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Abstract: The dynamics of belief and knowledge is one of the major carepts of any autonomous system that should be able
to incorporate new pieces of information. We introduced khewledge base dynamics to deal with two important pointst,fto
handle belief states that need not be deductively closedliila second point is the ability to declare certain partshefhielief as
immutable. In this paper, we address another, radically agmroach to this problem. This approach is very close to theskbon’s
dyadic representation of belief. Here, we consider the itaivie part as defining a new logical system. By a logical systee mean
that it defines its own consequence relation and closureatpreBased on this, we provide an abductive framework favwkedge
base dynamics.
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1 Introduction sometimes hard to see how the update relations should be
modified to accomplish certain knowledge base updates.

Over the last three decade&7], abduction has been Example IConsider a database with an (immutable) rule
embraced in Al as a non-monotonic reasoning paradignthat a staff member is a person who is currently working
to address some of the limitations of deductive reasoningn a research group under a chair. Additional (updatable)
in classical logic. The role of abduction has beenfacts are that matthias and gerhard are group chairs, and
demonstrated in a variety of applications. It has beendelhibabu and aravindan are staff members in group
proposed as a reasoning paradigm in Al for diagnosisjnfol. Our first integrity constraint (IC) is that each
natural language understanding, default reasoningresearch group has only one chair i&,y,z (y=z) <
planning, knowledge assimilation and belief revision, groupchair(x,y) A groupchair(x,z). Second integrity
multi-agent systems and other problems (6%)[ constraint is that a person can be a chair for only one
In the concept of knowledge assimilation and belief research group ievx,y,z (y=z)« groupchair(y,x) A
revision (see 40]), when a new item of information is groupchair(z,x).
added to a knowledge base, inconsistency can result.
Revision means modifying the knowledge base in order to
maintain consistency, while keeping the new information
and removing (contraction) or not removing the least o ,
possible previous information. In our case, update means ~ UPdatable pargroupchair(inforl,matthias)-

Immutable partstaff_chair(X,Y)«
staff.group(X,Z),groupchair(Z,Y).

revision and contraction, that is insertion and deletion in groupchair(infor2,gerhard)-
database perspective. The previous wdtR 1] makes staff. group(delhibabu,infork)-
connections with contraction from knowledge base staff group(aravindan,infork)
dynamics. Suppose we want to update this database with the

Our knowledge base dynamics is defined in two partsinformation, staffchair(aravindan,gerhard); From the
an immutable part (formulae or sentences) and updatablanmutable part, we can deduce that this can be achieved
part (literals) (for definition and properties see works of by asserting staffroup(aravindaix) A
Nebel B7] and Segerberdhl]). Knowledge bases have a groupchair(Z,gerhard
set of integrity constraints (see the definitions in later  If we are restricted to definite clauses, there are three
section). In the case of finite knowledge bases, it isplausible ways to do this. When dealing with the revision
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of a knowledge base (both insertions and deletions), therés a predicate symbol of/ and the t are terms. A literal
are other ways to change a knowledge base and it has tig either an atom A or its default negation not A. We dub
be performed automatically also. Considering thedefault literals those of the form not A. A term (resp.
information, change is precious and must be preserved aatom, literal) is said ground if it does not contain
much as possible. Therinciple of minimal chang¢23, variables. The set of all ground terms (resp. atomsyof
48] can provide a reasonable strategy. On the other hands called the Herbrand universe (resp. base).@f A
practical implementations have to handle contradictory/Normal Logic Program is a possibly infinite set of rules
uncertain, or imprecise information, so several problemgwith no infinite descending chains of syntactical
can arise: how to define efficient change in the style ofdependency) of the form:

AGM [1]; what result has to be chosef731,35]; and

finally, according to a practical point of view, what H < By,...,Bn,n0t G, ...,not Gy, (withmn>
computational model to support for knowledge base Oand finit)

revision has to be provided?

Since knowledge base change is one of the main Where H, the Band the G are atoms, and each rule
problems arising in knowledge representation, it has beestands for all its ground mstgnces. In conformity with the
tackled according to several points of view. In this article standard convention, we write rules of the formHalso
we consider the immutable part as defining a new logicaSiMPly as H (known as fact). An NLP P is called definite
system. By a logical system, we mean that it defines itdf none of its rules contain default literals. H is the head
own consequence relation and closure operator. Based d?f the rule r, denoted by head(r), and body(r) denotes the
this, we provide an abductive framework for belief S€t{B1...,Bn,n0t G,...,not Gy} of all the literals in the
dynamics (seed 8,52)). body of r.

The rest of paper is organized as follows: First we . i ) )
start with preliminaries along with the concept of logical ~ When doing problem modeling with logic programs,
system and properties of consequences operator. Ifles of the form
Section 3, we introduce knowledge base dynamics with )
our logical system. In Section 4, we explore the L < By,...,Bn,n0t G, ....not Gy, (withmn >
relationship of knowledge base dynamics with coherence Oand finit)
approach. In Section 5, we present how knowledge base ] )
dynamics can be realized using abductive explanations. I§Vith & non-empty body are known as a type of integrity
Section 6, we give brief overview of related works. In constraints (ICs), specifically denials, and they are
Section 7, we make conclusions with a summary of ournormally used to prune out unwanted candidate solutions.
contribution as well as a discussion of future directions of We abuse theot default negation notation applying it to

investigation. non-empty sets of literals too: we write not S to denote
{not s: se S}, and confounchot not a= a. When S is an
arbitrary, non-empty set of literals
2 Preliminaries S={Bj,...,Bn,not G,...,not Gy} we use:

A first order language consists of an alphabgétof a -S" denotes the s€iBy,..., By} of positive literals inS

languageZ. We assume a countable universe of variables
Var, ranged over X,y,z, and a countable universe of :
relation (i.e predicate) symbols, ranged over.dsy The literals inS.

following grammar defines FOL, the language of first /S = S" U (not S’) denotes the set
order logic with equality and binary relations: {B1,...,Bn,Cy,...,Cm} of atoms ofS,

