defined there – a
one-dimensional describing random variableY as well as
the nW-dimensional conditioning random variableW be
given. Suppose also the random sample

[

y1
w1

]

,

[

y2
w2

]

, . . . ,

[

ym
wm

]

, (8)

obtained from the variableZ =

[

Y
W

]

. The particular

elements of this sample are interpreted as the valuesyi
taken in measurements from the random variableY, when
the conditioning variableW assumes the respective values
wi . Using the methodology presented in the first part of
the section below, on the basis of sample (8) one can
calculate f̂Z , i.e. the kernel estimator of density of the
random variableZ probability distribution, while the
sample

w1,w2, . . . ,wm (9)

gives f̂W – the kernel density estimator for the
conditioning variable W. The kernel estimator of
conditional density of the random variableY probability
distribution for the conditioning valuew∗, is defined then
– as a natural consequence of formula (3) – as the
function f̂Y|W=w∗ : R→ [0,∞) given by

f̂Y|W=w∗(y) =
f̂X(y,w∗)

f̂W(w∗)
. (10)

If for the estimator f̂W one uses a kernel with positive
values, then the inequalityf̂W(w∗) > 0 implied by
condition (2) is fulfilled for anyw∗ ∈ R

nW .
In the case when for the estimatorŝfZ and f̂W the

product kernel (7) is used, applying in pairs the same
positive kernels to the estimator̂fW and to the lastnW
coordinates of the estimator̂fZ, then the expression for
the kernel estimator of conditional density becomes
particularly helpful for practical applications. Formula
(10) can then be specified to the form

f̂Y|W=w∗(y) = (11)

=

1
h0

∑m
i=1K0

(

y−yi
h0

)

K1

(

w∗
1−wi,1

h1

)

. . .KnW

(

w∗
nW

−wi,nW
hnW

)

∑m
i=1K1

(

w∗
1−wi,1

h1

)

. . .KnW

(

w∗
nW

−wi,nW
hnW

) ,

where h0,h1, . . . ,hnW represent – respectively –
smoothing parameters mapped to particular coordinates
of the random variableZ (the first h0 connotes with the
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describing variableY, and the resth1, . . . ,hnW with
subsequent coordinates of the conditioning variableW),
while the coordinates of the vectorsw∗ andwi are denoted
as

w∗ =









w∗
1

w∗
2
...

w∗
nW









and wi =









wi,1
wi,2

...
wi,nW









for i = 1,2, . . . ,m .

(12)
Define the so-called conditioning parametersdi for
i = 1,2, . . . ,mby the following formula:

di = K1

(

w∗
1−wi,1

h1

)

. . .KnW

(

w∗
nW

−wi,nW

hnW

)

. (13)

If one uses the kernelsK1,K2, . . ., KnW with positive
values, these parameters are also positive. So the kernel
estimator of conditional density (11) can be presented in
the form

f̂Y|W=w∗(y) =
1

h0 ∑m
i=1di

m

∑
i=1

diK0

(

y− yi

h0

)

. (14)

The value of the parameterdi characterizes the “distance”
of the given conditioning valuew∗ from wi – that of the
conditioning variable for which thei-th element of the
random sample was obtained. Then estimator (14) can be
interpreted as the linear combination of kernels mapped
to particular elements of a random sample obtained for
the variableY, when the coefficients of this combination
characterize how representative these elements are for the
given valuew∗. The factor∑m

i=1di norms the value of the
estimator with the aim of ensuring a unit integral.

With respect to the definition of a conditional quantile
(4), its natural estimator is the solution of the following
equation with the argument ˆqr|w∗ :

∫ q̂r|w∗

−∞
f̂Y|W=w∗(y)dy= r . (15)

For the estimator of conditional densityf̂Y|W=w∗

appearing above, the kernel estimator given in the form
(14) will be used. Moreover, asK0 contained within, one
should choose a continuous kernel of positive values, and
also so that the functionI : R → R such that
I (w) =

∫ w
−∞ K0(u)du can be expressed by a relatively

simple analytical formula. Equation (15) can be expressed
then equivalently in the following form:

m

∑
i=1

diI

(

q̂r|w∗ − yi

h0

)

− r
m

∑
i=1

di = 0 . (16)

If the left side of the above equation is denoted byL, i.e.

