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Abstract: The robust voltage-controlled oscillator is presented by using the constant current reference and the ring oscillatorfor the
embedded system application. The constant current reference generates the constant current for the succeeding ring oscillator to produce
a stable 4MHz oscillation frequency. The proposed VCO circuit was fabricated in a 0.35µm CMOS technology and worked with a
supply voltage of 3.3 V. The chip area of the VCO was 150µm × 130µm. According to measured results, the oscillation frequencydrift
of the proposed VCO was 986 ppm/◦C over a temperature range of -25◦C to 100◦C. The phase noise of -62.29 dBc/Hz was obtained at
1 MHz offset from the carrier. Moreover, total current consumption of the entire VCO was 234.72µA. Therefore, the proposed VCO
is suitable for integration into the embedded system.
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1 Introduction

In modern portable and consumer electronic devices, the
embedded system is used to control data transmission
between multimedia, memory, and I/O. As shown in
Fig. 1(a), an external crystal oscillator provides the
embedded system with a clock signal for data acquisition
[1]. This study integrated a voltage-controlled oscillator
(VCO) into the embedded system to reduce component
count and cost, as shown in Fig.1(b). However, the
challenge in implementing on-chip clock source is to
achieve high frequency stability and accuracy over
environmental alterations, such as process, voltage, and
temperature (PVT) variations. Fig.2 shows traditional
voltage-controlled oscillator. It is composed of a current
reference and a ring oscillator. In the current reference
part, the reference current I is generated by an analog
voltage signal, Vctrl . Subsequently, the oscillation
frequency (FOSC) of the VCO varies with the reference
current I.
The current reference is an essential basic block of several
analog circuits, such as the bias sources for oscillators,
amplifiers, and phase-locked loops (PLL). For these
applications, the current references must have high
immunity against supply voltage and temperature
variations. Therefore, the bandgap circuit is commonly

used to generate a voltage reference or a current reference
that can be derived from voltage references by applying
Ohm’s law for voltage to current conversion [2][3]. In
general, the voltage reference of the bandgap circuit is
generated by on-chip resistors, bipolar junction transistors
(BJTs), and an operational amplifier. However, BJTs and
an operational amplifier cause large silicon area penalty.
In [4][5], a temperature-compensated technique is
provided to generate a stable reference current of the
bandgap circuit. Cascade NMOS transistors are used in
[4][5] instead of on-chip resistors. Therefore, the area
overhead and supply voltage cannot be reduced. The
proportional to absolute temperature (PTAT) like
technique was used to generate a reference current under
a low supply voltage [6]. Moreover, the on-chip resistor
was replaced by an NMOS transistor working in the
triode region. Therefore, it can work with a power supply
voltage as low as 1.2 V.
However, this current reference is proportional to T0.5,
and is strongly dependent on the supply voltage. This
paper proposes a robust voltage-controlled oscillator for
the embedded system. The proposed voltage-controlled
oscillator has two main advantages, as follows: (1) the
new constant current reference is provided for the
oscillator; and (2) the chip area is effectively reduced by
using only CMOS transistors. The remainder of this paper
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(a)

Fig. 1: (a) Embedded system with external crystal (b)
Embedded system without external crystal

Fig. 2: The traditional voltage-controlled oscillator

is organized as follows: Section 2 introduces the circuit
structure and operation principle of the proposed VCO;
the simulation and experimental results are shown in
Section 3; and finally, conclusions are offered in Section
4.

2 Circuit Description and Analysis

Fig. 3(a) shows the design concept of the proposed VCO.
It is composed of the constant current reference and the
ring oscillator. The constant current reference generates

(a)

Fig. 3: (a) The proposed voltage-controlled oscillator
architecture (b) The design concept of constant current
reference

the constant currentIre f to the succeeding ring oscillator.
The output oscillation frequency (Fout) of the proposed
VCO is generated according toIre f . The design concept
of constant current reference is shown in Fig.3(b). The
circuit generates positive and negative temperature
dependent currents and combines two currents to produce
a reference currentIre f with a zero temperature
coefficient. The detailed circuit structures and operating
principles of two parts are discussed in the following
paragraphs.

2.1 Constant Current Reference circuit

As shown in Fig. 4, the circuit generates positive
temperature dependent current (PTDC) and negative
temperature dependent current (NTDC) and combines
two currents to generate a reference currentIre f with a
zero temperature coefficient.