-S™ denotes the sefnot G,...,not Gy} of negative

¢ ri=x=x|axx)|-¢ | Vo|Ae|3IX: . As expected, we say a set of liter&@$s consistent iff
- ST N|S| = 0. We also writehead$P) to denote the set of
Hereg C FOL andX C Varare finite sets of formulae 54 of non-IC rules of a (possibly constrained) program
and variables, respectively. P, i.e.,head$P) = {headr) :r € P}\{L}, andfactgP)
Definition 1(Normal Logic Program [22]). By an O denote the set of facts &f- factgP) = {headr):r €
alphabet« of a language? we mean disjoint sets of P/ bodyr)=0}.
constants, predicate symbols, and function symbols, with
at least one constant. In addition, any alphabet is Definition 2(Level mapping[4]). Let P be a normal logic
assumed to contain a countably infinite set of programand B its Herbrand base. Aevelmapping for P
distinguished variable symbols. A term ovetis defined is @ function ||: B> — N of ground atoms to natural
recursively as either a variable, a constant or an Numbers. The mapping is also extended to ground
expression of the form(fy,...,t,) where f is a function literals by assigning —~A | = [ A| for all ground atoms
symbol of«7, n its arity, and thejtare terms. An atom A € Bp. For every literal ground L, L | is called as the
over <7 is an expression of the form(®, ...,t,) where P levelofLinP.
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Definition 3(Acyclic program [4]). Let P be a normal This interpretation of ground atoms can be extended,
logic program and|| a level mapping for P. P is called as in the usual way, to interpret sentencesLinas follows
acyclic with respect to|| if for every ground clause (wherea andf are sentences):

H «+ Li,...,Ln (withn> 0and finit) in P the level of A is
higher then the level of every (1 <i< n). Moreover P is
called acyclic if P is acyclic with respect to some level
mapping for P.

*—qa is true inl iff o is false inl.

*a A B is true inl iff both a and are true inl.

*a Vv B is true inl iff either a is true inl or B is true in
I

is defined as a set of sentences, here we wish to define a inl. o ] o )
knowledge base KB wrt a languag#, as an abductive *Ja is true inl iff some ground instantiation af is true
framework< P,Ab,IC,K >, where, inl.

Given a sentence in L, an abductive interpretation
abducibles in P at level 0 and no non-abducible at! 1S Said to be.arabductlve modedf a 'ﬁ. als true in
|. Extending this to a set of sentendésl is a abductive

level 0. P is referred to as dogical systemThis in del ofK iff 1| bduct del of
conjunction with the integrity constraints Correspondsm?( elofk it Ils an abductive model of every senteice

to immutable part of the knowledge base, hérés , , )
defined by immutable part. This is discussed further in_ Given a set of sentencésand a sentence, a is said
to be aP-consequencef K, written asK =p a, iff every

the next subsection; : . X

*Ab is a set of atoms fron”. called theabducibles  @Pductive model oK is an abductive model ofr also.

This notion is required in an abductive framework, and Putting it in other words, leMod(K) be the set of all

this corresponds to the atoms that may appear in th@Pductive models oK. Thena is aP-consequence df
iff o is true in all abductive interpretations Mod(K).

updatable part of the knowledge; ! )
*IC is the set ofntegrity constraintsa set of sentences 1€ consequence operator @nis then defined as

from language. This specifies the integrity of a CP(K) = {a | Ko kp a} =

knowledge base and forms a part of the knowledgel® | ~ @ istruein all abductive interpretations in
that can not be modified over time: Mod(K)}. K is said to be Reonsistentiff there is no

*K is a set of sentences fron®. It is the current ~ €xPressiona s.t.a € Cre(K) and ~a € Crp(K). Two
knowledgeand the only part okB that changes over sentencesx and 3 are sg;ud to beP-equivalentto each
time. This corresponds to the updatable part of the®ther, written asa = p, iff they have the same set of
knowledge base. The main requirement here is that ng°ductive models , i.&od(a) = Mod(B).
sentence irK can have an atom that does not appear
in Ab.

*P is an acyclic normal logic program with all

2.2 Properties of consequences operator

2.1 Logical system Since a new consequence operator is defined, it is

reasonable, to ask whether it satisfies certain properties
The main idea of our approach is to consider thethatare required in the knowledge base dynamics context.
immutable part of the knowledge to define a new logical Here, we observe that all the required properties, listed by
system. By a logical system, we mean tRadefines its  various researchers in knowledge base dynamics, are
own consequence relatigap and its closur€€n,. Given  satisfied by the defined consequence operator. The
P, we have the Herbrand Ba$tBp and Gp, the ground  following propositions follow from the above definitions,

instantiation ofP. and can be verified easily.
An abductive interpretation s a set of abducibles, o o
i.e.I C Ab. How| interprets all the ground atoms bft is Crp satisfiesnclusion, i.e. KC Cnp(K).

defined, inductively on the level of atoms vi&tas follows: L .
Cnp satisfiegteration, i.e. Cip(K) = Cnp(Cnp(K)).

*An atom A at level O (note that only abducibles are at

level 0) is interpreted ag is truein | iff Ae 1, else it Anther interesting property ionotonyi.e. if K ¢ K',
is falsein 1. thenCnp(K) C Cnp(K’). Cnp satisfies monotony. To see
*An atom A at leveln is interpreted asA is true inl iff ~ this, first observe thalod(K’) € Mod(K). _
JclauseA Ly, ...,Lgin Gp s.t.vLj (1< j <K)if L Cnp satisfiesuperclassicality i.e. if a can be derived
is an atom therhj is true inl, else ifL; is a negative ~from K by first order classical logic, them € Cnp(K).
literal ~B;, thenB; is false in I. Cnp satisfiededuction i.e. if 3 e Cnp(KU{a}), then
(B < a) eCn(K).
! the set of all the ground atoms bofin fact depends df, and Crp satisfiescompactnessi.e. if a € Cnp(K), then
is given asHBp, the Herbrand Base of P a € Cnp(K') for some finite subsé<’ of K.
(@© 2015 NSP
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2.3 Statics of a knowledge base 3.2 Revision

The statics of a knowledge bad€B, is given by the As usual, for revising and contracting a knowledge base,
current knowledge K and the integrity constrait@s An the rationality of the change is discussed first. Later a
abductive interpretatioM is an abductive model dB construction is provided that complies with the proposed
iff it is an abductive model oK UIC. Let Mod(KB) be  rationality postulates.