L(q̂r|w∗) =
m

∑
i=1

diI

(

q̂r|w∗ − yi

h0

)

− r
m

∑
i=1

di , (17)

then limŷw∗→−∞L(q̂r|w∗) < 0, limŷw∗→∞L(q̂r|w∗) > 0, the
function L is (strictly) increasing and its derivative is
simply expressed by

L′(q̂r|w∗) =
1
h0

m

∑
i=1

diK0

(

q̂r|w∗ − yi

h0

)

. (18)

In this situation, the solution of equation (16) can be
effectively calculated on the basis of Newton’s algorithm
[15] as the limit of the sequence

{

q̂r|w∗, j
}∞

j=0
defined by

q̂r|w∗,0 =
∑m

i=1diyi

∑m
i=1di

(19)

q̂r|w∗, j+1 = q̂r|w∗, j −
L(q̂r|w∗, j)

L′(q̂r|w∗, j)
for j = 0,1, . . . , (20)

with the functionsL andL′ being given by dependencies
(17)-(18), whereas a stop criterion takes on the form

∣

∣q̂r|w∗, j − q̂r|w∗, j−1

∣

∣≤ 0.01σ̂Y , (21)

while σ̂Y denotes the estimator of the standard deviation
of the random variableY.

3 Algorithm for conditional quantile
estimator – summary

The section below gives an explicit algorithm for
calculating the conditional quantile estimator accordingto
the concept presented in the previous point. Its basic form
will be given, suitable for immediate application without
the need for getting into theoretical aspects or specific
research.

Consider – as has been the case up to now – the
describing random variableY of values inR and the
conditioning random variableW with values in R

nW .
Denote then the requiredm-element random sample in the
form













y1
w1,1
w1,2

...
w1,nW













,













y2
w2,1
w2,2

...
w2,nW













, . . . ,













ym
wm,1
wm,2

...
wm,nW













. (22)

Their elements represent the valuesyi measured from the
describing variableY when the conditioning variableW

assumed the valueswi =









wi,1
wi,2

...
wi,nW









, respectively fori =

1,2, . . . ,m .
The kernel will be assumed here in the Cauchy form:

K0(u) = K1(u) = . . .= KnW(u) =
2
π

1
(1+u2)2 . (23)
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In the quantile estimation task investigated here its “heavy
tails” behave favorably. The primitive of kernel (23) takes
the form:

I (u) =
1
π

arctan(u)+
u

π(1+u2)
+

1
2
. (24)

The smoothing parameters will now be established.
The simple but effective method based on the Gauss
distribution [12] – Section 3.1.5; [13] – Section 3.2.1 will
be used. First, the estimators of standard deviations are
calculated for the variableY and the particular
coordinates of the variableW:

σ̂Y =

√

√

√

√

1
m−1

m

∑
i=1

y2
i −

1
m(m−1)

(

m

∑
i=1

yi

)2

(25)

and

σ̂Wj =

√

√

√

√

1
m−1

m

∑
i=1

w2
i, j −

1
m(m−1)

(

m

∑
i=1

wi, j

)2

(26)

for particular coordinatesj = 1,2, . . . ,nW. Then, the
smoothing parameters can be obtained from formulas:

h0 =

(

8
√

π
3

CK
1
m

)1/5

σ̂Y (27)

and

h j =

(

8
√

π
3

CK
1
m

)1/5

σ̂Wj (28)

for particular coordinatesj = 1,2, . . . ,nW, while for the
Cauchy kernel (23) the constantCK equals

CK =
5

4π
. (29)

Now – after fixing the smoothing parameters (27)-(28) –
for the specific conditioning value

w∗ =









w∗
1

w∗
2
...

w∗
nW









, (30)

random sample (22) and kernel form (23), one can
calculate from formula (13) the conditioning parameters
d1,d2, . . . ,dm .

