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Abstract: This paper contains a complete procedure for calculatiagdfue of a conditional quantile estimator. The concepased
on the nonparametric kernel estimator method, which frieeslgorithm from the random variables’ distributions. Finecedure was
worked out in a ready-to-use form — specific formulas for fiows and the parameter used were given. The practical meigation
of this method is very simple, and its computational comipyeis linear with respect to random sample size as well aglimension
of conditioning variable. Thanks to a clear, near intuitinerpretation it can easily be modified or generalized ddpwy on the
individual needs of atypical applications. In particutzonditioning variables can be taken into account, not oahtiouous (real), but
also binary, discrete and categorized, or any of their coatfins.
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1 Introduction calculated on this basis, and especially — due to squaring
— of the standard deviation. This type of error can occur
Consider for initial illustration — without mathematical quite often in the ubiquitous case of automating data
formality for the moment — a random variable with real collection, unchecked by humans. The above mistake will
values. The quantile of the assumed onder(0,1) isthe  have a much smaller effect on the estimation of the
numberg; € R, such that the probability of the random quantile, if the erroneous value of 184 will be treated here
variable taking values less than or equabtds r, while  solely as one of the large values, with no consequences
for those greater than or equal is-1. In a particular case  resulting from the fact that it is bigger by a hundred times.
whenr = 0.5 the quantileqps is called a median and
plays the analogical role to the expectation value. The median has one other valuable property, which is
Similarly, the difference of the quantile of the orders of seeing ever more application as robust systems develop;
0.75 and 025, i.e. qo.75 — Qo.2s, referred to as quarter namely, the estimation errors of parameters in complex
deviation, fulfills the role of a standard deviation. systems can have an asymmetrical influence on their
In comparisons of the median and quarter deviationquality. For example for the case of control of
properties with the classic expectation value and standard mechanical object, underestimation of its mass leads to
deviation, the former often prevails in practical adverse limit cycles, while overestimation results in
applications. First, they are robust with respect to otglie a more effective sliding trajectoryl]. In this situation,
often arising from so-called gross errors. If for exampleinstead of estimating the mass by expected value or
a decimal point is mistakenly omitted in giving a person’s median, it is worth using a quantile of order greater than
height, then instead of 1.84 we get 184, which 0.5, to increase the probability of a more advantageous
significantly changes the estimator of the expected valueverestimation in place of underestimation. The expected

* Corresponding author e-makiotr.Kulczycki@ibspan.waw.pl

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090233

842 NS 2 P. Kulczycki et. al.: A Convenient Ready-to-Use Algorithan.f.

value does not possess any parameter allowinginique. The conditional quantileq,,. constitutes
overestimation to be preferred to underestimation ortherefore the refinement of the “classic” quantije by
vice-versa. using the information that the conditioning random
In specific practical applications, the quality of variable, in a specific situation, took the valwre
estimation of all possible characteristics of probability
distribution can effectively increase through selectidn o
guantities bearing significant influence on the examined The estimation of the quantile value is not a simple
phenomena and their appropriate introduction to thetask, nor has it been elaborated sufficiently. A survey of
algorithm. Later consideration — in specific calculations —classic methods for the unconditional case can be found
of definite values (for example in heating, the currentin the publications?,3]. For typical simple applications,
outside temperature, or the current exchange rate impositional estimators4] can be recommended, as can
marketing and management) makes the obtained resukernel |5,6]. In the case of the conditional quantile the
significantly more precise. With respect to the quantile,most commonly applied is the quantile regression method
the above leads to the notion of a conditional quantile.[7]. This consists of treating conditioning variables as
This will be exactly formulated and interpreted below. arguments of regressive function and calculating its value
Let the one-dimensional random variaMéde given,  which best approximates that of the quantile of a given
with a distribution characterized by the density. A order. Here, the lineaB] and kernel-base®] models are
quantile of the order € (0,1) is every numben; € R, most often used. This offers satisfactory results for the
such that o majority of practical cases and is rightly considered as the
/ fy(y)dy=r . (1) leading method at this time. However, as usual, there are
—c0 also disadvantages. For example for two different orders
If the support of the functiorfy is connected (e.g. when ©f quantile, the regression functions can intersect, which
fy is positive), then the quantile is unique. implies that for a fixed condition, and for two orders of
The above definition will now be generalized for the the quantiler; < ry it may occur that the estimator of
conditional case. Here, besides the basic (sometimeguantile g, is greater that ofqgr,, which contradicts
termed the describing) one-dimensional random variablégnonotonicity — a basic feature of quantiles with respect to
Y, let also be given thew-dimensional random variable their order. This leads to many difficulties in application
W, called hereinafter the conditioning random variable.and interpretational misunderstandings. Moreover, to
] - ) ) write a program alone which realizes this procedure is not
Their compositiorZ = |, | is a random variable of the gasy nor its analysis of the method allowing a study of
dimension ny + 1. Assume that distributions of the €rrorsand the creation of mutations adapted to individual
variables Z and, in consequenca) have densities, Nheeds. The above implies the research into many different
denoted below as f; : R™l — [0,0) and concepts, some of which lie beyond statistical methods,
fw 1 R™W — [0,0), respectively. Let also be given the €-9-[0,11].
so-called conditioning value, that is the fixed value of