the set of all abductive models d&¢B. The belief set ) )

represented biB, written askB® is given as, Rationality postulates

KB* =Cnp(KUIC) = {a|a is true in every abductive Let KB =< P,Ab,IC,K > be revised by a sentence
to result in a new knowledge base
model ofKB}. A belief (represented by a sentence#) ~ KB+a =<P AD,IC’ K’ >.
a is acceptedn KBiff a € KBPUIet (i e_a is true in every When a knowledge base is revised, we do not
model ofKB). o is rejectedin KB iff —a € KB® (i.e. a (generally) wish to modify the underlying logical system
is false in every model okB). Note that there may exist P Or the set of abducibledb. This is refereed to as
a sentencer s.t. a is neither accepted nor rejecteddd  inferential constancpy HanssonZ1,22).

(le. a is true in some but not all models &B), and S0 1 1) nferential constancy) P= P and AB = Ab,IC = IC.
KB%%F’Jelfﬁgﬁe%pzrtgs%fé”p;'r? dn}géthgr\gosrﬁd 10 be (F2)(Success) is accepted iKB+ a , i.e.a is true in al
g 1 2 models ofK B+ a.

equivalentto each other, written asB; = KB;, iff they -+-3)(Consistencyy is satisfiable an&-consistent with IC
are based on the same logical system and their current g KB+ a is P-consistent, i.eMod({a} UIC) is not
I;no_wledgAe _A ‘Te _ P'e(?ﬁ'vﬁlir‘t' bi 'l'e' empty iff Mod(KB+ a) is not empty.

1 = Py, Aby = Aby, IC, = IC; andK, = K,. Obviously, (44)(Vacuity)If —a is not accepted in KB, thelB + a =
two equivalent knowledge bas¥s, andKB; represent KB+ a, i.e. if a is not false in all models of KB, then
the same belief set, i.&B] = KBS. Mod(KfB{L a) = Mod(KB) N Mod(a). '

(+5)(Preservationlf KB = KB’ anda = 3, thenKB+ o
: KB+, i.e.if Mod(KB) = Mod(KB') andMod(a
3 Knowledge base dynamics Mod(B), thenMod(KB + a) = Mod(KB+ ).
(46)(Extended Vacuity IKB+ a) + B impliesKB+ (a A
B), i.e.(Mod(KB-+a)nMod(B)) C Mod(KB -+ (a A
B

In AGM [1] three kinds of belief dynamics are defined:
expansion, contraction and revision. We consider all of

them, one by one, in the sequel. (4+7)(Extended Vacuity %) — is not accepted itKB+ o),
thenKB+ (a AB) implies(KB+a)+ 3, i.e. if B is not
_ false in all models oKB + a, thenMod(KB+ (a A

3.1 Expansion B)) C (Mod(KB+a)nMod(B)).

Let a be new information that has to be added to a Construction
knowledge bas&B. Suppose-a is not accepted iKB. o .
Then, obviouslya is P - consistent witHC, andKB can Let .7 stand.for the_set 'of all abductive interpretations
beexpandedy a, by modifyingK as follows: that are consistent witlC, i.e..” = Mod(IC). We do not
consider abductive interpretations that are not models of
KB+a =< PAbIC,Ku{a} > IC, simply becauséC does not change during revision.
Observe that whenC is empty, . is the set of all
Note that we do not force the presencenoiih the newk, abductive interpretations. Given a knowledge b&d
but only say thatr must be in the belief set represented and two abductive interpretations and |, from .7, we
by the expanded knowledge base. If in case is  can compare how close these interpretations akeBdy
accepted inKB (in other words,a is inconsistent with  using an order<xg among abductive interpretations in
IC), then expansion oKB by a results in a inconsistent .. |y <gg |2 iff 11 <gl2 andlz £kg l1.
knowledge base with no abductive models, (KB + a)* Let .# C .. An abductive interpretatioh € .% is
is the set of all sentences i#. minimal in.Z# wrt <gg if there is nol’ € .7 s.t.1’ <kg I.
Putting it in model-theoretic termsKB can be Let,Min(%#,<kg) = {l || is minimalin
expanded by a senteneg whena is not false in all .7 wrt <gg}.
models ofKB. The expansion is defined as: For any knowledge base KB, the following are desired

properties oKkg:
Mod(KB+ a) = Mod(KB) "Mod(a). . o N
(< 1)(Pre-orderxkg is apre-order, i.e. it is transitive and

If a is false in all models ofKB, then clearly reflexive.
Mod(KB + a) is empty, implying that expanded (< 2)(ConnectivityXxgistotalin.,i.e.Vly,l, € #: either
knowledge base is inconsistent. I, <kgl2orly <gglj.
(@© 2015 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 571-582 (2015)www.naturalspublishing.com/Journals.asp

(< 3)(Faithfulnessxkg is faithful to ie.
| € Min(7,<kg) iff | € Mod(KB).

(< 4)(Minimality)For any non-empty subse# of .7,
Min(.Z,<kg) is not empty.

(< 5)(Preservance)For any knowledge base KB’, KB =

KB’ thenngngB/.

Let KB (and consequentl) be revised by a sentence
a, and<kg be a rational order that satisfies 1) to (< 5).

KB,

Then the abductive models of the revised knowledge base

are given precisely byMin(Mod({a} UIC),<kg). Note

that, this construction does not say what the resulting K is,
but merely says what should be the abductive models of

the new knowledge base.
Representation theorem
Now, we proceed to show that revisionkB by o, as

constructed above, satisfies all the rationality postslate
stipulated in the beginning of this section. This is

formalized by the following lemma.

Lemma 1lLet KB be a knowledge basekg an order
among.” that satisfies(< 1) to (< 5). Let a revision
operator + be defined as: for any sentenca,
Mod(KB + a) = Min(Mod({a} U IC),<kg). Then +
satisfies all the rationality postulates for revisi¢#1) to
(+7).

