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Abstract: In this paper, we discuss nondifferentiable minimax fi@wil programming problem where the involved functions are
locally Lipschitz. Furthermore, weak, strong and strichw&rse duality theorems are proved in the setting of Mond-t¥ype dual
under the assumption of generalizgda, p, d)-convexity.
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1 Introduction and duality relations have been established under various
kinds of generalized convexity assumptions. See for
Throughout our discussionR" will denote the examplel,2,3,4,8,10,11,12,1314,15,21,22].
n-dimensional Euclidean space unless otherwise
mentioned. In nonlinear optimization problems, where

minimization and maximization process are perforr‘nGdsufﬁcient optimality conditions for generalized minimax
together, are called minimax (minmax) problems. P y Y

Frequently, problems of this type arise in many areas "keprogramm_ing problem under the condition of convexity.
garr?e thgolray, Chebychev Z\I;J)proximation, )économicsl‘ater’ Tanlmoto 20] applied the opnmahty conditions of

financial planning and facility location 7. The [19 to define a .dual problem a-nd derived the QUaI|ty
optimization problems in which the objective function is a theorems for minimax programming problems which are

ratio of two functions are commonly known as fractional Cglgifder?ﬁe bz():g(r:tmeggggrh ?i?)(;\ts?r ir?ngweBgitff%]cién i
programming problems. In past few years, many authorg y P

have shown interest in the field of minimax fractional gp::mg:::y gg:g'tti'g:s '?0 E‘:g]nsi?ljjctaslfe(\)/ereaTF:jlﬁgleorlnct)ZZIs
programming problems. b y

which involve pseudo-convex and quasi-convex
functions, and derived weak and strong duality theorems.

It is known that minimax fractional programming .
problems often arise in management science and ir?(adav and Mukherjee2] construct two types of dual

particular in financial planning where objective functions p;gblrean;%]fi(r)]r (ggdnvggzivdége;entr'gblrieaféagﬂgﬂfl PQQO'?;?T):S
in the optimization problems involve ratios such as costorlpn ?4] Chagndra and Kun?alljr pointed outy that the ’
profit in time, return on capital, earnings per share. ’ P

Minimax fractional problems also come to light in formulation of Yadav and Mukherjee2f] has some

discrete rational approximation where the Chebychevom'ss'ons and inconsistencies and they constructed two

norm is used. These minimax problems deal with ﬁnitelyrnOdIerci d'ual prqblems anq prove.d'duahty theorems for
many ratios (convex) differentiable fractional minimax programming.

In [19], Schmitendorf obtained the necessary and

Recently there has been an increasing interest in Liu and Wu [14,15] derived the sufficient optimality
developing optimality conditions and duality relations fo conditions and duality theorems for the minimax
minimax fractional programming problems. As for their fractional programming in the framework of invexity and
earlier differentiable counterparts, optimality conalits  (F,a,p,d)-convex functions. Liang et al. 113
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introduced a unified formulation of generalized convexity, It follows that, for any € R

which was calledF,a, p,d)-convex and obtained some

corresponding optimality conditions and duality results fOx;v) =max{&Tv:xic af(x)}.

for the single objective fractional problems and

multiobjective problems. For multiobjective fractional Lemma 1let@, ¢ : X — R be Lipschitz near x. iy x >
programming problem Liu and Fend§] introduced a 0, @x > 0and if ¢, ¢ are regular at x, then

new concept of generalize@, 6, p,d)-convexity about

the Clarkes generalized gradient. They also established P <ﬂ> _ 2X)dax) — a(X)9e(X)

optimality conditions and duality results using the 0 (@ (x)]2 '

concept of generalize(f, 6, p,d)-convexity. Ahmad and

Husain [1] established appropriate duality theorems for aLet f,g 1 R"x R™ — R and h: R" — RP are locally
class of nondifferentiable minimax fractional Lipschitz functions. Let A and B be >nn positive
programming pr0b|ems invo|ving(|:7a’p7d)-pseudo semi-definite matrices. Suppose that Y is a Compact
convex function. Recently, Mishra and Rautela7]] subset of R. Consider the following nondifferentiable
derived Karush-Kuhn-Tucker type sufficient optimality minimax fractional problem:

conditions and duality theorems for nondifferentiable
minimax fractional programming problem under the
assumptions of generalizedtype | invex which defined

in the setting of Clarke subdifferential functions.