a conditioning random variablg* € R™, such that . .
This paper presents a procedure for calculating the

fw(w*) >0. (2)  estimator of a conditional quantile, based on the statiktic
) . kernel estimator methodology. Its nonparametric nature
Then the functiorfyy—y- : R — [0, ) given by implies the worked out procedure is independent of types
of random variable distributions. The key advantage is,
iy w () = fx(yw) for everyy € R (3) however, its simplicity and ease of int.erpretation. Th_e
fw (W*) former allows the presentation in Section 3 of a basic

version of the algorithm for continuous random variables,
in ready-to-use form, so that a user wishing to employ it
does not have to go into the mathematical foundations
discussed below in Section 2, merely apply the formulas
from the third section consecutively. Section 4 describes
the results of numerical simulation, while the final
Section 5 summarizes the subject material and — thanks to
its simplicity of interpretation — offers the possibilisi@f
creating individual modifications suitable in practice for
specific particular applications, especially the poténtia

Orjw* increase in estimation accuracy and generalization of

/ fyw=w: (Y)dy=r . (4)  conditioning variables, not only the continuous (real), but

- it should be clearly underlined, also binary, discrete and
Similarly to the above unconditional case, if the supportcategorical (ordered and unordered), as well as their
of the functionfyw_ is connected, then the quantile is compositions.

constitutes a conditional density of probability
distribution of the random variab}é for the conditioning
valuew*. The conditional densityfy_,« can therefore
be treated as a “classic” density, whose form has been
made more accurate in practical applications with—
a concrete value taken by the conditioning variaien
a given situation.

Next, a quantile of the order € (0,1) with the
conditionw” € R™ is every numbeg, - € R , such that
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2 Conditional quantile estimator

calculating the value of the parameteion the basis of
random sample5) have been worked out, although most

This section presents the mathematic foundations of thef them are time-consuming, especially with large sample
proposed method. Readers not very interested in theizesm. For broader discussion of the above tasks §@ge [
formal aspects, can find a description of the investigatedL3,14].

procedure in its-ready-to-use form within Section 3.

Let the n-dimensional random variabl& be given,
with a distribution characterized by the density Its
kernel estimator f : R" — [0,), calculated using
experimentally obtained values for theelement random
sample

X13X27"'7Xm7 (5)
in its basic form is defined as
1 m X—Xi
e (5@

where m € N\{0}, the coefficienth > 0 is called

a smoothing parameter, while the measurable functio

K :R" — [0,0) of unit integral [pnK(x)dx = 1,

symmetrical with respect to zero and having a weak
global maximum in this place, takes the name of a kerne

The choice of form of the kern&l and the calculation of
the smoothing parametéris made most often with the
criterion of the mean integrated square error.

Thus, the choice of the kernel form has — from

The kernel estimators technique will now be used
below for the task of conditional quantile estimation,
formulated in the Introduction. Let — as defined there — a
one-dimensional describing random variaflas well as
the nw-dimensional conditioning random variablfé be
given. Suppose also the random sample

FHEHESEE

obtained from the variabl& = Y]. The particular

(8)

w

elements of this sample are interpreted as the vajues
aken in measurements from the random variahlehen

he conditioning variablg/ assumes the respective values
w;. Using the methodology presented in the first part of

Ithe section below, on the basis of samp® ¢ne can

calculatef; , i.e. the kernel estimator of density of the
random variableZ probability distribution, while the
sample

9)

W1,Wo,...,Wn

a statistical point of view — no practical meaning and gives f,y — the kernel density estimator for the
thanks to this, it becomes possible to take into accountonditioning variable W. The kernel estimator of
primarily properties of the estimator obtained, or conditional density of the random variabteprobability
calculational aspects, both advantageous from the point ofiistribution for the conditioning value*, is defined then
view of the applicational problem under investigation; for — a5 a natural consequence of formuB) ¢ as the

broader discussion seeld - Section 3.1.3; 13] —

function fY\W w - R — [0,00) given by

Sections 2.7 and 4.5. In practice, for the one-dimensional

case (i.e. whem = 1), the functionK is assumed most
often to be the density of a common probability
distribution.

product kernels. However, the former is somewhat mor
effective, although from an applicational point of view,
the difference is immaterial and the product kernel —
significantly more convenient in analysis — is often
favored in practical problems. Thedimensional product
kernelK can be expressed as

X1
X2

K(x) =K = J1(X1)H2(X2) ... n(Xn), (7)
Xn

where % for i = 1,2,....n denotes the

previously-mentioned one-dimensional kernels, while the

expressiorh" appearing in the basic formul®)(should
be replaced byh; - h; - - hp, the product of the
smoothing parameters for particular coordinates.