2.1.1 Positive Temperature Dependent Current (PTDC)
Circuit

The positive temperature dependent current circuit is
shown in Fig. 5. According to [7], the positive
temperature coefficient currentIC1 is generated by a
constant-Gm biasing circuit. The formula ofIC1 can be
briefly represented as:

IC1 ∝
1

µn ∗R2 (1)
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Fig. 4: The design concept of the proposed voltage-
controlled oscillator

Fig. 5: The positive temperature dependent current circuit
architecture

where µn and R are NMOS mobility and bias resistor,
respectively. Because theµn is proportional to
temperature (T−2.2), the current referenceIC1 has positive
temperature coefficient characteristic. Moreover, this
current can be set by adjusting resistorR.

2.1.2 Negative Temperature Dependent Current (NTDC)
Circuit

As shown in Fig.6, the NTDC circuit is composed of
three bias current circuits with various types of
current-to-temperature slope ratio. The output current
slope ratios of Bias 1 and Bias 2 areS1 and S2,
respectively. Although both have positive temperature
coefficient characteristics, the slope ratios ofS1 are
smaller thanS2. Consequently, the currentIB3, which is
equal to subtraction of two input currents, has a negative
temperature coefficient characteristic. According to the
current IB3, the negative temperature coefficient current
IC2 is also generated by the Bias 3 circuit.

Fig. 6: The negative temperature dependent current circuit
architecture

Fig. 7: The Bias 1 circuit architecture of negative
temperature dependent current circuit

2.1.3 The Bias 1 circuit architecture

Fig. 7 shows the Bias 1 circuit architecture. The crucial
design concept of the Bias 1 circuit is to design NMOS
transistorM5 to operate in the triode region. To enable
transistorM5 operation in the triode region, the PMOS
transistorM2 was added between PMOS transistorM1
and NMOS transistorM5 to provide the gate voltage of
the transistorM5. Therefore, the positive temperature
dependent currentI1 can be written as:

I1 = µnCox(
W
L
)5(VGS −VTH)VDS

= µnCoxγVDS(
W
L
)5(VDD −

VT H

γ
)

= α1(
W
L
)5(VDD −β1) (2)

whereVGS = γ ×VDD, α1 = µnCoxγVDS, β1 =VTH/γ, andγ
is the linearity relatively of the voltages ofVGS andVDD. By
adjustingα1(W/L)5 ratio of the transistorM5, the current-
to-temperature slopeS1 of the currentI1 is not excessively
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Fig. 8: The Bias 2 circuit architecture of negative
temperature dependent current circuit

sharp. Therefore, the currentIB1 of the transistorM6 is a
duplicated current ofI1.

2.1.4 The Bias 2 circuit architecture

The Bias 2 circuit architecture of negative temperature
dependent current circuit is shown in Fig.8. To generate
positive temperature dependent currentI1, the PMOS
transistorM0 was designed to work in the triode region.
Therefore, the currentI1 can be written as:

I1 = µnCox(
W
L
)1[(VGS −VTH)VDS −

1
2

V 2
DS]

= α2(
W
L
)1(VDD −β2) (3)

where VGS = VDD, α2 = µnCoxVDS, and
β2 = VT H + 1/2(VDS). By adjustingα2(W/L)1 ratio of
the transistorM1, the current-to-temperature slopeS2 of
the currentI1 can be designed more sharply. The positive
temperature dependent currentIB2 of the transistorM2 is a
duplicated current ofI1.

2.1.5 The Bias 3 circuit architecture

As shown in Fig.9, the positive temperature dependent
currentIC2 of the transistorM1 is a duplicated current of
IB3. The IC2 current value can be selected from an aspect
ratio of (W/L)1/(W/L)0. According to PTDC circuit and
NTDC circuit, the circuit architecture of the constant
current reference is shown in Fig.10. The reference
currentIre f of the constant current reference is generated
by combining currentIC1 of the PTDC andIC2 of the
NTDC. Therefore, reference currentIre f is insensitive to
temperature and supply voltage variations.

2.2 Ring Oscillator

Fig. 11 shows the ring oscillator of the proposed VCO.
The ring oscillator is composed of a chain of an odd

Fig. 9: The Bias 3 circuit architecture of negative
temperature dependent current circuit

Fig. 10: The circuit architecture of the constant current
reference

Fig. 11: The ring oscillator of the proposed VCO

number of inverters, which is feedback to the input to
cause oscillation. The output frequency of oscillation
depends on the delay of each inverter, which is
determined by the parasitical capacitance of each
successive inverter, maximal peak-to-peak voltage, and
the bias current. The output frequency of oscillation can
be represented as:

Fout ≈
1

Vpp ∗Cpara
(4)

whereVpp, Cpara and I are maximal peak-to-peak voltage,
parasitical capacitance, and bias current, respectively.
According to (4), the oscillation frequency is proportional

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 73-80 (2015) /www.naturalspublishing.com/Journals.asp 77

Fig. 12: The circuit architecture of the proposed VCO

Fig. 13: The simulation results ofIc1 with temperature
drifts

to bias current. Therefore, a constant oscillation
frequency can be achieved by providing a constant bias
current. Moreover, dummy inverter cells were added to
reduce output mismatch of each inverter.