At present all quantities necessary for the use of
iterative algorithm (19)-(21), from which the value of the
conditional quantile estimator is obtained, have been
defined. Thus, in formula (22) a value is given forσ̂Y,
completing stop condition (25). The functionsL and L′,
contained in formulas (19)-(20), are given as (17) and
(18), and the functionsK0 andI by (23) and (24). The
smoothingh0,h1, . . . ,hnW and conditioningd1,d2, . . . ,dm

parameters are obtained above, whereas the numberswi, j
andyi can be found in sample (22), and the quantile order
r is arbitrarily assumed.

It is worth underlining in particular that the algorithm
above is of linear computational complexity both with
respect to the sample sizem and the conditioning vector
dimension nW, i.e. O(mnW). The convergence of
Newton’s algorithm is quadratic; its application in the
task investigated here most often requires 5-8 iterations.
Both of these features result in relatively short
computational times, for large sizes of sample (5) too.

4 Numerical verification

The correct functioning and positive properties of the
algorithm presented in this paper were confirmed with
detailed numerical verification.

Assume for transparency of the results’ interpretation

thatnW = 1, and let the tested random variableX =

[

Y
W

]

have a distribution being the sum of two Gauss factors
with expected values, covariance matrixes and shares,
respectively,

E1 =

[

−1
0

]

Cov1 =

[

1 0.7
0.7 1

]

60% (31)

E2 =

[

1
0

]

Cov2 =

[

1 0.7
0.7 1

]

40%. (32)

As can be seen, the describingY and conditioningW
variables are positively correlated. The former is of
asymmetrical bimodal distribution and the latter –
standard Gauss. The expected values of the variablesY
andW as well as their standard deviations are

EY =−0.2, σY =
√

2 (33)

EW = 0, σW = 1 . (34)

The results acquired with the algorithm from Section
3 for w∗ = 0, w∗ = 1, w∗ = 2, so for the modal value of
a conditioning random variable as well as at the first and
second standard deviation, are presented in Tab. 1, 2 and 3,
respectively. Each of their cells shows the obtained values
of the estimator, calculated on the basis of 100 tests and
recorded in the classic formula: “mean value± standard
deviation”. The symbol∞ denotes there the analytically
achieved theoretical value.

In Tab. 1-3 the results have been shaded where the
mean estimation error is greater than 10% of the standard
deviation of describing valueσY, i.e. 0.141 (see formula
(33) ) or where the standard deviation of the estimation
error is greater than 20% ofσY, i.e. 0.282. One can note
that for modal valuew∗ = 0 satisfactory results are
obtained for samples of sizes 20-50, and for extreme
orders r = 0.05 or r = 0.95 from 200. For the first
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standard deviationw∗ = 1 this occurs respectively for
sizes 100-200 and 200-1000. And finally for the second
standard deviationw∗ = 2, generally a sample of
200-1000 is required, while extreme orders can
necessitate even 1000-2000. Taking into account the
conditional character of the considered problem and the
assumed quality criteria, the need for such size seems
reasonable in practice. It is worth underlining that the
estimation of quantile of the extreme ordersr = 0.05 or
r = 0.95, or also for the second standard deviation
w∗ = 2, is a task of no small difficulty.

The results obtained in the three enclosed tables,
related to the subsequent conditioning valuesw∗ = 0,
w∗ = 1, w∗ = 2, will now be compared. The first of them
corresponds to the modal value of the conditioning
variable W (see formulas (31)-(32) ). Because the
variablesY andW are correlated positively, forw∗ = 1 the
estimators values become bigger than forw∗ = 0. When
w∗ = 2 these values increase even more. In the cases

Table 1: Values of conditional quantile estimator for the
conditioning valuew∗ = 0 (for 1000 samples with notion “mean
value± standard deviation”).