The fixing of the smoothing parametenas significant
meaning for quality of estimation. Fortunately — from the

In the multidimensional case, two natural
generalizations of the above concept are used: radial an
e

f\X(yv\N*) )

f (W) (0

e () =

i

for the estimatorfyy one uses a kernel with positive
values, then the inequalityfw(w*) > 0 implied by
condition @) is fulfilled for anyw* € R™w,

In the case when for the estimatofs and fy the
product kernel 7) is used, applying in pairs the same
positive kernels to the estimatdiy and to the lashy
coordinates of the estimatdy, then the expression for
the kernel estimator of conditional density becomes
particularly helpful for practical applications. Formula
(10) can then be specified to the form

Frpww (¥) = (11)
Rt () () e (™)
() o ()

where ho,hy,...,hy, represent respectively
smoothing parameters mapped to particular coordinates

applicational point of view — many suitable procedures for of the random variabl& (the firsthy connotes with the
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describing variableY, and the resthy,... hy, with then limy, . oL (Grw:) < 0, limg,, 5ol (Grws) > O, the
subsequent coordinates of the conditioning varidlile  function L is (strictly) increasing and its derivative is
while the coordinates of the vectos$ andw; are denoted  simply expressed by

as

~ 12 qr\v\/* —Vi
/ I X
w; " Ul ) 5o > (M) o
W5 Wi 2 . h
=1 and wi = | . fori=1,2,...m. In this situation, the solution of equatiori@) can be
W,; w-. effectively calculated on the basis of l}loewton's algorithm
w 1w (12) [15] as the limit of the sequenc - j }j:O defined by
Define the so-called conditioning parameteds for m g
i =1,2,...,mby the following formula: Grjwe0 = ZZ'T# ('jy' (19)
' i=1Yi
W — Wi wt — W, A
d =th1(1h7'l) o Ty (“Nhi”“) ) ) L@rw) ,
1 w Griwe,j+1 = Griw.i — Tra ) for j=0,1,..., (20)

(Qrwe i)

If one uses the kemelséy, 45, ..., JFn,, With positive with the functionsL andL’ being given by dependencies

values, these parameters are also positive. So the kern -
oo by ; : -(18), wher t riterion tak n the form
estimator of conditional densityl{) can be presented in 67) (18), whereas a stop criterion takes on the fo

the form ‘qr‘w*J — qr‘wm_l‘ <0.016v , (21)

£ _ 1 < o Yy while 6y denotes the estimator of the standard deviation
R (V) = hoy ", di iZd'%< ho ) - 19 of the random variabl¥.

The value of the parametdy characterizes the “distance”

of the given conditioning value/* from w; — that of the 3 Algorithm for conditional quantile

conditioning variable for which thé-th element of the estimator — summary

random sample was obtained. Then estimatdy ¢an be

interpreted as the linear combination of kernels mappedrhe section below gives an explicit algorithm for
to particular elements of a random sample obtained foig|cyating the conditional quantile estimator according
the variableY, when the coefficients of this combination he concept presented in the previous point. Its basic form
characterize how representative these elements are for thgj| pe given, suitable for immediate application without

given valuew". The factory i, dj norms the value of the e need for getting into theoretical aspects or specific
estimator with the aim of ensuring a unit integral. research.

With respect to the definition of a conditional quantile  consider — as has been the case up to now — the
(4), its natural estimator is the solution of the following gescribing random variabl¥ of values inR and the

equation with the argumen:: conditioning random variabl&V with values in R™.
4 Denote then the required-element random sample in the
rw* A~
/40 fyw=w (Y)dy=r. (15) form
Y1 Y2 Ym

For the estimator of conditional densityfyjy_y: W1 W21 Wm1

appearing above, the kernel estimator given in the form Wiz | | Wez | | Wm2 | | (22)
(14) will be used. Moreover, as¢g contained within, one : : :
should choose a continuous kernel of positive values, and
also so that the functions : R — R such that

S (w) = " #(u)du can be expressed by a relatively Their elements represent the valyesneasured from the
simple analytical formula. Equatiod$) can be expressed describing variableY when the conditioning variable/

W1,ny W2,ny Wm,ny

then equivalently in the following form: Wi 1
Wi 2
m Gyt — Vi m assumed the valueg, = ) , respectively fori =
Zidif (W) —I’Zidi =0. (16) o : P y
= ° = Wiy
. . . 1,2,....m.
If the left side of the above equation is denotedbye. The kernel will be assumed here in the Cauchy form:
Law) =3 ar () rS a0 an - =21 3
i ;l ho i;h o(u) = U =... = “N(”)_Em' (23)
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In the quantile estimation task investigated here its “feav
tails” behave favorably. The primitive of kernél3) takes
the form:
1 u 1
F(u) = 7TarctamjuH— G + 5 (24)

