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Abstract: The Ito equation (a coupled nonlinear wave equation whictegizes the KdV equation) has previously been shown to
admit a reduction to a single nonlinear Casimir equationeguwng the wave solutions. Some analytical properties efsiutions

to this equation in certain parameter regimes have beerestuelcently. However, for general parameter regimes wteranalytical
approach is not so useful, a numerical method would be d#sir@herefore, in this paper, we proceed to show that thex@asquation

for the Ito system can be solved numerically by use of theethidacobi-Gauss collocation (SJC) spectral method, Riespresent the
general solution method, which is follows by implementatid the method for specific parameter values. The preseatedts in this
article demonstrate the accuracy and efficiency of the ndetimoparticular, we demonstrate that relatively few noteswt very low
residual errors in the approximate numerical solutions.avéealso able to show that the coefficients of the higher deters in the
shifted Jacobi polynomials decrease exponentially, nmegifiat accurate solutions can be obtained after relatieghterms are used.
With this, we have a numerical method which can accuratedyediiciently capture the behavior of nonlinear waves in thesjuation.

Keywords: Second-order initial value problem; Collocation methodgabi-Gauss quadrature; Shifted Jacobi polynomials; Ito
equations

1 Introduction and formulation of the While the Casimir equatiorg] for the Ito system1)
problem has received relatively little attention in the recent
literature, it is an interesting nonlinear partial diffetial
The Ito system1] reads equation related to an extension of the KdV equation. As
such, it can be viewed physically as a generalization of
ou 9% ou ou KdV to account for more complicated nonlinear effects
=g TV Vo (1)  ©on the wave propagation in KdV. Despite being highly
oN 0 (uV) nonlinear, as shown in Van Gordé it has been show to

ot ox admit a variety of exact and analytical solutions. Van
L ) Gorder B] obtained analytic solutions to this equation,
lto showed .thqt .the system)(is hlghly_ symmetric and which consist of explicit exact solutions in some cases
possesses infinitely many conservation laws. It is anyq implicit integral relations in others. Then,
extension of the KdV equation, with an additional field 5,sserman and Van Gordei] pttempted to classify all

variable V. Olver and Rosenau?] introduced a dual  ,,sgiple series solutions to (i) travelling wave reducgion
bi-Hamiltonian system for the Ito system, which admits a (2) and (i) a class of self-similar reductions t@)(

Casimir functional and associated Casimir equationsggme asymptotic solutions were also given.
Introducing a stream function for the Casimir equations,
they then obtained the single partial differential equatio

0°W OW\2 0 OW\2,0W W
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1.1 Travelling waves for the Casimir equation

)

We will be interested in solving the travelling wave

problem for the Casimir equatio); To this end, let us
assume a solution of the for/(x,t) = @(z) where
z=x— B Y% is the wave variable an@ > 0 is a
constant. Then2) becomes

"

0 = %co/z{co/z(w’ +eg)Y, 3)

where prime denotes differentiation with respeck and
eithere = 1 ore = —1 depending on the sigh- or —) in
(2). Rearranging3) assumingp = 0 only if ¢’ = 0, and
introducing a new functiorii(z) = ¢ (z), we have

f, 1 " !

ﬁzﬁ{fz(f‘h?f )} (4)
and performing one integration with respectzteve have

a-B_ f2(f+ef"), (5)

f

wherea is a constant of integration. If we rearran@gif
terms of the second derivative, we find

" a B
f=elm -1 (6)
which is a new transformation o2). Sincef3 > 0, we can

choose the rescaling(z) = Bl/4f(z) so that 6) becomes

" a.

g = 8{@ 93 g} (7)

where we define the constaat= af~%4. So, given

either sign choice of there is a one parameter family of

solutions depending ca
We point out here that equatiof)(is similar in form

to the travelling wave version of a reaction-diffusion
equation like the Nagumo equation. For that equation,
such as

one has a cubic reaction function
g =09(1-9)(x —9g); see p]-[7]. Here the nonlinear

reaction function is much more complicated, involving
this

negative powers of the unknown function. Still,
reduction is much simpler thar3); Therefore, obtaining
solutions of equation7) can be very challenging.