m r = 0.05 r = 0.1 r = 0.3

20 −2.211±0.391 −1.856±0.393 −1.000±0.376

50 −2.187±0.291 −1.834±0.264 −1.000±0.254

100 −2.168±0.226 −1.810±0.201 −1.006±0.191

200 −2.127±0.168 −1.782±0.150 −1.006±0.143

500 −2.093±0.114 −1.760±0.101 −1.004±0.101

1000 −2.070±0.086 −1.747±0.077 −1.006±0.075

2000 −2.053±0.069 −1.734±0.060 −1.004±0.058

5000 −2.036±0.046 −1.723±0.041 −1.004±0.039

10000 −2.024±0.035 −1.715±0.031 −1.004±0.029

−−−∞−−− −1.988±0.000 −1.691± .0000 −1.003±0.000

r = 0.5 r = 0.7 r = 0.9 r = 0.95

−0.288±0.434 −0.553±0.478 −1.557±0.442 −1.939±0.434

−0.297±0.301 −0.554±0.332 −1.566±0.306 −1.958±0.330

−0.309±0.234 −0.552±0.251 −1.565±0.235 −1.964±0.252

−0.322±0.182 −0.553±0.198 −1.552±0.183 −1.938±0.198

−0.329±0.131 −0.556±0.146 −1.532±0.129 −1.907±0.139

−0.337±0.099 −0.555±0.112 −1.524±0.094 −1.892±0.102

−0.339±0.076 −0.558±0.084 −1.515±0.071 −1.879±0.080

−0.345±0.053 −0.562±0.059 −1.508±0.050 −1.864±0.055

−0.349±0.042 −0.562±0.046 −1.502±0.036 −1.856±0.040

−0.361±0.000 −0.565±0.000 −1.483±0.000 −1.822±0.000

w∗ = −1, w∗ = −2 the estimators values are respectively
smaller than forw∗ = 0, which because of symmetry have
been omitted from Tab. 1-3. It should be underlined that
the dependence of the estimator value on the given

Table 2: Values of conditional quantile estimator for the
conditioning valuew∗ = 1 (for 1000 samples with notion “mean
value± standard deviation”).

m r = 0.05 r = 0.1 r = 0.3

20 −1.648±0.404 −1.270±0.425 −1.438±0.474

50 −1.587±0.315 −1.228±0.304 −0.404±0.325

100 −1.554±0.266 −1.180±0.238 −0.396±0.244

200 −1.512±0.202 −1.131±0.178 −0.376±0.184

500 −1.455±0.147 −1.120±0.129 −0.360±0.128

1000 −1.419±0.109 −1.094±0.096 −0.350±0.096

2000 −1.386±0.084 −1.068±0.073 −0.334±0.072

5000 −1.358±0.060 −1.046±0.053 −0.326±0.050

10000 −1.343±0.046 −1.034±0.041 −0.320±0.039

−−−∞−−− −1.288±0.000 −0.991±0.000 −0.303±0.000

r = 0.5 r = 0.7 r = 0.9 r = 0.95

−0.254±0.547 −1.046±0.584 −1.997±0.571 −2.365±0.546

−0.297±0.402 −1.119±0.430 −2.113±0.416 −2.482±0.420

−0.303±0.312 −1.146±0.333 −2.164±0.312 −2.560±0.328

−0.319±0.246 −1.174±0.266 −2.169±0.236 −2.555±0.250

−0.317±0.169 −1.192±0.183 −2.174±0.162 −2.545±0.177

−0.320±0.129 −1.207±0.138 −2.172±0.117 −2.537±0.130

−0.329±0.099 −1.223±0.107 −2.180±0.090 −2.540±0.100

−0.334±0.069 −1.237±0.078 −2.184±0.062 −2.537±0.070

−0.334±0.055 −1.243±0.060 −2.182±0.048 −2.533±0.052

−0.339±0.000 −1.265±0.000 −2.183±0.000 −2.522±0.000

conditioning value, considered in this paragraph,
constitutes the essence of the conditional approach
investigated in this paper. Note that in applicational tasks
indicating the concrete conditioning valuew∗ can
significantly improve the accuracy of the model of reality
under investigation.

In practice it may occur that the amount of data
acquired for the purposefully used conditioning valuew∗,
or even in its neighborhood, is completely insufficient for
reliable statistical inference. Table 4 shows the results
corresponding to Tab. 1, where the random sample
contained no elements for the conditioning variable from
the interval[−0.25,0.25], so in the rangew∗ ± 0.25σW,
therefore with the width of half the standard deviation.
Comparing Tab. 1 and 4 one can conclude that – apart
from extreme orders of quantile – the required sample
size practically does not increase. The above is worth
underlining from a practical point of view, and arises
from the general averaging features of kernel estimators.