The smoothing parameters will now be established.
The simple but effective method based on the Gaus
distribution [L2] — Section 3.1.5;13] — Section 3.2.1 will
be used. First, the estimators of standard deviations ar
calculated for the variableY and the particular
coordinates of the variabW'

2
3 1D 1 m
6y = \l m—_li;y? w1 (;m) (25)

and

2
A 1 1 m
Owi = J o1 mmoD) (;Ww) (26)

for particular coordinates) = 1,2,....nw. Then, the
smoothing parameters can be obtained from formulas:

1/5
8ym_. 1 ~

ho = (%—CK E]) Oy (27)
and s
8/m_ 1 A

hj = (T\/—CKE) o (28)

for particular coordinate$ = 1,2,...,nw, while for the
Cauchy kernelZ3) the constanCx equals

5
=an (29)
Now — after fixing the smoothing paramete2¥)-(28) —
for the specific conditioning value

wi=1| |, (30)

random sample 22) and kernel form Z3), one can
calculate from formulaX3) the conditioning parameters
dy,dp,...,dm.

At present all quantities necessary for the use of
iterative algorithm {9)-(21), from which the value of the

parameters are obtained above, whereas the numbers
andy; can be found in sampl@®), and the quantile order
r is arbitrarily assumed.

It is worth underlining in particular that the algorithm
above is of linear computational complexity both with
respect to the sample sine and the conditioning vector
dimension ny, i.e. O(mny). The convergence of
Newton’s algorithm is quadratic; its application in the

Yask investigated here most often requires 5-8 iterations.

Both of these features result in relatively short
gomputational times, for large sizes of samgigtoo.

4 Numerical verification

The correct functioning and positive properties of the
algorithm presented in this paper were confirmed with
detailed numerical verification.

Assume for transparency of the results’ interpretation
Y
w
have a distribution being the sum of two Gauss factors

with expected values, covariance matrixes and shares,
respectively,

thatny = 1, and let the tested random variaile=

E,— {_01} Covi — {0.17 0'17] 60%  (31)

1 0'7} 40%. (32)

1
B2 = M Ccov = {0.7 1

As can be seen, the describifygand conditioningwW
variables are positively correlated. The former is of
asymmetrical bimodal distribution and the latter —
standard Gauss. The expected values of the variables
andW as well as their standard deviations are

Ey =—0.2, oy =2 (33)

Ew=0,0y=1. (34)

The results acquired with the algorithm from Section
3 forw" =0,w" =1, w" =2, so for the modal value of
a conditioning random variable as well as at the first and
second standard deviation, are presented in Tab. 1, 2 and 3,
respectively. Each of their cells shows the obtained values
of the estimator, calculated on the basis of 100 tests and
recorded in the classic formula: “mean valttestandard
deviation”. The symbobo denotes there the analytically
achieved theoretical value.

In Tab. 1-3 the results have been shaded where the
mean estimation error is greater than 10% of the standard

conditional quantile estimator is obtained, have beendeviation of describing valuey, i.e. 0.141 (see formula

defined. Thus, in formula2@) a value is given fordy,
completing stop condition26). The functionsL andL’,

(33) ) or where the standard deviation of the estimation
error is greater than 20% @k, i.e. 0.282. One can note

contained in formulas1Q)-(20), are given as17) and that for modal valuew* = 0 satisfactory results are

(18), and the functions#p and.# by (23) and @4). The
smoothinghg, hy, ..., hy, and conditioningdy,dy, ..., dm

obtained for samples of sizes 20-50, and for extreme
ordersr = 0.05 or r = 0.95 from 200. For the first
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standard deviatiow* = 1 this occurs respectively for

Table 2: Values of conditional quantile estimator for the

sizes 100-200 and 200-1000. And finally for the Secondcondi’[ioning valuew* = 1 (for 1000 samples with notion “mean
standard deviationw* = 2, generally a sample of Value standard deviation”).

200-1000

is

required, while extreme orders can
necessitate even 1000-2000. Taking into account thé m [
conditional character of the considered problem and the
assumed quality criteria, the need for such size seemg
reasonable in practice. It is worth underlining that the
estimation of quantile of the extreme orders- 0.05 or

r = 0.95, or also for the second standard deviation

w* = 2, is a task of no small difficulty.

The results obtained in the three enclosed tables|
related to the subsequent conditioning valwes= 0,
w* =1, w* = 2, will now be compared. The first of them
corresponds to the modal value of the conditioning
variable W (see formulas 31)-(32) ). Because the
variablesy andW are correlated positively, for* = 1 the
estimators values become bigger thanviér= 0. When
w* = 2 these values increase even more.