1.2 Restrictions on the existence regions for
solutions

As addressed beforg]| there are essentially two types of |(A)

qualitative behavior associated with solutions af, (
depending on the sign &f. Whene = 1, equation ) is

may grow without bound in a hyperbolic manner.
Meanwhile, where = —1, equation T) is linearized like

g” + g = 0, so we expect solutions which oscillate when
the amplitude is large. When the amplitude is small, the
nonlinear terms dominate, and the behavior could be
unpredictable by the linearization. In casesof —1, the
solutions will be most interesting to study, so we consider
the initial value problem

" a 1
9+9—@+§:0, (8)
g0) =A, g(0)=0. 9

Then, @)-(9) defines a two parameter nonlinear initial
value problem with parameter spaae= R and A > 0.
Note that a change in the length scales suclz as (z
manifests only as a change in the magnitude eof
Therefore, we shall simulate solutions on the open
interval z € (0,1) with the understanding that solutions
can be found on any interval of the forme (z-,z;)
subject to an appropriate changesinSince the sign of

is the only thing significant to the qualitative dynamics of
the solutions, it is indeed sufficiently general to consider
z€ (0,1) ande = £1.

It is worthy to mention here that solutions might not
exist for some parameter values. Hence, one must take
care when solving this problem numerically. To
demonstrate this point, consider the special case
corresponds ta = 0. In such case, and if we multipl3)

with Zg’ and integrating with respect lywe have

/2 1 _
g +gz—@ I(A)=A2—A2 (10)
Separating variables irL(), we obtain
g
/\/ﬁ
A &2+¢& (11)
1. 1 I (A) — 282 &9
__tan (2 —52 E4 1) E=A
which can be inverted fag to obtain
—24/4+1(A)2sin(2[z— z0(A)]),
IJ A+ 1 (A2l (A)
(12)

wherezy(A) is a constant depending ¢h To guarantee
that the solution 12) is real valued, the condition
(A) — 24/4+1(A)2sin(2[z — z5(A)]) > 0 should be
satisfied for allz Yet, whenz = 7 + 75(A), we have
- 2/4+1(A2 > 0 and hence
> 2\/4+1(A)2 > 2| I(A) |, a contradiction. So,
there is no such real valued solution whar= 0. This
illustrates the fact that for a given value of the constant

linearized Ilkeg — g = 0 so we expect solutions which there may or may not exist solutions. Therefore, while we
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are interested in the numerical solution @&)-(9), we Besides,

must be careful in selecting the numerical method, due to

the inherent challenges of solving the highly nonlinear DR (x) = 2—m’_(m+ k+6+9+1) plOmI-+m)
equation §). K rk+6+9+1) Kkm

X).

(14)
Let w®?)(x) = (1 -x)%(1+x)?, then we define the
weighted spacei,(g‘&)[—l, 1] as usual, equipped with the

1.3 Solution method and summary of results L
following inner product and norm,

A well-known advantage of a spectral method is that it 1 )
achieves high accuracy with relatively fewer spatial grid (, \, _ /u XV WD) () dx. [V — (w2 .
points when compared with a finite-difference method( Vo) (VX 09X, [[Vilwio.9) = (V) a5
(see, for instanceg]-[15]). On the other hand, spectral -t

methods typically give rise to full matrices, partially The set of Jacobi polynomials forms a complete

negating the gain in efficiency due to the fewer number of| 2 [—1,1]-orthogonal system, and

grid points. In general, the use of Jacobi polynomials "' ™ ’

(%) with 8,9 € (~1,e) and n is the polynomial IRED2,  _pO)

degree) has the advantage that the obtained solutions of "k 'w(®? ="k

differential equations are given in terms of the Jacobi 209410 (k- 04+ 1)l (k+3 +1) (15)
parameter and (see, e.g.16-(19) TG00+ T (kT (k181 9+1)

We mention that the spectral collocation method is
very useful in providing highly accurate solutions to If we define the shifted Jacobi polynomial of degkely
nonlinear differential equations (see, e.g0Jf[28]). In \]Iieﬂﬂ(x) — pé97’9>(2x_ 1), and in virtue of (3) and (4),
the present paper we intend to extend the application othen it can be easily shown that
Jacobi-Gauss collocation method to solve the nonlinear

initial value proplem 8)-(9). This paper is.organizeq as a6 gy — (_1)k—qr(k+3 +1)(k+0+39+1)q
follows. In Section 2 we give an overview of shifted - (0)= — g