X subject toh(x) < 0.
xeR yey g(X, y) - <X7 BX>

NIE[ N

where(.,.) denotes the inner product in Euclidean space.
. . . This problem is non-differentiable programming problem
Mlslhra andk Rfa:;elal(gn, '3 :Ih's pgpter,tr\:ve extend ttf;]e if either A or B is nonzero. IfA andB are null matrices,

earlier work o mad and Husairi] to the nonsmoo the problem (P) is a minimax fractional programming

case. The paper is organized as follow: Section 2 is . .
devoted to sporlile definit?ons and notations. In Section 3problem. We denote byyp the set of all feasible solutions

n o n
we discuss weak, strong and strict converse duality?)]: ;(/)P)e aRrr110>I< bR%RdJreftirr}Z positive orthant oR". For each

theorems in the setting of Mond-Weir type dual for a class

Motivated by the work of Liu and Fenglf] and

of nondifferentiable minimax fractional programming 1
problems using generalize(F, a, p,d)-convexity type P(x,y) = f X, Ax) 2
assumptions. g(x.y) — (x,BX)?
1

. . Assume that for eactx,y) € Op x Y, f(X,y) + (X,AX)2 >0

2 Preliminaries oY) € Bp x ¥, T(6y) + (6. AX
andg(x,y) — (x,Bx)2 > 0. Denote
We begin with the following definitions and Lemmas that
will be needed in the sequel. Let X be a nonempty open 1 1
subset oR". Then, we recall the following: Vo {)76 v fy)+ <X,AX>: _ Supf(X,y) Ax)j }
g(xvy) - <X7 BX>2 yey g(X7 y) - <X7 BX>2

Definition 1.A function is said to Lipschitz nearX iff
for some K> 0

| fy) - f(@ I K || y—2z | for all
y, zwithin a neighbourhood of.

We say thatf : X — Ris locally Lipschitz onX if it is KX) ={(st,y) e NxRE xR™:1<s<n+1 t=
Lipschitz near any point oX. (t1,to,....1s) € RS}

J={1,2,...p}, I(x) = {j € I hj(x) = 0}.

Let K be a triplet such that

Definition 2.If f : X — R is locally Lipschitz at x X, the
generalized derivative (in the sence of Clarke [6]) of f at

S —
with § t; =1andy= (y1,y2,....¥s) @andy; € Y(X), Vi =
i=1
x € X in the direction v= R, denote by %(x;v), is given 1,2, ..!,s.

by
Since f and g are continuous differentiable, anflis a
£O(x;v) = lim supf(y+)\v) —fy) compact subset ofR™, it follows that for each
' A—0y—sx A ’ x* € Op, Y(X*) # @. Thus for anyy; € Y(x*), we have a

e ) . positive constantky = ¢@(x*,yi) we shall need the
Definition 3.. The Clarkes generalized gradientof f a&X  following generalized Schwarz inequality in our

X, denoted by f (x) and defined as follows: discussions:
af(x) =max& eR": fO(xv) > &Tv forallve R"}. (X AV) < (x, AX)? (v, AV)? for somex,v € R (1)
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the equality holds wheAx= A Avfor someA >0.Hence 0 € Et (OF(x*,¥i) + Au — ko(dg(x*,yi) — Bv)) +
1 1
if (v,Av)2 <1, we havex,Av) < (X,AX)2. o (u* h( “)) )
_ 1 1
Definition 4.A functional F: X x X x R" > Rwhere X f(X",¥i) + (X",AX")2 — ko (Q(X*,W — (X", Bx") 2) =0,
R" is said to be sub-linear if fofx, xg) € X x X i=12,...s (3)
I)F(x,X0;a1 4 a2) < F(x,X0;a1) + F(X,Xo;a2) for all o
( )al(’ a e & ) ( ) ( ) <IJ ,h(X )> =0 (4)
(i)F(x,x0; aa) = aF(x,xp;a) for all a € R, a > 0 and s
acR, tr e R with 3 " = 5)
i=1
Based upon the concept of sublinear functional, we  (y Ay) <1, (v,Bv) <1 (6)
recall a unified formulation of generalized convexity [j.e. h B
(F,a,p,d)-convexity] where the involved functions are (X", AU) = (X" Am%
locally Lipschitz given in Liu and FendLp] as follows. '
(x',BV) = (x",BX) . )