Table 1: Values of conditional quantile estimator for the
conditioning valuev* = 0 (for 1000 samples with notion “mean

value+ standard deviation”).

In the cases— o5

I m | r=o005s | r=01 | r=03

20 ~2211+0.391 | —1.856+0.393 | —1.000+0.376

50 218740291 | —1.834+0.264 | —1.000-+0.254

100 216840226 | —1.810+0.201 | —1.006+0.191

200 212740168 | —1.782+0.150 | —1.006+0.143

500 ~2093+£0.114 | —1.760+0.101 | —1.004+0.101

1000 —2070+£0.086 | —1.747+0.077 | —1.006+0.075

2000 —2.053+£0.069 | —1.734+0.060 | —1.004-+0.058

5000 —2036+£0.046 | —1.723+0.041 | —1.004+0.039

10000 —2.024+0.035 | ~1.715+0.031 | —1.004-+0.029

o ~1.988+0.000 | —1.691+.0000 | —1.003-0.000
r=05 r=07 r=09 r=095 ||

—0.288+0434 | 055310478 | 155740442 | 1.939+0.434

—0.297+0.301 | 055440332 | 1.566:+£0.306 | 1.958+0.330

~0.309+£0234 | 055240251 | 1.565:+0.235 | 1.964+0.252

~0.322+£0.182 | 055310198 | 1.552+0183 | 1.938+0.198

032940131 | 055640146 | 1.532+0129 | 1.907+0.139

—0.337+£0.099 | 055540112 | 1.524+0094 | 1.892+0.102

—0.339+0.076 | 055840084 | 1515+0071 | 1.879+0.080

—0.345£0.053 | 056240059 | 1.508+0.050 | 1.864+0.055

—0.349+£0.042 | 056240046 | 15020036 | 1.856+0.040

—0.361+£0.000 | 0.565+0.000 | 1.483+£0.000 | 1.822+0.000

r=005 | r=01 | r=03
20 —1648+£0.404 | —1.270+0.425 | —1.438+0.474
P 50 158740315 | —1.228+0.304 | —0.404-+0.325
100 155440266 | —1.180+0.238 | —0.396+0.244
200 ~1512+0.202 | —1.131+0.178 | —0.376:0.184
500 _1455+0147 | —1.120+0.129 | —0.360+0.128
1000 ~1.419+0.109 | —1.094+0.096 | —0.350+0.096
! 2000 ~1.386+:0.084 | —1.068+0.073 | —0.334+0.072
5000 ~1.358+0.060 | —1.046+0.053 | —0.326+0.050
10000 ~1.343+0.046 | —1.034+0.041 | —0.320+0.039
o ~1.288+0.000 | —0.9914+0.000 | —0.303-0.000
r=07 r=09 r=095 ||
0.254+0.547 | 1.046+0584 | 1.997+0571 | 2.365+0.546
0.297+0.402 | 1119+0430 | 211340416 | 2.482+0.420
0.303+0.312 | 1.146+0333 | 216440312 | 2.560+0.328
0.319+0.246 | 1174+0266 | 2.169+0.236 | 2.555+0.250
0.317+0.169 | 1192+0183 | 2174+0.162 | 2.545+0.177
0.320+0.129 | 1207+0138 | 217240117 | 2.537+0.130
0.329+0.099 | 1.223+0107 | 2.180+0.090 | 2.540+0.100
0.334+0.069 | 1237+0078 | 218440062 | 2.537+0.070
0.334+0.055 | 1243+0060 | 2.182+0.048 | 2.533+0.052
0.339+0.000 | 1.265+0000 | 2.183+0.000 | 2.522-+0.000

conditioning value, considered in this paragraph,
constitutes the essence of the conditional approach
investigated in this paper. Note that in applicational sask
indicating the concrete conditioning valua* can
significantly improve the accuracy of the model of reality
under investigation.

In practice it may occur that the amount of data
acquired for the purposefully used conditioning vaie
or even in its neighborhood, is completely insufficient for
reliable statistical inference. Table 4 shows the results
corresponding to Tab. 1, where the random sample
contained no elements for the conditioning variable from
the interval[—0.25,0.25], so in the rangev* + 0.250y,
therefore with the width of half the standard deviation.
Comparing Tab. 1 and 4 one can conclude that — apart
from extreme orders of quantile — the required sample
size practically does not increase. The above is worth
underlining from a practical point of view, and arises
from the general averaging features of kernel estimators.