; : : . rFk—q+1)r(q+4+1)
Jacobi polynomials and their relevant properties needed (16)

hereafter, and in Section 3, the way of constructing the
collocation technique for equatiorB)¢(9) is described

using the shifted Jacobi polynomials. In Section 4, we
present some numerical results exhibiting the accuracy

(k+0+1)(k+0+9 +1)q

a509) 4y _ I
DR rk—q+1r(Q+6+1) ’

(17)

and efficiency of our numerical algorithms. DM3(0:9) ) _ rim+k+6+9 +1)J(9+m7,9+m) «
While the method outlined here has been applied to k0= Fk+6+9+1) km (%).
other nonlinear equations, such as the Lane-Emden (18)

problem PQ], for the present problem there is the Next, let x(®9)(x) = (1 —x)®x®, then we define the
additional complication of the nonlinearity i8)( Indeed, ~ weighted spacé.? ,, [0,1] in the usual way, with the
such a nonlinearity involves i.nve'rse powers of thefollowing inner pr)c()dyuctand norm,

unknown function. Previous applications of such methods

were only concerned with more standard power-law type 1 )
nonlinearity. Therefore, the present paper demonstrateg, :/u X)IV(x) ¥ @) (x) dx. lIv — (v.V)?2
that the numerical method is rather versatile and can beﬁj’ )y CIVEOX T X)Ox, [Vl 0.0 = (4 V)50
used for a wide variety of problems. 0

The set of shifted Jacobi polynomials forms a complete
L)2(<9719) [0, 1]-orthogonal system. Moreover, and due18)(

2 Mathematical preliminaries we have

1
Let6 > —1,9 > —1andR.®?)(x) be the standard Jacobi ||J|£673)||)2(<e>9> = (5)9+6+1h;(<9’5) =l (19
polynomial of degre&, then we have the following special
values For 6 = 9 one recovers the shifted ultraspherical
polynomials (symmetric Jacobi polynomials) and for
P8P (—x) = (—1)*R%? (x), 0 =9 =1, 6 =9 =0, the shifted Chebyshev of the
(—1)KF (k9 + 1) first and second kinds and shifted Legendre polynomials

R (—1) = respectively; and for the nonsymmetric shifted Jacobi

Kr@+1) ° (13) polynomials, the two important special cases

p(0:9) 1) _ rk+6+1) 6 = —9 = +1 (shifted Chebyshev polynomials of the
)= KFr(e+1) " third and fourth kinds) are also recovered.
(@© 2015 NSP
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We denote bny , < J <N, the nodes of the only at the (N — 1) Jacobi-Gauss points that are the
standard Jacobi- Gauss |nterpolat|on on the intervalN — 1) zeros of the shifted Jacobi polynomial ¢ 1).
-1, 1] Their corresponding Christoffel numbers are These equations together with two initial conditions

wlsle_, 0< j < N. The nodes of the shifted Jacobi-Gauss generatéN + 1) nonlinear algebraic equations which can
intejrpolatlon on the mtervaI[O 1] are the zeros of be solved. Let us first introduce some basic notation that

(6,9) , 9) will be used in the sequel. We set
Jnt1 (%), which we denote b)@NJ 0< j < N. Clearly

6,5&“9) = (xf\lgjs) + 1), and their corresponding SN(O,l):spar{Jég’m(x),Jie’ﬁ)(x),...,J,(\le’ﬁ)(x)} (23)

Cherigtoffel 0.9 numbers are . ) )
19,51’1: )= (%)9+v9+1w,51 ) 0<j<N.LetS0,1] bethe and we define the discrete inner product and norm as

set of polynomials of degree at mokt Thanks to the follows:

property of the standard Jacobi-Gauss quadrature, it N
follows that for anyp € Sn.1[0, 1], (UV) 0.0y = Z)u(zlgfjﬁ))v(mejm) ”r(fjﬁ)’
1 i= (24)
/(1—x)9x5 @(x)dx [ullye.0) n=1/(UsU)y(0.9) -
0
1 where ZN j’ and nN are the nodes and the
- (})9”*1/(1—x)9(1+x)’9q0(}(x+ 1))dx correspondlng Welghts of the shifted Jacobi-Gauss
2 1 2 (20) quadrature formula on the interva0,1), respectively.
N Obviously,
9+3+1 )
1
Z) 1) (UV) ooy = (UV) o), YUVE S 1. (25)
_ %Séej,ﬁ>¢(e&ej,9)). Thus, for enye € S\(0, 1)., the no.rms|| 'u ”X“’*"),N and ||
u ||X 0.9) COInCIde Associating with this quadrature rule,

With the previous mathematical properties, we are now'Vé denote by, the shifted Jacobi-Gauss interpolation,

ready to obtain our desired collocation method.