Proof.
(+1)P" =P andAb = AbandIC’' =IC

This is satisfied obviously, since our construction does

not touch P and Ab, and IC follows from every
abductive interpretation iMod(KB+ a).
(+2)a is accepted itlKB+ a
Note that every abductive
M € Mod(KB + a) is a model ofa. Hencea is
accepted iKB+a.
(+3)a is satisfiable an@-consistent with IC ifkKkB+ o is
P-consistent.
If part: If KB+ a is P-consistent , theMod(KB+ o)
is not empty. This implies thd@lod({a} UIC) is not
empty, and hencex is satisfiable andP-consistent
with IC.
Only if part: If a is satisfiable and P-consistent with
IC, then Mod({a} UIC) is not empty, and(< 4)
ensures thatMod(KB + o) is not empty. Thus,
KB+ a is P-consistent.
(+4)If —a is not accepted iKB, thenKB+ a =KB+a.
We have to establish that
Min(Mod({a} UIC),<kg) = Mod(KB) N Mod(a).
Since—a is not accepted in KBMod(KB) NnMod(a)

interpretation

(4+6)(KB+a)+ B implieskB+ (a A B).
We consider this in two cases. Wheif8 is accepted
in KB+ a, (KB+a)+ B is the set of all sentences
from £, and the postulate follows immediately.
Instead when—f3 is not accepted irKB + a, this
postulates coincides with the next one.
(4+7)If —B is not accepted ilKB+ o, thenKB+ (a A B)
implies (KB+ a) + 3.
Together with the second case of previous postulate,
we need to show th&{B+ (a AB) = (KB+a) + B.
In other words, we have to establish that
Min(Mod({a A B} U IC),<ks) =
Mod(KB + a) "Mod(B). For the sake of simplicity,
let us represe¥lin(Mod({a A B} UIC),<kg) by P,
and Mod(KB 4 a) N Mod(f3), which is the same as
Min(Mod({a} U IC),<kg) N Mod(B), by Q. The
required result is obtained in two parts:
1)V (abductive interpretation)M: ifM € P, then
MeQ
Obviously M € Mod(B). Assume that
M ¢ Min(Mod({a} UIC),<kg). This can happen
in two cases, and we show that both the cases lead
to contradiction.
Case A: No model of3 is selected by<kg from
Mod({a} UIC). But this contradicts our initial
condition that-f3 is not accepted iKB -+ a.
Case B: Some model, s&’, of B is selected by
<kg from Mod({a} UIC). Since M is not
selected, it follows thaM’ <xg M. But then this
contradicts our initial assumption thist € P. So,
PCQ.
2)v (abductive interpretation)M: ifM € Q, then
MeP
M € Q implies thatM is a model of botha andf3,
andM is selected by<kg from Mod({a} UIC).
Note thatMod({a A B} UIC) C Mod({a} UIC).
SinceM is selected by<gg in a bigger set (i.e.
Mod({a} UIC)), <kg must selectM from its
subseMod({a AB}UIC) also. Henc& C P. B

But, that is not all. Any rational revision &€B by a,
that satisfies all the rationality postulates, can be
constructed by our construction method, and this is
formalized below.

Lemma 2Let KB be a knowledge base arda revision
operator that satisfies all the rationality postulates for
revision (+1) to (47). Then, there exists an ordefkg
among.7, that satisfies(< 1) to (< 5), and for any
sentence o, Mod(KB + a) is given in

is not empty. The required result follows immediately Min(Mod({a} UIC), <kg).

from the fact that<gg is faithful to KB (i.e. satisfies
< 3), which selects only and all those modelsmf
which are also models of KB.

(+5)If KB=KB' anda = 8 thenKB+ a = KB+ 3
(< 5) ensures thakkg=<kg. The required result
follows immediately from this and the fact that
Mod(a) = Mod(B).

ProofLet us construct an order<kg among
interpretations in as follows: For any two abductive
interpretationd and |’ in .7, definel <gg I’ iff either
| € Mod(KB) or | € Mod(KB + form(l,1’)), where
form(l,1") stands for sentence whose only models lare
and!’. We will show that<gg thus constructed satisfies
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(< 1) to (< 5) and To show the transitivity, we have to prove that

Min(MOd({U}U|C),SKB)ZMOd(KB—i— CY). 1 <kg I3, when |1 <kg |» and |, <kg I3 hold.
First, we show that Supposel; € Mod(KB), then 11 <gg I3 follows

Min(Mod({a} UIC),<kg) = Mod(KB + a).Supposex
is not satisfiable, i.eMod(a) is empty, ora does not

satisfy IC, then there are no abductive models of

{a} UIC, and henceMin(Mod({a} U IC),<kg) is
empty. From(+3), we infer thatMod(KB + a) is also
empty. Whena is satisfiable anda satisfiesIC, the
required result is obtained in two parts:

nif 1 € Min(Mod({a} U IC),<kg), then
| € Mod(KB+a)
Since a is satisfiable and consistent witle, (+3)
implies that there exists at least one model, $afor
KB+ a. From(+1), itis clear thal’ is a model oflC,
from (42) we also get that’ is a model ofa, and
consequently I <kg I (because
I € Min(Mod({a} U IC),<kg)). Suppose
| € Mod(KB), then (44) immediately gives
| € Mod(KB+ a). If not, from our definition of<kg,
it is clear thatl € Mod(KB+ form(l,1”)). Note that
a A form(1,1’) = form(l,1’), since bothl andl’ are
models of a. From (+6) and (4+7), we get
Mod(KB + a) n {I,I'} = Mod(KB + form(l,1")).
Since | € Mod(KB + form(l,l”)), it immediately
follows thatl € Mod(KB+ a).