Finally, it is worth noting that in any case shown in
Tab. 1-4, as the sample size increased, the obtained
parameter value converged to the theoretical, and the
standard deviation to zero. The above asymptotical
features are of fundamental significance from an
applicational point of view, as they prove that it is
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possible to obtain any precision wished, although this
requires the assurance of a sufficient random sample size.
In practice, therefore, the necessity of the right
compromise between these quantities is called for. This
empirically proves the strong consistency of the estimator
worked out. The formal proof for the unconditional case
was presented in the paper [5] – for the conditional case
considered here, the proof is analogous however but
technically and formally more complicated. Some basic
theoretical investigations can also be found in the article
[16].

Table 3: Values of conditional quantile estimator for the
conditioning valuew∗ = 2 (for 1000 samples with notion “mean
value± standard deviation”).

m r = 0.05 r = 0.1 r = 0.3

20 −1.171±0.523 −0.733±0.584 −0.196±0.758

50 −1.010±0.373 −0.601±0.434 −0.273±0.590

100 −0.919±0.333 −0.546±0.356 −0.273±0.435

200 −0.863±0.280 −0.518±0.295 −0.280±0.279

500 −0.808±0.256 −0.475±0.237 −0.300±0.247

1000 −0.767±0.203 −0.430±0.180 −0.318±0.190

2000 −0.726±0.159 −0.412±0.143 −0.332±0.143

5000 −0.701±0.117 −0.383±0.103 −0.347±0.106

10000 −0.675±0.090 −0.363±0.079 −0.360±0.080

−−−∞−−− −0.588±0.000 −0.291±00.00 −0.397±0.000

r = 0.5 r = 0.7 r = 0.9 r = 0.95

−0.854±0.863 −1.502±0.914 −2.249±0.825 −2.568±0.779

−0.939±0.700 −1.653±0.756 −2.494±0.698 −2.812±0.650

−0.975±0.535 −1.746±0.597 −2.672±0.554 −2.983±0.525

−0.974±0.442 −1.775±0.481 −2.746±0.465 −3.064±0.457

−0.992±0.335 −1.831±0.369 −2.806±0.337 −3.169±0.369

−0.996±0.263 −1.855±0.274 −2.826±0.251 −3.186±0.272

−1.003±0.202 −1.880±0.232 −2.841±0.188 −3.201±0.208

−1.011±0.152 −1.906±0.170 −2.852±0.130 −3.206±0.145

−1.018±0.117 −1.917±0.131 −2.861±0.100 −3.215±0.111

−1.039±0.000 −1.965±0.000 −2.883±0.000 −3.222±0.000

The above results were compared to those obtained by
other methodologies, in particular quantile regression [8]
and neural networks [11]. When using the first of these,
the calculations produced better effects than with the
procedure investigated here. This was especially true for
mean – in respect to numerous random samples – values
of examined estimators, while their variances were
similar. Tables 1-4 show the negative influence only of the
asymptotic kind of unbiased smoothing parameterh
value. It should however be noted that the practical
implementation, analysis, or possible specialized

modifications the quantile regression method are
significantly more difficult, in particular when
conditioning variables are not only continuous. And
finally, the results obtained using the procedure presented
here were comparable to those of the neural networks
method, as – again – the algorithm from this paper is
simpler and more convenient for implementation, analysis
and possible inclusion of conditioning variables other
than continuous (Section 5).