Finally, it is worth noting that in any case shown in
Tab. 1-4, as the sample size increased, the obtained

w" = —1, w* = —2 the estimators values are respectively parameter value converged to the theoretical, and the
smaller than fow* = 0, which because of symmetry have standard deviation to zero. The above asymptotical
been omitted from Tab. 1-3. It should be underlined thatfeatures are of fundamental significance from an
the dependence of the estimator value on the giverapplicational point of view, as they prove that it is
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possible to obtain any precision wished, although thismodifications the quantile regression method are
requires the assurance of a sufficient random sample sizaignificantly more difficult, in particular when

In practice, therefore, the necessity of the rightconditioning variables are not only continuous. And
compromise between these quantities is called for. Thidinally, the results obtained using the procedure presented
empirically proves the strong consistency of the estimatohere were comparable to those of the neural networks
worked out. The formal proof for the unconditional case method, as — again — the algorithm from this paper is
was presented in the papé&] | for the conditional case simpler and more convenient for implementation, analysis
considered here, the proof is analogous however buand possible inclusion of conditioning variables other
technically and formally more complicated. Some basicthan continuous (Section 5).

theoretical investigations can also be found in the article

[16].

Table 4: Values of conditional quantile estimator for the
conditioning valuew* = 0 without data from the interval
Table 3: Values of conditional quantile estimator for the [-0.250.25 (for 1000 samples with notion “mean value
conditioning valuev* = 2 (for 1000 samples with notion “mean  standard deviation”).
value+ standard deviation”).

I m | r=o0s | r=01 | r=03 |

1 m [ r=00s | r=o01 r=03 | 20 22910399 | —1.917+£0.409 | —1.032+0.387
20 ~1171£0523 | —0733+0584 | 0.196+0.758 50 —2264+0292 | 188840268 | —1.021+ 0265
50 ~1010£0.373 | —0601+0434 | 0.273+£0590 100 —2260+0.234 | —1886+0217 | —1.033+0203
100 ~0919+0.333 | —0546+0356 | 0.273£0435 200 —2210£0177 | 183140163 | —1.011+0158
200 —0.863+0.280 | —0518+0295 | 0.280+£0279 500 —2168+0127 | —1812+0120 | —1.004+0111
500 —0808+0.256 | —0475£0237 | 0.300+0.247 1000 —2160£0.099 | —1.809+0.093 | —1.007+0.088
1000 —0.767+0.203 | —0.430£0180 | 0.318+0.190 2000 —2126+0085 | —1.793+0081 | —1.003+0073
2000 —0726+0159 | —0412+0.143 | 0.332+0143 5000 211720076 | _1782+0072 | _1.001-0.064
5000 ~0701£0117 | —0383+0.103 | 0.347+:0106 10000 —2102+0074 | —1.770+0074 | —1.000+0.062
10000 —0675+0.090 | —0.363+0.079 | 0.360+0.080 - T1088-0.000 | 169140000 | _L003<0.000

© —0.588+0.000 | —0.291+0000 | 0.397+0.000

| r=05 r=07 r=09 r=095 ||

=05 =07 =09 =095 | 030940437 | 052040473 | 1549:0452 | 1946+0444
0.854+0863 | 150240914 | 224910825 | 2568+0.779 03050303 | 05420330 | 156510305 | 197250327
Q9BOH0M00 | MENESSHONWSE | M2MSIEH0G98 | MASIPEH0ESE0 033110222 | 051040247 | 1567+0240 | 1978+0.251
UOrSHEOGES | MEMAGE0NOT | M26r23E0650 | MA9B3H0G25 —0297+0.181 | 0548+0199 | 1585-0193 | 1961+0.204
QIOTASEORA? | EEN/SEE0MB) | MRMAGEOMES | MEI0GASE0MSY 029410126 | 0560+0141 | 1578+0133 | 1962+0.140
MIONPEAOEES | MENARISE0N6D | M2B0RSENES7 | MBNGIH0SE69 —0301+0091 | 0556+0107 | 1566+0.106 | 1956+0.111
0.096+0.263 | 185540274 | 282640251 | 3.186+0.272 03080071 | oma 0083 | 1ce0 0054 | 19470090
1003+0202 | 1880+0232 | 2841+0188 | 3.201+0.208 o314 005 | omiooee | 1oa0 005 T 19300077
101140152 | 1906+0170 | 2.852+0130 | 3.206+0.145 03160005 | oo 00ms | 1oaai00s T 19220075
101840117 | 1917+0131 | 28610100 | 3.215+0.111 03610000 | 050000 | 14850000 | 18225 0000