Iﬁl(e,s) U(Z’Eﬁjﬁ)) u(z(fiﬁ))’ 0<k<N.
3 Derivation of the shifted Jacobi-GaLss The shifted Jacobi-Gauss collocation method for solving

collocation method (21) and @2) is to seelgn(x) € Sy(0,1), such that

a 1

. . ) i " 5(6,9) (6,9) _
In this section, we use the Jacobi-Gauss collocation 9 ({n )+g(Z )= 59 5= 0,
method to obtain a general numerical method for the g (ZNJ( ) (ZN,k )
solutions of the following model problem: k=0,1,--- ,N—2,
, a 1 g(0)=A, g (0)=0.
g (%) +9(x) - 20 + P~ 0, (21) (26)
0<x<1 aceR, We now derive the algorithm for solvin@{) and @2).
) To do this, let
subject to
N
/ 6,9
g0)=A ¢(0)=0, A>0. 22) gN(X):ZDajJ,-‘ D(x), a=(ag.as,....an) . (27)
J:

The choice of collocation points is important for the ,

convergence and efficiency of the collocation method. ItWe first approximateg(x) and g (x), as Eq. 27). By
should be noted that for a second-order differentialsubstituting these approximation in EQ1), we get
equation with the singularity at= 0 in the interval0, 1),

one is unable to apply the collocation method with N 2(6,9) N

Jacobi-Gauss-Radau points because the fixed red® zbaiD I+ Zoal' [t

is necessary to use as a one point from the collocation '~ =

nodes. In fact, the collocation method with Jacobi-Gauss _ a + 1 -0 (28)
nodes are used to treat singular second-order differential ( N a J(e,a)(x))z ( N a_J_(S,S)(X))3
equation; i.e., we collocate the singular nonlinear ODE jZO 1~ jZO ¥

(@© 2015 NSP
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Then, by virtue of 18), we deduce that

N

+0+9+1 29423 + 5 ;3%
2 (J )2J %J
a a:)s TN 0.9 =0
(zm N»Z(zaﬁ*&@ﬁ

= %o
(29)

Also, by substituting Eq.27) in Eq. (22) we obtain
N

(6,9)
ajJ;
;)J

To find the solutiorgy (x), we first collocate Eq2Q9) at the
(N — 1) Jacobi rational roots, yields

s (8,9)
A S abi®?0)=0. (30)
g) j

(0)

=z

a(j+0+9+1)30527 )+ § 2,30

%'

- E:)s TN s =0
(zm N»Z(zaﬁ*&@ﬁ

i= j=0

(31)
Next, Eg. B0), After using (L6), can be written as
N
rg+9+1_
,Zo HCES =4 (32)
N .
1)i-1 (j+0+3+1)r(j+39+1) o
20 G-Direry A0 @3

Finally, from 31), (32) and 33), we get(N + 1) nonlinear
algebraic equations which can be solved for the unknow
coefficientsa; by using any standard iteration technique,
like Newton’s iteration method. Consequentfy(x) given

in Eq. (27) can be evaluated.

Legendre collocation method) arfl= 3 = % (second
kind shifted Chebyshev collocation method) Mt= 8
Moreover, the last column of this table far= 2 with
A=6,with8 =3 = —§ What we see here is that for
each of the parameter choices taken (which determine the
types of base functions obtained), the solutions are
equivalent up to five decimal places. This is rather good
agreement, seeing as oMly= 8 for these experiments.