Table 4: Values of conditional quantile estimator for the
conditioning valuew∗ = 0 without data from the interval
[−0.25,0.25] (for 1000 samples with notion “mean value±
standard deviation”).

m r = 0.05 r = 0.1 r = 0.3

20 −2.291±0.399 −1.917±0.409 −1.032±0.387

50 −2.264±0.292 −1.888±0.268 −1.021±0.265

100 −2.260±0.234 −1.886±0.217 −1.033±0.203

200 −2.210±0.177 −1.831±0.163 −1.011±0.158

500 −2.168±0.127 −1.812±0.120 −1.004±0.111

1000 −2.160±0.099 −1.809±0.093 −1.007±0.088

2000 −2.126±0.085 −1.793±0.081 −1.003±0.073

5000 −2.117±0.076 −1.782±0.072 −1.001±0.064

10000 −2.102±0.074 −1.770±0.074 −1.000±0.062

−−−∞−−− −1.988±0.000 −1.691±0.000 −1.003±0.000

r = 0.5 r = 0.7 r = 0.9 r = 0.95

−0.309±0.437 −0.520±0.473 −1.549±0.452 −1.946±0.444

−0.303±0.303 −0.542±0.330 −1.565±0.309 −1.972±0.327

−0.331±0.222 −0.510±0.247 −1.567±0.240 −1.978±0.251

−0.297±0.181 −0.548±0.199 −1.585±0.193 −1.961±0.204

−0.294±0.126 −0.560±0.141 −1.578±0.133 −1.962±0.140

−0.301±0.091 −0.556±0.107 −1.566±0.106 −1.956±0.111

−0.308±0.071 −0.554±0.083 −1.559±0.084 −1.947±0.090

−0.314±0.054 −0.551±0.065 −1.549±0.075 −1.930±0.077

−0.316±0.045 −0.554±0.053 −1.544±0.073 −1.922±0.075

−0.361±0.000 −0.565±0.000 −1.483±0.000 −1.822± .0000

5 Final remarks and summary

The procedure presented in this paper has been given in its
basic form, easier to implement and calculationally more
convenient. A clearer interpretation means it is possible to
make individual modifications and generalizations, which
may be useful in particular atypical tasks [17].

Thus, the quality of kernel estimator (6) can be
improved by applying the procedure for modifying the
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smoothing parameter [12] – Section 3.1.6; [14] – Section
5.3.1. This consists of the appropriate individualizationof
the above parameter for particular kernels, by suitably
thinning those in the areas of dense sample (5) elements
and additionally smoothing those where elements are
sparse, especially “tails” of distribution. The intensityof
the above procedure can be decided by appropriately
fixing the value of a given parameter. In the conditional
quantile estimation method presented here, this procedure
can prove particularly useful for extreme values of the
quantile order (i.e. close to 0 and 1), for less numerous
random samples, although it has the computational
complexityO(m2nW).

In the case of complicated, irregular, multimodal
distributions of the describing and conditioning variables,
one can apply a more complex procedure for calculating
the smoothing parameter value than those defined by
formulas (27)-(28). Here, particularly worth
recommending is the plug-in method [12] – Section 3.1.5;
[13] – Section 3.6.1 used separately for the variableY and
particular coordinates of the variableW. Its computational
complexity, however, isO(m2nW). For the Cauchy kernel
(23) the constants required there are

∫ ∞
−∞ u2Ki(u)du= 1

and
∫ ∞
−∞ Ki(u)2du= 5/4π for i = 0,1, . . . ,nW.

Newton’s method (19)-(21) can also be applied in
numerous mutations available in literature, in particular
those lessening the number of iterations as well as
extending the convergence area. A broad review of
concepts available on this subject can be found in the
monographs [18,19]. It must, however, be underlined that
in the research undertaken, the problem of no
convergence for sizes of sample (5) guaranteeing
a satisfactory estimation quality (see previous section) did
not arise, largely due to the choice of the starting point in
form (19).

As mentioned in Section 2, the kernelK can assume
many form, which in practice has a slight influence on the
estimator’s quality. A survey of the most commonly used
kernels can be found in the publications [12] – Section
3.1.3; [13] – Sections 2.7 and 4.5. It is worth
remembering the exponential kernel:

K0(u) = K1(u) = . . .= KnW(u) =
e−u

(1+e−u)2 , (35)

due to its particularly convenient primitive function

I =
1

1+e−u . (36)

In this case, the constantCK existing in formulas (27)-(28)
amounts toCK = 3/(2π4).

The kernel estimator’s definition (6) has been
presented in Section 2 for continuous (real) random
variables. Similarly, one can construct kernel estimators
for binary, discrete and categorized (including ordered)
variables, as well as any of their compositions. As an
example the case for binary and basic type of continuous
coordinates combined, will be described below.