1039+0000 | 1965+0000 | 2.883+0000 | 3.222+0.000

The above results were compared to those obtained by
other methodologies, in particular quantile regressijn [ )
and neural networkslfl]. When using the first of these, 5 Final remarks and summary
the calculations produced better effects than with the
procedure investigated here. This was especially true foil he procedure presented in this paper has been given in its
mean — in respect to numerous random samples — valudsasic form, easier to implement and calculationally more
of examined estimators, while their variances wereconvenient. A clearer interpretation means it is possible t
similar. Tables 1-4 show the negative influence only of themake individual modifications and generalizations, which
asymptotic kind of unbiased smoothing paramelter may be useful in particular atypical taskis7].
value. It should however be noted that the practical Thus, the quality of kernel estimato6)( can be
implementation, analysis, or possible specializedimproved by applying the procedure for modifying the
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smoothing parametedp] — Section 3.1.6;14] — Section Let thenV denote amy-dimensional binary random
5.3.1. This consists of the appropriate individualizatién  variable with the density distribution
the above parameter for particular kernels, by suitablyfy : {0,1}™ — [0,), mapping for eachm,-dimensional
thinning those in the areas of dense samp)ee(fements  vector with binary values, a probability of its occurrence.
and additionally smoothing those where elements ardts kernel estimator can be calculated based on the
sparse, especially “tails” of distribution. The intensity ~ random sample values
the above procedure can be decided by appropriately
fixing the value of a given parameter. In the conditional V1,V2,...,Vm (37)
guantile estimation method presented here, this procedure
can prove particularly useful for extreme values of theand is defined by the formula
guantile order (i.e. close to 0 and 1), for less numerous L m
random samples, although it has the computational ¢ _ 4 _
complexityO(mPny). (V) = mi;B(V’V') ’ (38)

In the case of complicated, irregular, multimodal
distributions of the describing and conditioning variahle while the functionB : {0,1}"™v x {0,1}"vV — [0,1] is given
one can apply a more complex procedure for calculatingoy
the smoothing parameter value than those defined by B(v,v;) = 8K 4w (1 — g)d(vu) (39)
formulas  (27)-(28). Here, particularly  worth
recommending is the plug-in methot] — Section 3.1.5; with 05 < 6 < 1, whereas the function
[13] — Section 3.6.1 used separately for the variabnd ~ d: {0,1}"V x {0,1}"V — Niis
particular coordinates of the variabhé Its computational

complexity, however, i©(nm?ny). For the Cauchy kernel dv,vi) = (v—v)T(v—v) . (40)
(23) the constants required there gf&, u?.#(u)du= 1
and [, #(u)2du=5/4mfori =0,1,...,ny. The value of the functiod equals therefore the number

Newton's method (19)-(21) can also be applied in of these coordinates of the vectorsand v;, for which
numerous mutations available in literature, in particularthose vectors differ, so the quantity —d(v,vi), denotes
those lessening the number of iterations as well adhe number of coordinates whose vectors are identical and
extending the convergence area. A broad review of€Present “similarity” of binary vectors. The functid
concepts available on this subject can be found in thd@kes the role played in definitioB)(by kernelK and is

monographsi8, 19]. It must, however, be underlined that called'a binary kernel,_while the const@hafs analogous
in the research undertaken, the problem of noMeaning as the previous parameterand is therefore

convergence for sizes of sample (5) guaranteeind€ferred to as a binary smoothing parameter. In practice
a satisfactory estimation quality (see previous sectidsh) d Its va_lue is fixed using optimizing criterions.

not arise, largely due to the choice of the starting pointin  Finally, consider the(nx + nv)-dimensional random
form (19). , _ variable z = |X| as a composition of the

As mentioned in Section 2, the kerri€lcan assume \4

many form, which in practice has a slight influence on thenx-dimensional (continuous) variableX, considered
estimator’s quality. A survey of the most commonly used previously in this paper, and the above described
kernels can be found in the publicatior] — Section  hy-dimensional binary variablg, maintaining the same

3.1.3; 13 - Sections 2.7 and 4.5. It is worth assignations as before. If the kernel estimator
remembering the exponential kernel: fz 1 R™ x {0,1}™ — [0,) of the random variabl& is
! calculated on the basis of tieelement random sample
-
Jou)=1U)=...=Jh,U) = ——= 35
O( ) 1( ) nvv( ) (:H_e—u)z , (35) [Xl} [XZ] [Xm] 1)
. . . L . Vi || V2] [ Vm] ]
due to its particularly convenient primitive function
1 then it is defined as
=TTauc (36)
1+e u ~ 1 m X— X
: o fz =—>K B(v,vi) . (42)
In this case, the consta@k existing in formulas (27)-(28) v mh" £ h

amounts taCx = 3/(21).

The kernel estimator's definition (6) has been So if in the procedure for estimating the conditional
presented in Section 2 for continuous (real) randomquantile value investigated here, the conditioning vector
variables. Similarly, one can construct kernel estimatorsconsists of the continuous and binary coordinates, then
for binary, discrete and categorized (including ordered)the above concept can be easily taken into account
variables, as well as any of their compositions. As anthrough multiplying by the binary kern@ the factors of
example the case for binary and basic type of continuoushe sums of the nominator and denominator in formula
coordinates combined, will be described below. (11). This results in its entry to the definition of
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conditioning parameter4d.8) with no other changes in the [4] R.S. Parrish, Comparison of Quantile Estimators in Nairm
described algorithm, which should be clearly noted. Sampling, Biometricg6, 247-257 (1990).