Table 4.2 shows the approximationsgaf(x) for A=
2,7,a =0, with various choices of andd atN = 8. In
this set of simulations, we see disagreements appearing at
the last decimal place in the solutions. So, witk- 8, the
discrepancy in the solutions appears to be of order10
IncreasingN shall help us increase the agreement in these
approximations. Of course, 1B error is good for many
applications, and it is certainly better than what is needed
to accurately plot solutions. Still, for some applicatipns
particularly nonlinear equations where precise knowledge
of a function at a small value dfis indispensable in order
to accurately obtain solutions at some larger value, of
improving the accuracy is more crucial.

Tables 4.3, 4.4, 4.5 and 4.6, show absolute residual
errors ofgn(x) for A=6, a= -2, A=6, a=2,
A=2 a=0,andA=7, a= 0, respectively, with various
choices of6 andd atN = 16 andN = 24. While there is
no clear superior choice of and 3 for all x in the
domain, the error properties of each of the three choices
are very similar. Increasinly results in a decrease in the
residual errors, as anticipated. We gain roughly a power
of 10 for ever two nodes we add. Note also that while the
residual errors decrease with increasMgthey do not
necessarily do so uniformly with respect to our choice of
6 and?d. Indeed, fixingx = Xg, for N = 16 once choice of
6 andd may be best, while foN = 24, a different choice
of 8 andd may be best. With these variations aside, for
the three choices o and 9 considered for each

Thumerical simulation, the difference in residual errors is

no more than a single order of magnitude.
The worst errors actually appear to correspond to

With this, we have developed the relevant collocationsmall A and smalla, as evidenced by Table 4.5. In the

method.

In the next section, we conduct numericalsmalla limit, we essentially have an ordinary differential

experiments in order to demonstrate the accuracy an@quation of the forng” +g-+g~3 = 0, which becomes

efficiency of the method.

4 Numerical experiments

strongly singular forg << 1. So, if we pick initial data
g(0) = A so thatA is small, we require more nodes in
order to obtain an accurate numerical approximation.

The graph of the absolute value of the coefficients of
shifted Jacobi polynomials of equatior21j-(22) are

Having developed the collocation method in the previousshown in Fig. 1 and demonstrate that the method has
section, we now apply the method by conducting exponential convergence rate. Fig. 2 shows the absolute
numerical experiments for various values of the residual error functions foh=10,a=2,and0 =39 =1

parametersA and a. In particular, in this section, we atN = 24. Note that solutions are demonstrating the most
show the accuracy and fast convergence of the proposegsidual error near the boundary of the domain. In the

algorithm. o case of6 = 9 = 1, the approximate solution is shown in
Table 4.1 shows the apprOX|mat|ons ofi(x) for Fig. 3, for A= 3 and various values ok at N = 8.
a=-2,A=6,withf =9 =—5 L (first kind shifted Likewise, Fig. 4 shows the approximate solution for

Chebyshev collocation methodﬁ = 9 = 0 (shifted a= —5and varioufAwhend =3 =1 atN = 8.

(@© 2015 NSP
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Table4.1

Approximate solutions foA =6, N = 8. o B

x [ 0=9=F]6=90=0]0=9=3]0=9=F i
(a=-2) (a=2) i
0.0 6.00000 6.00000 | 6.00000 6.00000 -101 -
0.1| 596972 596972 | 5.96972 5.97028 ;
0.2| 587919 5.87919 | 5.87919 5.88142 g ol -
0.3| 572929 572929 | 5.72929 5.73433 s
0.4 | 552147 552147 | 552147 5.53049 i
05| 525778 525778 | 5.25778 5.27200 _a0 :
0.6 | 494075 494075 | 4.94075 4.96147 i
0.7| 457345 457345 | 457345 4.60211 7405 -
0.8 4.15939 415939 | 4.15939 419761 = e e e :
0.9 370247 370247 | 370247 375218 _
1.0| 320688 320688 | 3.20688 3.27049 :
Fig. 1. Logarithmic graph of the absolute values of the
. Tablg4.2 coefficients,/a;|, in the shifted Jacobi polynomial expansion for

Approximate solutions foa= 0, N = 8. A=10 a=2andd =9 =1 atN = 24.

x [ 0=9=F[6=9=0]6=9=[6=9=0
(A=2) (A=7) Table 4.4

8(1) iggggg iggggg gggggg ;ggggg Absolute residual error functions fér= 6, a= 2.

