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Abstract: If X andY are discrete random variables in finite case, then usingqifgpulity of Cauchy-Schwarz, we will obtain another
inequality expressed by the variance and covariance. Thefthis paper is to obtain a new refinement of discrete varefdGruss
inequality. In the final we show that we can structure the $eaiodom variables with equal probabilities as a Hilbertcgpand as a
seminormed vector space.
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n

1 Introduction deviation from meampix = E[X] = 1 lei :

i=
The integral variant of Gruss inequality (setl]), besides 10
applications in mathematical analysis, has some statistic Var(X) = E [(X — ux)?] = = zl(Xi — ux)?.
applications. The discrete version of Griiss inequalig(s ni<

2], [13],[14], [15], [19, [2]3)) has the following form:
(2], [13 [14), [191. 119, [23) g The expression for the variance can be expanded thus:

1 Var(X) = E [X?] —E?[X].
<z (n-w)lz—y), (1)

%iixi)ﬁ - % iixi % iiYi

wherex;, y; are real numberg; <x < andy, <y; </, X = (
foralli=1,n.

In [24], Pecaric showed some remarks on the
Ostrowski generalization of Chebyshev’'s inequality by
the Chebyshev functional. There are many articles which”
treated this inequality in integral variant (se#}, [6], [7],

[8], [19], [23]). We will focus attention on the discrete

version of Griss inequality and motivated by its
usefulness, we will study this inequality in the context of
eIemgnts of statistics, using the concepts of variance and Cou(X,Y) = E[XY] — E[X]E[Y].
covariance for the random variables.

The variance of a random variab¥e = )("_> Using the inequality of Cauchy-Schwarz for discrete
Pi / 1<i<n random variables, we find the inequality given by

with probabilitiesP(X = x) = p; = % foranyi =1,n,is
second central moment, the expected value of the squared ICou(X,Y)[? < Var(X)Var(Y),

We denote byRV the set of random variables
Xi) with probabilitiesP(X = x;) = pj = &
1<i<n

’
i n

foranyi=1,n.
The covariance is a measure of how much two random
ariables changes together and is defined as:
Cov(X,Y) =E[(X—E[X])(Y —E[Y])],

and is equivalent to the form
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or in the form Proof. For the discrete random variablésY andZ given
in finite case, withvVar(X) # 0, we take the following

ICovX,Y)| < /Var(X)Var(Y). random variable:
Two variables have a strong statistical relationship W CovX,Y)+ACovX,Z)
each other if they appear to move together. According to Var(X)

[9], correlation is a measure of a linear relationshipWe calculate the variance of random varialethus:
between two variables, X and Y, and is measured by the 14 '

X-=Y—-AZ

correlation coefficient, given by: var(W) = Var ((cOv(x,Y) X —Y) ) (cOv(x,z) < Z)) 7
Var(X) Var(X)
pIX,Y) = CovX,Y) _ _
)= —Var(X)Var(Y)' and applying relationd), we have:
Itis easy to see thatl < p(X,Y) <1. Var(W) =Var <%>(<)’(\)()X —Y) +A%var (C\?:r)(();)z)x — Z) -
Cov(X,Y) CovX,Z) B
_ZACOV( var(X) X=Y, var(X) X_Z) -
2 Main results [CoMX.Y)? ., [CovX,Z)]?
=Var(Y) — NarX) +Ac|Var(Z)— Varx) |
For beginning, we will present some properties of the CovX,Y) CovX,2)
discrete random variables in finite caseXfandY are ( var(X) © 7 Var(X) X_Z)'

discrete random variables in finite case, and are real o )
numbers, then it is easy to see, using the definitions for We deduce the following inequality

the variance and covariance, that there is the following CouX.Y CovX.Z
relation: Cov \c/):r(;())X—Y, \c;:r()’())x—z> =
- arvarc Cax-
Var(aX +bY) = a®Var(X) + b?Var(Y) + 2abCo\X,Y), CovX,Y)CovX.Z) CovX,Z)CowX,Y)
(2) - - +CouY,Z) =
Var(X) Var(X
If we takea=b=1anda=1,b= —1,in relation @), CovX,Y)CouX,Z)

=CovY,Z)—

then we obtain the equalities: Var(X)

Returning to calculate the variance for random vari&t|e
Var(X+Y) =Var(X) +Var(Y) + 2CovX,Y), (3) "€ have:

2 2
and Var(W) = Var(Y) — [Ci)/\gz;(\;)] 27 (Var(z) - [Ci)/\gﬁ;(z))] )7
Cov(X,Y)CovX,Z)
e (C‘MY’Z)* T ovarx) )