The literature concerning the construction of kernel [5] P. Kulczycki and A.L. Dawidowicz, Kernel Estimator of
estimators for binary, discrete and categorical (ordesed a ~ Quantile, Universitatis Jagiellonicae Acta Mathematiia
well) coordinates as well as their compositions [6] éo\]l-lslhzegﬁgrg)énd J.S. Marron, Kernel quantile estirsato
\(/zsri%%(flzli:l:)yr mtg f(i:rc"s?t::r;usc(’al,jsi‘tvigr@glr?; )qu' O?iﬁléetﬁgoggg}g Journal of the American Statistical Associati®s 410-416

. / . (1990).
monographs]2] — Section 3.1.8;14] — Section 6.1.4aS |71 g “koenker, Quantile Regression, Cambridge University

well as the classic pape2()], and for the second?[L, 22]. Press, Cambridge (2005).
Issues connected with categorical variables can be foungs] R. Koenker and G. Bassett, Regression quantiles,
in the publications23,24,25]. After introducing a binary, Econometricat6, 33-50 (1978).

discrete and/or categorized variable to the algorithm[9] I. Takeuchi, Q.V.Le, T. Sears, and A.J. Smola, Nonpataime
worked out here, it undergoes practically no changes — quantile estimation, Journal of Machine Learning Rese@sch
apart from technical ones resulting from calculational ~ 1231-1264 (2006).

differences — as it is briefly described above for binary[10] H. White, Nonparametric Estimation of Conditional
variables. This property particularly should be undedine ~ Quantiles Using Neural Networks, Computing Science and
considering the modern data analysis tasks, which more__Statistics24, 190-199 (1992). . N
and more often take advantage of the many dif‘ferenill] P. Wawrzynski and A. Pacut, Modeling of distributions

. . . . with neutral approximation of conditional quantiles, 2nd
configurations for par.tlcular types of attributes. . IASTED International Conference on Artificial Intelligemc
In summary, this paper presents a convenient

: and Applications, Malaga, Spain, 9-12 September 2002, 539-
ready-to-use procedure for calculating the kernel g, (2002).

conditional quantile estimator value. In particular [12] p. Kulczycki, Estymatory jadrowe w analizie systenajw
Section 3 gives a complete algorithm for use without  \WNT, Warszawa (2005).

getting deeper into the mathematical aspects or laboriougl3] M.P. Wand and M.C. Jones, Kernel Smoothing, Chapman
specific research. Thanks to the use of a nonparametric and Hall, London (1995).

kernel estimators method, this procedure is distribution[14] B.W. Silverman, Density Estimation for Statistics aDdta
free, and due to its averaging feature it becomes robust to _Analysis, Chapman and Hall, London (1986). _
lack of data from the neighborhood of the fixed [191D. Kincaid and W. Cheney, Numerical Analysis,
conditioning value. Its computational complexity is linea ., Brooks/Cole, Pacific Grove (2002).

. . . . 16] M. Samanta, Non-parametric estimation of conditional
both n rgspect to sample size as well as dlmer.15|0.n. of & quantiles, Statistics and Probability Lette 407-412
conditioning vector. A clear and near-intuitive

. . . A 1989).

interpretation allows the creation of individual [17]( P. Kl).I|Czkai, O. Hryniewicz, and J. Kacprzyk, Techniki
generalizations and modifications with the aim of altering " jnformacyjne w badaniach systemowych, WNT, Warszawa
them to specific unusual practical applications. In  (2007).

particular it is possible to consider continuous, binary,[18] P. Deuflhard, Newton Methods for Nonlinear Problems.
discrete, categorized, and any their compositions, as Affine Invariance and Adaptive Algorithms, Springer, Berli
conditioning variables. (2004).

The algorithm’s simplicity and ability to include [19] C.T. Kelley, Solving Nonlinear Equations with Newtsn’
conditioning variables of different types are the main, __Method, SIAM, Philadelphia (2003). o _
noteworthy positives of the presented method. In the basi¢20] J- Aitchison and =~ C.  Aitken, Multivariate ~ Binary
case for continuous variables as well as the ability to use a ﬂzcﬂgg”(alté%) by the Kernel Method, Biometrikd3,
read.y I!brary or calculation bundle in thg concrete [21] .LA. Ahmad and P.B. Cerrito, Nonparametric estimation
application, it is necessary however to pay tribute to the

X ) . . of joint discrete-continuous probability densities with
classic method of quantile regression as being more applications, Journal of Statistical Planning and Infesstt,

precise. 349-364 (1994).

[22] M. Wang and J. van Ryzin, A class of smooth estimators for
discrete distributions, Biometric®8, 301-309 (1981).
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