2.3 The Proposed Voltage-Controlled Oscillator

The circuit architecture of the proposed VCO is shown in
Fig. 12. The constant oscillation frequencyFout was
achieved by combining the constant current reference and
the ring oscillator. The proposed VCO circuit does not
cause any silicon area penalty.

3 Simulation and Experimental Results

The Hspice simulation results are based on the device
parameters of a TSMC 0.35µm 3.3 V CMOS process. As
shown in Fig.13, the currentIC1 of the PTDC circuit is
positive and proportional to absolute temperature.
Simulation results of the currentIC2 with temperature
drifts is shown in Fig.14. Consequently, the currentIC2 of
the PTDC circuit is negative and proportional to absolute
temperature. As shown in Fig.15, the reference current
Ire f was produced by combining currentIC1 of the PTDC
andIC2 of the NTDC. According to the simulation result,
the currentIre f experienced a drift of 3%. Therefore,
reference currentIre f of the constant current reference is
almost insensitive to temperature drift. Fig.16and Fig.17

Fig. 14: The simulation results ofIc2 with temperature
drifts

Fig. 15: Variation of the constant currentIre f , Ic1 andIc2
with temperature drifts

Fig. 16: Variation of the constant currentIre f with
temperature drifts

shows the simulation result of oscillation frequency of the
proposed VCO with temperature drifts. Consequently, the
oscillation frequency of the proposed VCO was
insensitive to temperature with a variation of 400 ppm/◦C
over a temperature range of -25◦C to 100◦C. The
proposed VCO circuit was fabricated in a TSMC 0.35µm
CMOS process. The die photo of the proposed VCO chip
is shown in Fig.18. The area of the CCO circuit is 150
µm × 130µm. Fig. 19 shows the measured waveform of
the proposed VCO. The oscillation frequency ofFout was
approximately 4 MHz. The variation of the output
frequency with temperature drifts is shown in Fig.20.
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Table 1: Performance comparisons with previous works

Parameters [8] [9] [10] [11] [12] This work
Process (µm) 0.25 0.35 0.25 0.28 0.5 0.35

Frequency (Hz) 800M 80k 7M 2.4G 12.8M 4M
Supply Voltage (V) 2.5 1 2.5 2.5 3 3.3

Consume current (µA) 7580 1.14 600 7680 133 234.72
Temperature (◦C) -20∼100 0∼80 -40∼125 -40∼120 -40∼125 -25∼100

Temperature coefficient (ppm/◦C) 360000 842 90.9 73 3030 986
Phase noise @ 1MHz offset (dBC/Hz) N/A N/A N/A -96 N/A -62.29

Area (mm2) N/A 0.24 1.6 0.0121 0.1848 0.02

Fig. 17: Oscillation frequency of the proposed VCO with
temperature drifts

Fig. 18: The die photo of the proposed VCO chip

Consequently, the oscillation frequency variation of the
proposed VCO was approximately 986 ppm/◦C over a
temperature range of -25◦C to 100◦C. Because a number
of MOS transistors worked in the triode region, the
frequency variation was slightly large. However, the
slight frequency variation was tolerated by using low
operation frequency digital circuits. Fig.21 shows the
measured output frequency spectrum at 4 MHz.
Consequently, the phase noise of -62.29 dBc/Hz was
obtained at 1 MHz offset from the carrier. Table 1 shows
the measurement and comparison results with previous
works. According to measurement results, the proposed

Fig. 19: The measured waveform of the proposed VCO,
Fout =4MHz

Fig. 20: Measured frequency of the proposed VCO with
temperature drifts

VCO provides stable oscillation frequency and occupies
small area. Therefore, the proposed VCO is suitable for
integration into the embedded system.

4 Conclusions

This paper proposes a robust VCO for the embedded
system. The proposed VCO was composed of the
constant current reference and the ring oscillator. The
constant current reference generated the constant current
for the succeeding ring oscillator to produce a stable 4
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Fig. 21: Measured frequency spectrum of the proposed
VCO, Fout = 4MHz

MHz oscillation frequency. The proposed VCO circuit
was designed and fabricated in TSMC 0.35µm CMOS
process. The chip area of the VCO was 150µm × 130
µm. According to measured results, the oscillation
frequency variation of the proposed VCO was
approximately 986 ppm/◦C over a temperature range of
-25◦C to 100◦C. The phase noise of -62.29 dBc/Hz was
obtained at 1 MHz offset from the carrier. Therefore, the
proposed VCO is suitable for integration into the
embedded system.
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