2)If I € ModKB + a), then
I € Min(Mod({a} UIC),<kg).
From (41) we getl is a model ofiC, and from(+2),
we obtainl € Mod(a). Supposd € Mod(KB), then
from our definition of<gg, we getl <gg I’, for any
other model I’ of a and IC, and hence
I € Min(Mod({a} UIC),<kg). Instead, ifl is not a

immediately from our definition o£xg. On the other
case, whenl; ¢ Mod(KB), we first observe that
l1 € Mod(KB + form(l,l2)), which follows from
definition of <kg andl; <kg l,. Also observe that
I ¢ Mod(KB). If I, were a model ofKB, then it
follows from (44) that Mod(KB + form(ly, 1)) =
Mod(KB) N {l1,12} = {l2}, which is a contradiction,
and sol, ¢ Mod(KB). This, together with, <gg I3,
implies that I, € Mod(KB + form(lz,13)). Now
consider Mod(KB + form(l,lz,13)). Since +
satisfies (+2) and (+3), it follows that this is a
non-empty subset of{ly,l2,13}. We claim that
Mod(KB + form(ly,l2,13)) N {l1,12} can not be
empty. If it is empty, then it means that
Mod(KB + form(ly,12,13)) = {lI3}. Since+ satisfies
(+6) and (+7), this further implies that
Mod(KB + form(lz,13)) =
MOd(KB + fOfm(|l,|2,|3)) N {|2,|3} = {|3}. This
contradicts our observation that
I, € Mod(KB 4+ form(l,l3)), and  so
Mod(KB + form(ly,l2,13)) N {l1,12} can not be
empty. Using (+6) and (+7) again, we get
Mod(KB + form(iy, 12)) =
Mod(KB -+ form(ly,l2,13)) N {l1,l2}. Since we know
that 11 € Mod(KB + form(ly,l2)), it follows that
l1 € Mod(KB + form(ly,l2,13)). From (+6) and
(+7) we also get Mod(KB + form(ly,l3)) =
Mod(KB + form(ly,12,13)) N {l1, I3}, which clearly
implies thatl; € Mod(KB + form(ly,13)). From our
definition of <kg, we now obtainl; <gg l3. Thus,
<g is a pre-order.

model of KB, then, to get the required result, we(< 2)<kg is total.

should show thatl € Mod(KB + form(l,1")), for

every modell’” of a andIC. As we have observed

previously, from (4+6) and (+7), we get
Mod(KB + a) n {I,I'} = Mod(KB + form(l,1")).

Since+ satisfied 42) and(+3), for any two abductive
interpretations andl’ in .7, it follows thatMod(KB+
form(l,1")) is a non-empty subset dfi,1’}. Hence,
<kg is total.

Sincel € Mod(KB -+ a), it immediately follows that (< 3)<kg is faithful to KB.

I € Mod(KB+ form(l,1")). Hencel <gg I’ for any
model I’ of a and IC, and consequently,
I € Min(Mod({a}UIC),<kg).

Now we proceed to show that the ordegg among ¥,

constructed as per our definition, satisfies all the ratipnal

axioms(< 1) to (< 5).
(< 1)<kg is a pre-order.

interpretations froms”. From (+2) and (43), we
haveMod(KB + form(l,1")) = {I}, and sol <gg I.
Thus <kg satisfies reflexivity. let; € Mod(IC) and
I, ¢ Mod(IC). Clearly, it is possible that two
interpretationd; andl, are not models oKB, and
Mod(KB + form(ly,1,)) = {I1}. So, 11 <kg |, does
not necessarily implylo <kg l1, and thus <gkg
satisfies anti-symmetry.

From our definition of <gg, it follows that
V11,12 € Mod(KB) : 11 <kg |2 does not hold. Suppose
l1 € Mod(KB) and I; ¢ Mod(KB). Then, we have
I1 <kg l2. Since + satisfies (+4), we also have
Mod(KB + form(ly,l2)) = {l1}. Thus, from our
definition of <kg, we can not havé, <gg l1. So, if
l1 € Mod(KB) and |, ¢ Mod(KB), then |y <kg I2
holds. Thus<kg is faithful to KB.

(< 4)For any non-empty subsef of .7, Min(%#,<g) is
Note that we need to consider only abductive

not empty.

Leta be a sentence such tidbd({a }UIC) =.%. We
have already shown thetod(KB+a) = Min(.#, <kg
). Since+ satisfieg+3), it follows thatMod(KB+ a)
is not empty, and thuslin(.#, <xg) is not empty.

(S 5)” KB = KB/, thenSKBZSKB/.

This follows immediately from the fact that satisfies
(+5).
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Thus, the order among interpretationsiyg,
constructed as per our definition, satisfies1) to (< 5),
andMod(KB+ a) = Min(Mod({a} UIC),<kg). &

Contraction and revision are related to each other.
Given a contraction function, a revision function}- can
be obtained as follows:

So, we have a one to one correspondence between the

axiomatization and the construction, which is highly
desirable, and this is summarized by the following

representation theorem.

Theorem 1Let KB be revised bya, and KB4 a be
obtained by the construction discussed above. Theis,
a revision operator iff it satisfies all the rationality
postulateg+1) to (+7).

ProofFollows from Lemma 1. and Lemma L

3.3 Contraction

Contraction of a sentence from a knowledge bgeis

studied in the same way as that of revision. We first
discuss the rationality of change during contraction and
proceed to provide a construction for contraction using

duality between revision and contraction.
Rationality Postulates

LetKB =< P, AbIC,K > be contracted by a sentence
a to result in a new knowledge base
KB—a =< P,Ab,IC" K’ >.

(~1)(Inferential Constancy)P= P andAb/ = AbandIC’ =
IC.

(-2)(Success) a ¢ Cnp(KB), thena is not accepted in
KB-a, i.e. if a is not true in all the abductive
interpretations, thero is not true in all abductive
interpretations itMod(KB—a).

(=3)(Inclusiony (belief) B:if B is accepted ilKB—a, then
B is accepted ifKB, i.e.Mod(KB) C Mod(KB—a).

(—4)(Vacuity)f a is not accepted iKB, thenKB—a = KB,
i.e. if a is not true in all the abductive models KB,
thenMod(KB—a) = Mod(KB).

(-5)(Recovery)KkB—a) + a implies KB, i.e.
Mod(KB—a)NnMod(a) € Mod(KB).

(—6)(Preservationlf KB = KB’ anda = 8, thenKB-a =
KB -, i.e. if Mod(KB) = Mod(KB') andMod(a) =
Mod(B), thenMod(KB—a) = Mod(KB' ).

(=7)(Conjunction 1) KB-(a A B) implies
KB—a N KB—p, ie.

Mod(KB—(a A B)) € Mod(KB-a) UMod(KB-pB).