Var(X —Y) = Var(X) +Var(Y) —2Co«X,Y).  (4) Therefore, we deduce the equality
Remark 2.1. From relations §) and @), we find the Var(X)Var(W) = Var(X)Var(Y) — [CovX,Y)]* +
parallelogram law in terms of variance, namely +A2(Var(X)Var(zZ) — [CouX,Z)]%)—
—2A (Var(X)CouY,Z) —CovX,Y)CouX,Z)).
Var(X+Y)+Var(X—-Y) =2Var(X)+2Vvar(Y). (5)
SinceVar(X)Var(W) > 0, it follows that
Also, if X, Y, Z andT are discrete random variablesin _, 2
finite case, and, b, c andd are real numbers, then there is A~ (Var(X)var(z) — [CouX, 2)J%) —2A (Var(X)Co«¥,Z) -

the following equality: —CovX,Y)CowX,Z)) +Var(X)Var(Y) — [CouX,Y)]? > 0,
foreveryA e R.
CovaX+bY,cZ+dT) = Taking into account that
=acCouX, Z) +adCoyX, T)+ 6)  var(x)Var(z) — [CowX,Z)]? # 0, becauseX  kZ, this

+bcCo\Y,Z) +bdCo\Y,T) implies that

Theorem 2.1.If X,Y andZ are discrete random variables (Var(X)Var(Z) — [Cou(X Z)]Z) <Var(X)Var(Y) —[CouX Y)]Z) >
in finite case, withX # kZ, then we have the inequality: (Var(X)Cov(Y.2) —Cc;v(x Y)CowX.2))? ' -

_ 2 (8)
0< [COWT/’;%%)\\;(;({(ZZ))_%S,(\If?)/ﬁmx)} < @) Consequently, we obtain the inequality of the
<Var(X)Var(Y) — [CoX,Y)]? statement]
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Remark 2.2. (a) By replacement with the correlation numberk. Then applying inequality 14), we deduce
coefficient in inequality §), we deduce the inequality: second refining of Griiss inequality, given by

[1-p*(X,Y)] [1-p?*(X,2)] > (p(Y?Z>—p(x,v>p<x,2>(>;j o
1
(b) Let X, Y andZ be discrete random variables in [HZLXM - ﬁ'leiﬁ'Zlyi
finite case, wittvar(Y) # 0 andvar(Z) # 0. If we take the = i= i=

. . X, Y
following random variableW = X — %Y —AZ, whereS— [A—

+S<Var(X)Var(Y), (15)

]2
, with:

then we have the inequality:

10 10 10 10 10 10
[COV(X.Y)CoUY.Z)—CouX.Z)Var(Y)]2 A= (— leiyi - = lei— Yi> (— %z —= Y X Za) :
0< : ' : < (10) nis Ni& Nis = Nig NS

Var(Y)Var(Z) )
<Var(X)Var(Y) — |CouX,Y)]| 10 1n 10 10N 1N
B=(C5yza—-Y%-5a)(C S -3 %)),
n i= n i= n i; n i= n i=
3 Applications and
n n n n
Let X1, X, ..., X be real numbers assum_e< X < Iy, for C=((s-EsxEsZ2-(t57)?)-
2 2 2 2
alli =1,nand the averaggy = = Z Xi. I I I I
n n n
In 1935, Popoviciu proved the foIIIowmg inequality —(Eyxz—Lyxtyz)?

n
Var(X) = 1 Z(xi —ux)? < }(I'l— y)2.  (11) Remark 3.1. In [15), Kechriniotis and Delibasis
ni< 4 demonstrated other refinements of the discrete version of
. Gruss inequality. Zitikis presented i29] a probabilistic
From the relatlorCov(X Y) = E[XY] - E[X]E[Y] = interpretation and another bound for Griiss inequality.
Z XiYi — = 2 xIn Z yi and using the inequality of 1. If X andY are discrete random variables in finite

=1 case, then there is the following inequalit
Cauchy Schwarz for discrete random variables given by gineq y

|ICou(X,Y)| < /Var(X)Var(Y) and inequality {1), we VVar(X+Y) < WVar(X) +Var(Y)  (16)
deduce the inequality of Griss. .
Bhatia and Davis shows id], the following inequality ~ Proof. From relation 1), we have:

10 Var(X+Y) =Var(X)+Var(Y) + 2Cov« X,Y) =
Var(X) = n _Z\(Xi - UX)Z <(Mi—px)(ux —y1), (12) _ (\/Var(X) + \/Var(Y))z—

which represents an improvement of Popoviciu's —Z(VVar(X)Var(Y) —Cov(X,Y)) -
inequality, becausel — y1)* > 4(" — Ux)(Ux — Y1)
Therefore, we will have the first improvement of Gruss
inequality given by the following relation:

Applying the inequality of Cauchy-Schwarz for
discrete random variables given by

|[Cou(X,Y)| < +/Var(X)Var(Y),

i §>qyi—% E)q% gyi‘g it follows that

i1 i1 "iZ1 ,
< V(M= px) (ux —yi) (2= py) (By — y2) < (13) Var(X+Y) < (\/Var +\/Var(Y)) ;
<in-wn(R-yw). which implies the inequality of the statemet.