Definition5.Let F: X x X x R" — R be a sublinear
functional, let the functiod : X — R be locally Lipschitz
at x € X, a: XxX = R\{0}, p € R and
d: Xx X — R. The function{ is said to be
(F,a,p,d)-convexity at § if {(x) — {(x) >

F (%, %0; 0 (%, %0){) + pd?(x,%0), ¥ { € 9 (%)

The function( is said to beF, a, p,d)-convex overX if

for all xg € X, itis (F,a,p,d)-convex atxg. In particular,
{ is said to be strongly (F,a,p,d)-convex or
(F,p)-convexifp > 0 orp = 0, respectevely.

Special CasesFrom Definition 5, there are the following
special cases:

(HIf a(x,%) =1, for all x,Xo € X, then the(F,a, p,d)-
convexity is the(F, p)-convexity defined in [5].

(iOIf F(x,%0; 0 (X, X0){) = {'n(x,%o) for a certain mapm :
X x X = R", then, the(F, a, p,d)-convexity is thep-
invexity of [9].

(iii )If zetais continuous differentiable &g, then we obtain
(F,a,p,d)-type convexity 1L2].

(iV)If p =0 or d(x,x) = 0 for all x,xop € X and if
F(x,%0;a(%,%0){) = {'n(x,%p) for a certain map
n: XxX — R then the (F,a,p,d)-convexity
reduces to the invexitylg].

Definition 6.Let F : X x X x R" —+ R be a sublinear
functional, let the functiod : X — R be locally Lipschitz
at o € X, a: XxX = R\{0}, p e R and
d: Xx X — R. The function{ is said to be
(F,a,p,d)-pseudoconvex atox if {(x) < {(Xo) =

F(%,%0; a(%,%0){) < —pd?(x,%0), V { € 9Z(x0).

Further, is said to be strictl(F, a, p,d)-pseudoconvex
at xo, if F(X,X0;0(X,%0){) > —pd?(x, %) = {(X) >
{(X0) V ¢ € d{(xp). The following result from 9] is
needed in the sequel.

Lemma 2Let X be an optimal solution for (P) satisfying
(x*,Ax*) > 0, (x*,Bx*) > 0 and dhj(x*), j € J(x*) are
linearly independent. Then there exist
(s,t*,y) € K(x*),u,ve R"andp* € R? such that

It should be noted that both the matrickendB are
positive definite at the solutioxy in the above lemma. If
one of (Ax*,x*) and (Bx*,x") is zero, or bottA andB are
singular atxp, then for(s,t*,y) € K(x*), we can take

Zy(x*) ={ze R": ({j,2) <0V j € hj(x*),j € I(x*)}
with any one of the following(i) — (iii) holds for all
ve af(x,vi),d € ag(x:,yi):

(i) (AX,x*) >0, (BX,x*) =0 =

<§ti*v—|— — ko9, Z>—|—<kOBZZ> <0
i=1 <A)(*,X*>

(i) (Ax,x*) =0, (BX',x*) >0 =

<i§1ti* (V_ko( W))Z> (B22)? <0
(i) (AX',x*) =0, (BX',x")=0 =

<i=§1ti* (V—ko?) ,z> +((kB)2,2)? + (Bz2)? < 0.

If we take the conditiorZy(x*) =
the result of Lemma 2 still holds.