Let thenV denote annV-dimensional binary random
variable with the density distribution
fV : {0,1}nV → [0,∞), mapping for eachnV-dimensional
vector with binary values, a probability of its occurrence.
Its kernel estimator can be calculated based on the
random sample values

v1,v2, . . . ,vm (37)

and is defined by the formula

f̂V(v) =
1
m

m

∑
i=1

B(v,vi) , (38)

while the functionB : {0,1}nV ×{0,1}nV → [0,1] is given
by

B(v,vi) = δ k−d(v,vi )(1− δ )d(v,vi) , (39)

with 0.5 ≤ δ ≤ 1, whereas the function
d : {0,1}nV ×{0,1}nV →N is

d(v,vi) = (v− vi)
T(v− vi) . (40)

The value of the functiond equals therefore the number
of these coordinates of the vectorsv and vi , for which
those vectors differ, so the quantitynv− d(v,vi), denotes
the number of coordinates whose vectors are identical and
represent “similarity” of binary vectors. The functionB
takes the role played in definition (6) by kernelK and is
called a binary kernel, while the constantδ has analogous
meaning as the previous parameterh and is therefore
referred to as a binary smoothing parameter. In practice
its value is fixed using optimizing criterions.

Finally, consider the(nX + nV)-dimensional random

variable Z =

[

X
V

]

as a composition of the

nX-dimensional (continuous) variableX, considered
previously in this paper, and the above described
nV-dimensional binary variableV, maintaining the same
assignations as before. If the kernel estimator
f̂Z : RnX ×{0,1}nV → [0,∞) of the random variableZ is
calculated on the basis of them-element random sample

[

x1
v1

]

,

[

x2
v2

]

, . . . ,

[

xm
vm

]

, (41)

then it is defined as

f̂Z

([

x
v

])

=
1

mhn

m

∑
i=1

K

(

x− xi

h

)

B(v,vi) . (42)

So if in the procedure for estimating the conditional
quantile value investigated here, the conditioning vector
consists of the continuous and binary coordinates, then
the above concept can be easily taken into account
through multiplying by the binary kernelB the factors of
the sums of the nominator and denominator in formula
(11). This results in its entry to the definition of
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conditioning parameters (13) with no other changes in the
described algorithm, which should be clearly noted.

The literature concerning the construction of kernel
estimators for binary, discrete and categorical (ordered as
well) coordinates as well as their compositions
(especially with continuous variables) is quite broad and
varied. For the first case, it is worth quoting the classic
monographs [12] – Section 3.1.8; [14] – Section 6.1.4 as
well as the classic paper [20], and for the second [21,22].
Issues connected with categorical variables can be found
in the publications [23,24,25]. After introducing a binary,
discrete and/or categorized variable to the algorithm
worked out here, it undergoes practically no changes –
apart from technical ones resulting from calculational
differences – as it is briefly described above for binary
variables. This property particularly should be underlined
considering the modern data analysis tasks, which more
and more often take advantage of the many different
configurations for particular types of attributes.

In summary, this paper presents a convenient
ready-to-use procedure for calculating the kernel
conditional quantile estimator value. In particular
Section 3 gives a complete algorithm for use without
getting deeper into the mathematical aspects or laborious
specific research. Thanks to the use of a nonparametric
kernel estimators method, this procedure is distribution
free, and due to its averaging feature it becomes robust to
lack of data from the neighborhood of the fixed
conditioning value. Its computational complexity is linear
both in respect to sample size as well as dimension of a
conditioning vector. A clear and near-intuitive
interpretation allows the creation of individual
generalizations and modifications with the aim of altering
them to specific unusual practical applications. In
particular it is possible to consider continuous, binary,
discrete, categorized, and any their compositions, as
conditioning variables.

The algorithm’s simplicity and ability to include
conditioning variables of different types are the main,
noteworthy positives of the presented method. In the basic
case for continuous variables as well as the ability to use a
ready library or calculation bundle in the concrete
application, it is necessary however to pay tribute to the
classic method of quantile regression as being more
precise.
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