Remark 3.2.Inequality (L6) in terms of sums becomes

If X,Y andZ are discrete random variables in finite
case, withX # kZ, then we have from inequality’}, the ﬁ imﬂi,ux,sz ﬁ i(xifwuﬁ im,w
following relation: = = =

[CouX,Y)]2+ [CoV(X,Y)Cov(X,Z)—COV(Y-,Z)Ve;r(X)]Z Dividing by 5 and making the following
Var(X)Var(Z)—[CouX,Z)] (14) .SUbStitU-tiOnSXi — ux = & andy; — ty = b;, we obtain the
<Var(X)Var(Y). inequality
n n n
Let Xi,X2,....%n, Y1.Y2,--:¥n, Z,2,....Zn be real b2 < B b2
numbers, assume # kz, for all i = 1,n and for any real i;(a +bi)? < i;& + i; i,
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which is the fact the Minkowski inequality, in the case
2 a; =0 and 2 b =
1

i=1
2.1f X andY are discrete random variables in finite

case, then there is the following inequality

JVarX —y) > ‘ Var(X) — \/Var(Y)‘ (17)
Proof. From relation 8), we have
Var(X —Y) =Var(X)+Var(Y) — 2CovX,Y) =
= (VVar(X) - \/Var(Y))2+

+2(y/Var(X)Var(Y) —Cou X,Y)).

Applying the inequality of Cauchy-Schwarz for
discrete random variables, we obtain

> (vVar(X) — /Var(Y))?

which implies the inequality of the statemént.

Var(X —-Y)

nn+1)
2

n 2
=
4 _n(n+1)(2n+1)(3n°+3n— i)

;‘4 30

4. 1f X andY are discrete random variables in finite
case, then there is the following inequality

|Cov(X, Y)\ <
< (n?—1)(7n-8)

soz MaXi<ken—1 [Xicr 1 — X Ma%<ken-1 Vi1 — Ykl »

(20)
whereX andY are two random variables given by =

% ) andY = (yi_ ) with probabilitiesP(X =
Pi /) 1<icn 1<i<n

x)=pi=3andP(Y =y) =g = 1.
Proof. Applying the inequality of Cauchy-Schwarz for

By Ostrowski’s inequality (see2p)]), we can estimate discrete random variables,
the deviation of the values of a smooth function from its |[Cou(X,Y)| < y/Var(X)Var(Y) and using the inequality
mean value. In the same way, Florea and Niculescu19), for Var(X) andVar(Y), we deduce inequality2().
established in]Q] a variant of Ostrowski's inequality ina [

normed vector space. But, the set of real numbers is ®emark 3.3.In fact inequality 20) is another Griiss type

normed vector space. Therefore, we can write, in terms ofnequality.

random variables, thus:

2 2
)+ nTl} maxg<k<n—1 X1 — k|-

(18)

|Xi —

e < 2[(i-

This inequality suggests an estimation of the variance, n

which is given below.

3. If X is a discrete random variable in finite case, then

there is the following inequality

(n? —1)(7Tn?>—8)

Var(X) <
ar(X) < 502

max [Xe.1 — X
| fnax |k+1 W,

(19)

whereX is a random variable given by = (Xi_)
Pi/ 1<i<n
with probabilitiesP(X = x;) = pj =

Proof. From relation 18), we have

var(X) = E[(X — E[X])?] =
=43 —EX)P <
< B maxcken—1 X1 — X |:zin:l [(' - %1)2

(n2—1)(7n?—8)
60n2

E[IX — E[X]P] =

212
+“4H:

2
MaX <k<n—1|Xkt1 — X/ -

Here, we use the equalities frod |

n n+1

;

n(n+1)( 2n+1)

)

M:

In ([24], Corollary 5), Pecaric gave another result,
which characterizes the variance. More precisely: if
X1 <Xo < ... < Xn Or Xy > Xo > ... > Xn, then

B (30) (2o (2wt

This inequality helps us to find an estimation of the
variance, which is given below.