@ in Lemma 2, then

3 Duality model

We now recast the necessary condition in Lemma 2 in the
following form:

Lemma 3Let X be an optimal solution for (P). Assume
that dgj(x*),j € J(x*) are linearly independent. Then
there exists,t*,y) € K andu* € R} such that

(Fr)
0ecd (8),

AW + (I

3 1 (g0 )~ B)

(f(x*.yi)+
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ti (f(zy)+{zAW)+(1h(2)

\IMw

> 1

MH T

(U*h(x*)) =0, 9) sup Y +XAX ] -
yeY g(xy)—(x.Bx) 2 ti(9(z3)~(2Bv)

(U, AU < 1, (v,BY) < 1, (x',AX)Z = (x*, AU,
Proof Assume to the contrary that

(x*,Bx)2 < (x*,BV), (10) )
1 ti (f(z Vi) +(zAw) + (1, h(z
u* € RP, > Owith qup! V) et 2 (T + A0+ hE)
= S . I
StLyieYx)i=12..s  (11) YEY g(xy) — (. Bx)> 3 (929~ (zBv)
i=1 =
Now, we consider the following Mond-Weir type dual for all y € Y. If we replacey by y; in the above inequality
for (P): and sum up after multiplying bly, then we have
3 4 (23 + (@A) + (h(2) S XV 312 gz —
© ma sy o0 | | St + a0t | 31 (e - )| <
(StYIEK (z yuv)eH (st ,y) _zlti*(g(zﬁ)—(z,Bv)) s
| : S+ @A)+ )
subject to i=1
S _ 1
|:2 ti (g(ani) - <X7 BX>2):| .
i=1
s B Using the generalized Schwartz inequality and (13),
S 5 (f(zy)+ (ZAW) + (1,h(2)) we get
0ed | E— . (12 .
izlti* (9(zyi) — (zBY)) W(x) < {z t (9(zYi) — (z,BV) )]
s 1
S (1 + b Ax>2) (.0) | -
uAu) <1, (v,Bv) <1, S
WAL By S0+ @A)+ ()
1 1 I=
2 — 2
(A2 = (zA), (2B2? < (2BV), (13) {z 4 (a6 — 6B %)]
where Hst,y) € K denotes the set of = _
(z.p,u,v) € R" x R” x R" x R satisfying (12) (13). For (U h(x)) x [_Z ti(9(zyi) - (z BV>)] -
a triplet (s,t,y) € K, if the set Hs;t,y) is empty, then we =1
define the supremum over it to be.-In this section, we Since Z ti (9(z,yi) — (zBv)) > 0 and(u,h(z)) <0, it
denote
follows thatL[J(x) <0=y(2).
S
w()= {Z t(9(zy) —(z BV))} As is @(x) is (F,a,p,d)-pseudoconvex atz.
= Therefore

[E |*(f(-,>m+<-,AU>>+<u,h(-)>] -
<1 Fxza(x2)&) < —pd(x2), ¥ & € dp(2),
t*

|34 (2 + @A)+ (h(z)]

which yeilds
27 6 (.89 Fxzak{[3ue@n- < zBv >)
Suppose that i:Elti*(f(z,)ﬁ)j%z,Auﬂ + (u,h(z)) > a[élt'(f(z’ﬂ+ <I:,Au>)+<u7h(z) >]
0, zt ((zBv) —g(zy)) < 0 and regular for all _[élt'(f(z’ﬁ” < zZAU )+ < wh@) >
(559 K02, (9 HSE ) 913 1(lol230)— < 2Bv>}) < ~pe(x2)

On mul}iplying the  above inequality by

Theorem 1(Weak duality). Let xc O, be a feasible ) ) .
-, using the sublinearity of and

solution for (P) and let(z u,k,u,v,s t,y) be a feasible -
soluton for (D). Suppose that @() is 9 >[Z"( (z¥)~{zBv)
(F,a,p,d)-pseudoconvex at z , and the inequality Lemma 1, we have

ﬁ > 0, hold. Then

(@© 2015 NSP
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3 (1 (230)+ (2A0)+(h(2)
F|xzd |=— — <
3 t(a(z3) - (28v)
B pd?(x2)
s 29
|3 oz -zev)|
i=1
Using the fact tha% > 0, we have

b
F [x,z;d {"

i (f(zy)+{zAW)+(1h(2)

Z ti(9(zyi)—(zBV)

<0 (14

which contrad|cts the dual constraints (12), since

F(x,z0) = 0. Hence the theorem is proved.