. . . . . =1 1 —1 1
02| 195761 | 195761 | 6.86041 | 6.86041 x 1 0=9 N :| 12)7 b=319=9 B0 =|23)7 b=2
0.3 | 1.90495 1.90495 6.68722 6.68722 00 28710 T 236100 | 121105 | 56210 5
0.4 | 1.83180 1.83180 6.44717 6.44717 01 21810 " 27310 [ 59610 | 24910-1°
8'2 iggg;g 1232;2; g'%‘?‘g;g g'%‘?‘gg 02| 26210 1T [ 13810 2| 000107 | 80410 1°
0.7 | 149539 149539 535310 535310 03] 47610" | 20040" " | 3331075 | 44410” °
081134645 132646 457587 157587 04| 6251011 | 2991011 | 6661016 | 44410716
09 117991 117901 134983 134933 05| 815101 | 398101 | 210101 | 44410716
10 0995347 | 0.995367 378001 378001 0.6 | 1101010 | 53410 | 444101 | 6.6610°1°

0.7] 155101 | 66310 | 2221071 | 1.5510°
Table43 0.8] 1751010 [ 94810 | 31010 ™ | 8.8810°1F
Absolute residual error functions fér= 6, a= —2. 09| 395109 [ 527100 | 57710 [ 22210 *°
(N=16) (N=24)
0.0] 1.0210° | 23710° | 41610 1% | 1.1010 13
0.1] 28510 [ 27610 1° [ 82810 > | 38310 .
02| 11810 1 | 1.4510 T | 1.1910 * | 7.5010 SxA -
0.3]33010 % [ 20710 [ 10510 ¥ | 59610 T £ .
0.4 | 46010 I | 31510 1° | 34410 15 | 35510 g -
0.5] 61410 *° [ 42610 1° | 20310 ** | 16010 ** 8 .
06| 85310 ¥ | 58610 ¥ | 62110 ©® | 6.21.10 g 2 -
0.7] 11810°° | 74910 10 | 31910 ¥ | 24410 1% 2 -
0.8 | 92010 M | 11110 1 | 57210 * | 7.20.10 T N} I —
0.9 65110 ° | 65010 ° | 18010 ** | 15010 ** . :
1.0 | 6.0410 7 | 86610 7 | 52210 X | 8.9610 X AL : : : : .
0.0 0.2 0.4 0.6 0.8 1.C

X

Fig. 2: Graph of absolute residual error function foe= 10, a =
5 Conclusions 2andf =9 =1 atN = 24.
Here we have studied a class of travelling wave solutions
to the Casimir equation for the nonlinear Ito system of
PDEs. Since the Ito equation has been shown to admit @owers of an unknown function, so, in addition to being
reduction to a single nonlinear Casimir equation, wenonlinear, it can become singular. As such, the equation
assume a travelling wave solution and hence put thigoverning travelling waves for the Ito system can be
partial differential equation into the form of a nonlinear difficult for numerical and analytical solution methods.
ordinary differential equation. The resulting ordinary We solve the ordinary differential equation and related
differential equation takes the form of a second orderinitial value problem numerically on a finite interval by
highly nonlinear equation. This equation involves inversemeans of a shifted Jacobi-Gauss collocation (SJC)
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Table 4.5
Absolute residual error functions fér= 2, a= 0. 8=
X [6=9-0]6=-9-1]6=-9-0]6-9=12 , T~ o
(N =16 (N =24 R .
0.0 | 86210°° [ 1.8110 / | 20810 T [ 56610 o ° - o
0.1] 22510°% | 21410° | 38810 2 | 16810 2 :s “ A=6
0.2 ] 94710° | 1.1010° | 55410 %2 | 3.8810 17 na A=7
03] 267108 | 164108 | 51510 %% | 29810 %2 _ as
04 ] 378108 | 253108 | 17910 2 | 1.7510 *? *
05| 51410% | 35010°% | 1.09.10 11 | 7.3510 12 T s s 1o
0.6 | 732108 | 492108 | 33610 % | 3.3910 17 <
0.7 ] 1.0510 7 | 650108 | 20610 % | 1.1510 1
0.8 | 85010 ° | 1.0010 ° | 51410 ™' [ 34410 ' Fig. 4: Graphs of the travelling wave solution governed By (
09| 639107 | 625107 | 1.1410 10 | 43010 11 (9) by the present method fér= 8, 7, 6, 5, 4, fixeda= —5 and
10| 65010 | 91310 | 36510° | 6.0310°° =9 =1atN=8.
3.0*»—“\\\\‘
method. Relatively few notes permit very low residual
2% DY errors. The residuals increase at the initial data is small,
26l E x\\ owing to the fact that the governing ordinary differential
% NN equation involves inverse powers of the unknown
24t RN function. Increasing the number of nodes is shown to
2ol N improve the accuracy of the solutions (in terms of residual
N errors) by about an order of magnitude for ever two nodes
20, 02 07 PP 0 added. We are also able to show that the coefficients of