(—8)(Conjunction 2)f a is not accepted ilKB—(a A B),
thenKB—a impliesKB—(a A B), i.e. if a is not true
in all the models oKB—(a A B), thenMod(KB—a) C
Mod(KB-~(a A B)).

Before providing a construction for contraction, we
wish to study the duality between revision and
contraction. The Levi and Harper identities still holds in
our case, and is discussed in the sequel.

Relationship between contraction and revision

(Levi Identity) ModKB+ a) = Mod(KB—-a)n

Mod(a)

The following theorem formally states that Levi identity
holds in our approach.

Theorem 2Let — be a contraction operator that satisfies
all the rationality postulates(—1) to (—8). Then, the
revision function4-, obtained from— using the Levi
Identity, satisfies all the rationality postulat€s-1) to
(+7). 1.

Similarly, a contraction functior- can be constructed
using the given revision functiof as follows:

(Harper Identity) ModKB-—a) = Mod(KB)U

Mod(KB+ —a)

Theorem 3Let -+ be a revision operator that satisfies all
the rationality postulates(+1) to (+7). Then, the
contraction function -, obtained from + using the
Harper Identity, satisfies all the rationality postulates
(~1)to(—8).H

Construction

Given the construction for revision, based on order
among interpretation in”, a construction for contraction
can be provided as:

Mod(KB—a) = Mod(KB) UMin(Mod({—-a}UIC),

<kB),

where<yg is the relation among interpretations.ifi that
satisfies the rationality axioms< 1) to (< 5). As in the
case of revision, this construction says what should be the
models of the resulting knowledge base, and does not
explicitly say what the resulting knowledge base is.

Representation theorem

Since the construction for contraction is based on a
rational contraction for revision, the following lemmae
and theorem follow obviously.

Lemma 3Let KB be a knowledge basgkg an order
among. that satisfie§< 1) to (< 5). Let a contraction
operator — be defined as: for any sentence,
Mod(KB—a) = Mod(KB) UMin(Mod({-a} UIC),<kg
Then — satisfies all the rationality postulates for
contraction(—1) to (—8).

~—

ProofFollows from Theorem 1 and TheoremiB.
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Lemma4let KB be a knowledge base and a
contraction operator that satisfies all the rationality
postulates for contraction—1) to (—8). Then, there
exists an order<gg among.”, that satisfieg< 1) to
(< 5), and for any sentence, Mod(KB—a) is given as
Mod(KB) UMin(Mod({—a} UIC), <kg).

ProofFollows from Theorem 1 and TheoreniB.

Theorem 4Let KB be contracted by, and KB-a be
obtained by the construction discussed above. Théna
contraction operator iff it satisfies all the rationality
postulateg 1) to (—8).

ProofFollows from Lemma 3 and Lemma L
4 Relationship with the coherence approach

of AGM

Given knowledge bas€B =< P,Ab,IC,K > represents a
belief setKB® that is closed undetnp. We have defined

how KB can be expanded, revised, or contracted. Th

question now is:does our foundational approach (wrt

4.2 Revision

AGM puts forward rationality postulatésl) to (x8) to be
satisfied by a revision operator &B°. reproduced below:

(*1)(Closure) KB x a is a belief set.

(*2)(Successy € KB« a.

(*3)(Expansion 1) KB a C KB*#a.

(*4)(Expansion 2)f ~a ¢ KB®, thenKB*#a C KB* x a.

(*5)(Consistency)KBx a is inconsistent iff- —a.

(*6)(Preservation)f - o < B, thenKB® x a = KB® x 3.

(*7)(Conjunction 1) KB« (a A B) C (KB® xa)#0.

(*8)(Conjunction 2)If -3 ¢ KB® x a, then(KB* x a)#8 C
KB® x (a A B).

The equivalence between our approach a@EM
approach is brought out by the following two theorems.

Theorem 6Let KB a knowledge base with an empty IC
and + be a revision function that satisfies all the
rationality postulates(+1) to (+7). Let a revision
operator x on KB* be defined as: for any sentence
KB* x a = (KB+ a)®. The revision operator *, thus
defined satisfies all the AGM-postulates for revisfefh)

to (x8).

&roof.

classical first-order logic) on KB coincide with coherence (*1)KB*® x a is a belief set.

approach (wrt our consequence operatorgrof AGM

on KB*? There is a problem in answering this question

(similar practical problemq]) , since our approach, we

require IC to be immutable, and only the current

knowledgeK is allowed to change. On the contraAGM

approach treat every sentence KB® equally, and can
throw out sentences fro@np(IC). One way to solve this
problem is to assume that sentence€m(IC) are more
entrenched than others. However,
correspondence can be established, whéns empty.
The key is our consequence operamp, and in the
following, we show that coherence approach AGM

with this consequence operator, is exactly same as our

foundational approach, whe@ is empty.

4.1 Expansion

Expansion inAGM (see [])- framework is defined as
KB#a = Cnp(KB* U {a}), is is easy to see that this is
equivalent to our definition of expansion (whé@ is
empty), and is formalized below.

Theorem 5Let KB+ o be an expansion of KB by (as
defined in section 3.2). ThéKB+ a)® = KB#a.

ProofBy our definition of expansion,

This follows immediately, becaus&B-+ a)* is closed
wrt Cnp.
(*2)a e KB*xa.
This follows from the fact that satisfies+2).
(*3)KB* x o C KB*#a.

(*4)If —a ¢ KB*, thenKB*#a C KB* x a.
These two postulates follow frofa-4) and theorem 5.

one-to-ond*5)KB?® x a is inconsistent iff- —a.

This follows from from(+3) and our assumption that
IC is empty.

(*6)If - a «+» B, thenKB® x o = KB® x 3.

This corresponds tp+5).

(*7)KB®x (a AB) C (KB®xa)#. This follows from(+6)
and theorem 5.

(*8)If -8 ¢ KB*x o, then(KB* x o)#B C KB®x (a A ).
This follows from(+7) and theorem 5l

Theorem 7Let KB a knowledge base with an empty IC
and * a revision operator that satisfies all the
AGM-postulategx1) to (x8). Let a revision functiont

on KB be defined as: for any sentence,
(KB+ a)* = KB® x a. The revision functiont+, thus
defined, satisfies all the rationality postulaté$l) to
(+7).