Theorem 2(Strong Duality). Assume thatis an optimal

solution for (P) andx satisfies a constraints qualification

there exist (St,y*) € K(ﬂ_and

for (P). Then |
(X, U,0,V) € H(sit,y*) such that (x,u,u,v,St,y*) is

feasible for (D). If, in addition, the hypothesis of theorem

3.2 holds for feasible pointgz u,k,u,v,st,y), then
(X, U™, ke U, v sF % yF) is an optimal solution for (D)

and the problem (P) and (D) have the same optimal

values.

ProofBy Lemma 3, there exists’,t*,y*) € K(x*) and
(X, uut v e H(s'thy) such that

(X, Ut ke U, v st % ) is a feasible for (D) and the
two objective values are equal. The optimality of this

feasible solution for (D) follows from Theorem 1.

Theorem 3(Strict Converse Duality). Lek be optimal
solution for (P) and let(z u,k,u,v,St,y*) be optimal

solution for (D). Assume that the hypothesis of Theorem

is fulfilled. Further, assume thaty(.) is strictly
(F a,p,d)-pseudoconvex atz_, and the inequality
a<xz> > 0, hold. Thenx =z ; that is,z is an optimal

solution for (P).

ProofSuppose on the contrary that z. From Theorem
2, we know that there existt,y*) € K(x) and(X, H,U,V) €

(s,t,y ) such that(x, i, u,v,S,t,y*) is a feasible for (D)
with the optimal value

S
FKy) + (AR &
sup =
yeY g(xy) — (X,Bx)?

(ZAW) + (1, h(2))

(ZB7))

ti(f(zy) +

S [
S t(azy) -
i=1
t,y*) is feasible for

On the other hand, sindg, i1, u,V,s,
(D), it follows that

3 4 (HEW) + ZAD) + (iIh(Z)
0eg | =L <

> ti(9(zyi) - (zBV))

i=1

the above inequality along with the sublinearityFofand

ﬁ > 0 implies

)?Z_d Z £ ( S(Zm*@A@)Jr(ﬁ,h(Zj) e pdz(_)@
2 ti(9(zyi)—(zBV)) = ax2

which together W|th the sublinearity of F and yields

Ztu( (Zyi)+(zAu)+(p,h(2))
FlxzZa(x2)9

—pd(x,2)

Using the stric{F, a, p,d)-pseudoconvex of/(.), we
gety(x) > Y(z). Sincey(z) = 0, then we havey(x) >0,

3 1oz~ (ZB)

that is

5 vz - )|
Lflti (f(ZW+<ZA®)+<H,h@>] >
E ti (f(z V) + (zAY) + <E,h(2)>]
S ueEn-@em| a9
From (1), (13), (15) andif, () < 0 imply

T AU HEAD) HERC)
sup CYVEXA2 - i5 .

yeY g(xy)— xB@% z t,( )—(zBV))
Thus, we have a contrad|ct|on Hence the theorem is
proved.

4 Conclusion

2I'he notion of generalized(F,a,p,d)-convexity is

adopted, which includes many other generalized
convexity concepts in mathematical programming as
special cases. This concept is appropriate to discuss the
weak, strong and strict converse duality theorems for a
higher order dual (ND) of a nondifferentiable minimax
fractional programming problem (NP). The results of this
paper can be discussed by formulating a unified higher
order dual involving support functions. Frequently,
problems of this type arise in many areas and may have a
lot of applications in game theory, Chebychev
approximation, economics, financial planning and facility
location [LQ].
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