the higher order terms in the shifted Jacobi polynomials
decrease exponentially; for one set of parameter values,

this is demonstrated explicitly in Fig. 1. Hence, the

Fig. 3: Graphs of the travelling wave solution governed By ( | u
proposed spectral method is rather accurate and efficient,

(9) obtained by the present method &£ 6, 4, 0, —4, —6, fixed

A=3,and0 =39 =1atN=8.

Table4.6

Absolute residual error functions fér=7, a= 0.

granting us rather good residual errors upon employing
relatively few nodes.

The results demonstrate the propagation of a wave
solution to the Casimir equation for the Ito system. In

x [6=9=]16=90=0[6=9=]6=8=0 order to recover the explicit solutiow(x,t) from the

(N =16) (N=24) numerical solution forg(z) as provided here, one can
0.0 58510 [ 2021010 | 187101 | 898101 reverse the series of transformations given in Section 1, to
0.1 44910 T | 56410 L | 14510 ©° | 59610 1© obtain
02| 546101 | 234101 | 40210 | 1.4410 x—B~1/2%
03| 10010 ¥ | 65310 ¥ | 39910 ©° | 49910 1 W(x,t) =g~ /4 / 9(2)dz. (34)
04| 13410 [ 910107 | 44410 | 12210 55 0
05| 17810 ™ [ 12110 [ 37710 ™ [ 56610 With this, we have given a numerical method by which one
06| 2481010 | 16910 | 444101 | 2221015 may obtain solutiong/(x,t) to the equationZ).
07] 360101 | 2351010 | 11910 | 48810 *° The equation we solve can be viewed as a type of
08| 42110%0 | 18210 %0 | 20410 % | 11510 ™ reaction equation, with a rational response function.
09| 100107 | 12910° | 56310 % | 14210 ™ Clearly, the method here should certainly be applicable
10[ 76810° | 120107 [ 55710 % | 10210 for reaction equations with simple polynomial reaction

functions, such as the Fisher-Kolmogorov equation and
the Nagumo equation2p]. In principle, the present
method can be adapted to solve general problems of the

spectral method. The spatial approximation is based ofgrm ¢ — R(g), whereR is a reaction function, provided
shifted Jacobi polynomiald®?) (x) with 8,9 € (—1,e0),  thatg(0) = Ais selected so that lign,x R(g) is finite.
x € (0,1) and n the polynomial degree. The shifted Physically, the Ito system admits two types of
Jacobi-Gauss points are then used as collocation nodesolutions: hyperbolic solutions (which become large as
This method is developed for the general problem inz— 4o0) and periodic solutions which remain bounded in
Section 3, while a number of numerical experiments arespace and time. The latter solutions are the most
highlighted in Section 4. physically relevant. While some of these solutions were
The numerical experiments presented hereconsidered in 3], it is worth noting that such exact or
demonstrate both the reliability and the efficiency of the analytical solutions are valid for restricted parameter
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regimes. What we have done in the present paper was t&cknowledgements

give a numerical algorithm by which we may

approximate the periodic and bounded solutions to the ItcR.A.V. supported in part by NSF grant # 1144246.
equation. Hence, we do not require restricted parameterhe authors are grateful to the anonymous referee for a

regimes. Such a method is useful, as it is rather simple t@areful checking of the details and for helpful comments
apply (as opposed to analytical approximations, whichthat improved this paper.

may become rather involved).

The results suggest that physically

interesting
solutions are possible, even when analytical or exac
solutions may not exist, or in cases where such analytica
or exact solutions are not efficient to obtain. It is worth
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