5. If X is a discrete random variable in finite case, in
the above conditions, then there is the following ineqyalit

1¢n n 2
< | = S _
= bJ (n M) (l=w)",
wherey; < x < I, foralli=1,n.

Proof. From relation 21) it is easy to see that inequality
(22) is demonstrated.]
6. If X andY are discrete random variables in finite

case, in the above conditions, then there is the following
inequality

var(X) (22)

1 n n
< _ JE _ _
ICoUX,Y)l < M (n M) (M—-y)(l2—-v),
(23)
wherey; <x <1,y <y <, foralli=1n.

Proof. From inequality|CovX,Y)| < y/Var(X)Var(Y)
and using the inequality2@) for Var(X) andVar(Y), we
deduce inequality23).

This inequality is a refinement of Griiss inequality due
to Biernacki, Pidek and Ryll-Nardzewski (se&],[[13)]).
In [16] and [17], the Lukaszyk-Karmowski metric is a
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function defining a distance between two random In [14], lzumio, Pecaric and Tepe$S found others
variables or two random vectors. extensions of Griss inequality. We selected two of them:
In case when the random variables X and Y are . . .
> : .- A 1 1 1
characterized by discrete probability distribution, the |1 XYi— =S xSy
n,& n&G ns

<
Lukaszyk-Karmowski metric D is defined as: -

D(XaY): ‘Xi_yj‘P(X:Xi)P(Y:yi)' n n n n
'ZZ < %\/(rl—yl)(FZ—VZ)%izl X~ 3 %03 Yi—Fl]iZl)’i‘7

Next we will use another metric for the SRYV. We can
look the sefRV as a vector space. The natural way is by [1 n 1h 10 1h 1h
introducing and using the standard inner producdh |- _ZlXM - H.inﬁ _ZYi s(lz—y) Z Xi—— _lei )
The inner product of any two random variables X and Y is | '= = = = =
defined by In terms of covariance, we obtain the following

(X,Y) =CouX,Y). (24)  inequalities:

The inner product of X with itself is always
non-negative. This product allows us to define the k(n—k)
"length” of a random variable X through square root; CouX. V) < (ln—w)(l2—y2) max —5—,

X = /IXX) = V/CouX, X) = VVar(X). ~ (25)

This length function satisfies the required properties|Cov(X,Y)| < 2/(I1—y1) (2 — y2) E[IX — EX]JE[)Y — E[Y]]]
of a seminorm and is called the Euclidean seminorm on (26)
RV. A seminorm allowed to assign zero length to someand
non-zero vectors. The sBY with this seminorm is called

seminormed vector space. Finally, one can use the norm to ICov(X,Y)| < (F2—ve) E[IX — E[X]|]. (27)
define a metric oflRYV by - 2
But, we have the relatiofCoV(X,X) = Var(X), from
d(X,Y) = [[X=Y| =/ Var(X-Y). inequality @6) or (27), it follows that
This distance function is the Euclidean metricloW. 1
From relation 16), we have Var(X) < 5 (I —y) E[[X —E[X]|] (28)
VvVvar(X-2) = \WVar((X-Y) +(Y -2)) < Using inequality 18), we deduce that
< Var(X-Y)+/Var(Y - 2),
n’—1
so0, we obtain the inequality of triangle ElIX-EX]] < —55—, max Xc1—Xdl-

d(X,Z) <d(X,Y)+d(Y,Z). Therefore, we rewrite inequalitie2€), (27) and ¢8),

Properties related to a Hilbert space can be found inn the following way:

[12), and several inequalities in pseudo-Hilbert spaces cancoyx,v)| <

be found in B]. Consequently, the set of random variables - oL/ — 1) (T2 — Vo) Ma%ceen1 My 1 — X M8 <ken1 Yt — Vil
RV forming a structure of Hilbert space, and a

seminormed vector space.

2
n-1
|ICov(X,Y)| < 5 (M2—Y2) max |Xei1—X,
. .. . . n 1<k<n-1

4 Some final remarks on Giiss inequality for

variance, covariance and coefficient of and

variation n2_1

Var(X) < M- max X1 — Xkl .
(X) < an (N Vl)lgkgn_l| k1 — Xl

Izumio and Pecaric (see13) shows the following

inequality: In [20], Mitrinovic and Vasi¢ mentioned the following
inequality:
[F 30— 3axE ] < < (=) (- ye), max 452, . ) N2
which proved another improvement of Griiss inequality, 1§rin<i|[]§n(xk_)q)2 G ;Xiz_ n (izlxi> ’
becauseigkg%k(—?;ﬁ <1 (29)
(© 2015 NSP
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