Proof.

(+1)P,AbandIC do not change.

Obvious.

(KB+a)* =Crnp(ICUK U{a}), which is clearly the (12)q isaccepted iKB+a.

same set aBnp(KB*U{a}). ®

Follows from(*2).
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(+3)If a is satisfiable and consistent wil@, thenKB + a
is consistent.
Since we have assumé@ to be empty, this directly
corresponds tg¢*5).

(+4)If —a is not accepted iKB, thenKB+ a =KB+a.
Follows from(*3) and(*4).

(+5)If KB=KB' anda = 3, thenKB+ a = KB' 4 .
Since KB = KB’ they represent same belief set, i.e.
KB® = KB'*. Now, this postulate follows immediately
from (*6).

(+6)(KB+ a) + B implieskB+ (a A B).
Corresponds t¢*7).

(+7)If =B is not accepted KB+ a, thenKB+ (a A B)
implies (KB+ o) + 3.
Corresponds t¢*8). &

4.3 Contraction

AGM puts forward rationality postulatés-1) to (—8) to
be satisfied by a contraction operator on closed<d#f,
reproduced below:

(—1)(Closure) KB — a is a belief set.

(—2)(Inclusion) KB —a C KB®.

(—3)(Vacuity)If a ¢ KB®, thenKB® — o = KB®.
(—4)(Successif ¥ a, thena ¢ KB® —a.
(—5)(Preservation)f F a «+» 3, thenKB® — a = KB® — 3.
(—6)(Recovery) KBC (KB*—a) +a.
(—=7)(Conjunction 1)KB— a NKB®* — B CKB* — (a A B).
(—8)(Conjunction 2)f a ¢ KB* — (a A3), thenKB®* — (a A

B) CKB®*—a.

5 Realizing knowledge base dynamics using
abductive explanations

In this section, we explore how belief dynamics can be
realized in practice (se&[10,11]). Here, we will see how
revision can be implemented based on the construction
using models of revising sentence and an order among
them. The notion of abduction proves to be useful and is
explained in the sequel.

Let a be a sentence if. An abductive explanation
for a wrt KB is a set of abductive literal§ A s.t. A
consistent withIC and A =p a (that isa € Cnp(4)).
FurtherA is said to beminimaliff no proper subset ofA
is an abductive explanation for.

The basic idea to implement revision of a knowledge
baseKB by a sentence, is to realizeMod({a} UIC) in
terms of abductive explanations far wrt KB. We first
provide a useful lemma.

Definition 4.Let KB be a knowledge base, a sentence,
andA; andA; be two minimal abductive explanations for
o wrt KB. Then, the disjunctionf A; andA,, written as
A1V Ay, is given as:

AV Ay = (Alﬂﬂz) @] {G \/B|C¥ S Al\Az andB S Az\Al}.

Extending this toA°®, a set of minimal abductive
explanations fora wrt KB, VA® is given by the
disjunction of all elements cA°.

Lemma 5Let KB be a knowledge base,a sentence,and
A; and A; be two minimal abductive explanations far
wrt KB. Then,ModA; v Ay) = Mod(A1) UMod(Az).

As in the case of revision, the equivalence is broughtproofFirst we show that every model df; is a model of
out by the following theorems. Since contraction is A,V A,. Clearly, amodeM of A; satisfies all the sentences
constructed in terms of revision, these theorems arén (A1 N Ay). The other sentences (@ Vv A;) are of the

trivial.

form a v B, wherea is from A; and is from Ay. Since
M is a model ofA;, a is true inM, and hence all such

Theorem 8Let KB be a knowledge base with an empty sentences are satisfied by HenceM is a model ofA; v

IC and —~ be a contraction function that satisfies all the
rationality postulates(—1) to (—8). Let a contraction
operator — on KB® be defined as: for any sentence
KB®* — a = (KB-a)*. The contraction operator-, thus

A, too. Similarly, it can be shown that every modelzf
is a model ofA; v A, too.

Now, it remains to be shown that every modilof
A1V Ay is either a model of\; or a model ofA,. We will

defined, satisfies all the AGM - postulates for contractionnow show that ifM is not a model ofA, then it must be a

(—1)to (—8).
ProofFollows from Theorem 2 and TheoremiB.

Theorem 9Let KB be a knowledge base with an empty |
and— be a contraction operator that satisfies all the AGM-
postulateg —1) to (—8). Let a contraction functior- on
KB be defined as: for any sentenzg(KB—a)® = KB® —

a. The contraction function-, thus defined, satisfies all
the rationality postulates—1) to (—8).

ProofFollows from Theorem 3 and TheoremM.

model of A;. Since M satisfies all the sentences in
(A1NAz), we need only to show thadl also satisfies all
the sentences id;\Ay. For every elementr € A1\A:
there exists a subset 01 VV A), {a Vv B|B € A\Az}. M

c satisfies all the sentences in this subset. Suppbsees

not satisfya, then it must satisfy al3 € A;\A,. This
implies thatM is a model ofA,, which is a contradictory
to our assumption. Hendé must satisfya, and thus a
model A;. Similarly, it can be shown tha¥l must be a
model ofAs; if it is not a model ofA;. B

2 An abductive literal is either an abducibefrom Ab, or its
negation-A.
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As one would expect, all the models of revising Theorem 11Let KB be a knowledge base, and a revision
sentence o can be realized in terms abductive function 4 be defined as: for any sentence that is
explanations foor, and the relationship is precisely stated rejected in KB, ModKB + a) is a non-empty subset of
below. Mod(VvA®), whereA® is a set of all minimal abductive
explanations fora wrt KB. Then, there exists an order
<ks among abductive interpretations i, s.t. <
satisfies all the rationality axiom$< 1) to (< 5) and
Mod(KB+ a) = Min(Mod({a } UIC),<kg).

Lemma 6Let KB be a knowledge base,a sentence, and
A* the set of all minimal abductive explanations tomwrt
KB. Then Mod{a} UIC) = Mod(VA*®).

Prooflt can be easily verified that every moddl of a ) )

minimal abductive explanation is also a model @f  Proofitis easy to define a pre-order s.t. every model of
Since every minimal abductive explanation satisfies ~ MOd(KB + a) is strictly minimal than all other

M is a model ofa UIC. It remains to be shown that every interpretations. It is easy to verify that such a pre-order
modelM of {a} UIC is a model of one of the minimal Satisfies(< 1) to (< 5). In particular, sincex is rejected
abductive explanations far wrt KB. This can be verified N KB, (< 3) faithfulness is satisfied, and since non-empty
by observing that a minimal abductive explanation dor ~ Subset oMod(vA*®) is selected(< 4) is also satisfiedl

WrtKB can be obtained frorii. M An important corollary of this theorem is that,
Thus, we have a way to generate all the models ofrevision of KB by a can be realized just by computing
{a}UIC, and we just need to select a subset of this base@®ne abductive explanation o&r wrt KB, and is stated
on an order that satisfi¢s< 1) to (< 5). Suppose we have below.
such an order that satisfies all the required postulates .
then this order can be mapped to a particular set ofcorollary 1.Let KB be a knowledge base, and a revision
abductive explanations foo wrt KB. This is stated function + be defined as: for any sentence that is
precisely in the following theorem. An important 'eiected in KB, Mo@KB - a) is a non-empty subset of
implication of this theorem is that there is no need to MOd(4), whereA is an abductive explanations for wrt
compute all the abductive explanations ferwrt KB, ~ KB. Then, there exists an ordetxg among abductive
However, it does not say which abductive explanations'”terpretat'ons in.7, s.t. <gp satisfies all the rationality

axioms (< 1 to (< 5 and
needto be computed. Mod(KB -+ a) = Min(Mod({a} UIC),<kg). ®
Theorem 10Let KB be a knowledge base, adgg be an
order among abductive interpretations.iff that satisfies The precondition thatr is rejected inKB is not a
all the rationality axiomg/< 1) to (< 5). Then, for every  serious limitation in various applications such as databas

sentenceq, there existsA® a set of minimal abductive updates and diagnosis, where close world assumption is

explanations for o wrt KB, s.t. employed to infer negative information. For example, in
Min(Mod({a} UIC),<kg) is a subset of Mo@d/A*), and  diagnosis it is generally assumed that all components are
this does not hold for any proper subset/tff. functioning normally, unless otherwise there is specific

information against it. Hence, a knowledge base in
diagnosis either accepts or rejects normality of a
component, and there is no "don’t know” third state. In
other words, in these applications the knowledge base is
assumed to be complete. Hence, when such a complete
The above theorem 10. is still not very useful in knowledge base is revised hy, either a is already
realizing revision. We need to have an order among all theaccepted inKB or rejected inKB, and so the above
interpretations that satisfies all the required axioms, andgcheme works fine.
need to compute all the abductive explanationsafosrt
KB. The need to compute all abductive explanations
arises from the fact that the converse of the aboveb Related Works
theorem does not hold in general. This scheme requires
an universal ordex, in the sense that same order can beWe begin by recalling previous work on view deletion.
used for any knowledge base. Otherwise, it would beChandrabosel0,11], defines a contraction operator in
necessary to specify the new order to be used for furtheview deletion with respect to a set of formulae or
modifying (KB+ a). However, even if the order can be sentences using Hansson22[ belief change. Similar to
worked out, it is not desirable to demand all abductiveour [?,15,16] approach, he focused on set of formulae or
explanations ofr wrt KB be computed. So, it is desirable sentences in knowledge base revision for view update wrt.
to work out, when the converse of the above theorem ignsertion and deletion and formulae are considered at the
true. The following theorem says that, suppaseis same level. Chandrabose proposed different ways to
rejected inKB, then revision oflKB by a can be worked change knowledge base via only database deletion,
out in terms of some abductive explanations &orwrt devising particular postulate which is shown to be
KB. necessary and sufficient for such an update process.

ProofFrom Lemma 6. and Lemma 5., it is clear that
Mod({a} UIC) is the union of all the models of all
minimal abductive explanations of wrt KB. Min selects

a subset of this, and the theorem follows immedia@ly.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 571-582 (2015)www.naturalspublishing.com/Journals.asp NS P 581

Our knowledge base consists of two parts, immutable  We believe that knowledge base dynamics can also be
part and updatable part , but focus is on principle ofapplied to other applications such as view maintenance,
minimal change. There are more related works on thadiagnosis, and we plan to explore it in further workg [
topic. Eiter [L9] is focusing on revision from different Still, a lot of developments are possible, for improving
perspective - prime implication. Segerbe&f)] defined  existing operators or for defining new classes of change
new modeling for belief revision in terms of irrevocability operators. As immediate extension, question raises: is
on prioritized revision. Hansson2®] constructed five there anyeal life application for AGM in 25 year theory?
types of non-prioritized belief revision. MakinsoB83 [20]. The revision and update are more challenging in
developed dialogue form of revision AGM. Pap#il] knowledge base dynamic, so we can extend the theory to
defined a new version of knowledge base revision. combine results similar to Konieczny’2§] and Nayak’s

We are bridging gap between philosophical work, [36].
paying little attention to computational aspects of
database work34,51]. In such a case, Hanssor?g]
kernel change is related with abductive method. Aliseda’sAcknowledgement
[2] book on abductive reasoning is one of the motivation
keys. Christiansen’s 12,13] work on dynamics of The author. ack_n_qwledges the s_upport of RWTH Aachen,
abductive logic grammars exactly fits our minimal changeWhere he is visiting scholar with an Erasmus Mundus
(insertion and deletion). Externgl (;ooperatlon Window Ind|a4I_EU by the Eur(_)pean

In general, our abduction theory is related to Commission when the paper was written. I would like to
knowledge base dynamics (see how abduction theory i hanks Chandrabose Aravindan and Gerhard Lakemeyer

related with other applications, respectively, reasofgyg 20th My Indian and Germany PhD supervisor, give
4344), updatepi647, equivalencel4 44,45 and ~ €Ncourage towrite the paper.

problem solving5,32]). More similar to our work is
paper presented by Bessant et &), [ocal search-based
heuristic technique that empirically proves to be often References
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