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Abstract: An ideal on a seX is a nonempty collection of subsetsXfwith heredity property which is also closed finite unionseTh
purpose of this paper is to construct a new approach of gkesigproximity based on the ideal notion. FHoe= {¢}, we have the
generalized proximity structurd] and for the other types df we have many types of generalized proximity structureaduition, if
(X, 1) is anlRy—topological space, theri" is a compatible with ai-Pervin proximity relation ofP(X). It is also shown that ifX, )

is ax—normal space anX, 7¥) is aR,—space, thern* is a compatible with ah-Lodato proximity relation ofP(X).
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1 Introduction ideal. Also, we show that our generalizations are good
extension of the old proximity relations.

The notion of ideal topological spaces was first studied by

Kuratowski [I0] and Vaidyanathaswamy 2[]. 2 Preliminaries

Compeatibility of the topology with an idedl was first

defined by Njastadlff]. In 1990, Jankovic and Hamlett | o (X,T) be a topological space. For a subgebf a
[6] investigated further properties of ideal topological topological spacéX, 1), A andA° denote the closure and
spaces. The fundamental concept of Efrera@vdXimity  the interior ofA in (X, 1), respectively. An ideal on a
space has been introduced by Efrened]. In addition topological space(X,T) is a nonempty collection of

to, Leader_;], 12 and Lodato 13,14 ha\_/ve ".Vofked with  gypsets oK which satisfies the following properties:
weaker axioms than those of Efremoyroximity space

enabling them to introduce an arbitrary topology on the 1A€landBel = AUBE€l,
underlying set. Furthermore, proximity relations are 2A€landBCA=Bel.

useful in solving problems based on human perception
[17] that arise in areas such as image analy§iapd face

recognition B]. Cyclic contraction and best proximity For a subseA C X, A*(1,7) ‘= {x € X : AnU ¢ I for

point are among the popular topics in the fixed point -t . :
theory and many results have been obtained, for instanceevery open sef containingk} is called the local function

[1,3,9,19. Recently, A. Kandil et.al. 7,8] introduced a Of A with respect td and (see b, 10,18]). We simply

- write A* instead ofA*(I, T) in case there is no chance for
new approach of proximity structure$q] based on the :
. . ; : confusion.
ideal and soft set notions. In this paper, we generalize the . .
notion of generalized proximity by using the concepts of Proposition 2.1[6] Let (X, 1) be a topological space and
ideal in the ordinary topology. In addition, the notions of | be an ideal orX. Then the operator
I-Leader,|-Pervin, andl-Lodato proximities have been Cl* - P(X P(X
introduced. The main theorems in our work is to exhibit +PX) = P(X)
the relation between the topology generated via theselefined by:

proximities and the topologyr* which generated via CI"(A) = AUA" (1)

An ideal topological space is a topological space
(X, 1) with an ideall on X and is denoted byX, t,l) .
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satisfies Kuratwski's axioms and induces a topologyon
calledt™ given by
" = {AC X : CI*(A%) = A%}, 2)
WhereA° denotes the complement Af
Indeed, for every ideal topological spa¢¥,1,l),
there exists a topology*(l) finer thant. When there is
no ambiguity,r*(1) is denoted byr*. For a subsef C X,

An |-proximity space is a paifX, d ) consisting of a
setX and anl—proximity relation onX. We shall write
A9 B if the setsA,B C X are g -related, otherwise we
shall write A g B.

J is said to be separated, if it satisfies:
(IPs)xdy = x =Y.

Definition 2.5[15] A binary relationd on P(X) is called

CI*(A) and Int*(A) will denote the closure and the a generalized Proximity relation if it is Leader or Pervin

interior of Ain (X, %) respectively.

or Lodato proximity. Furthermore, id is a generalized

Example 2.2[6] Let X be a nonempty set. Then the proximity relation onP(X), then the pair(X, d) is called

following families are ideals o

11 ={q},
21 =P(X)={A:ACX},

3l ={ACX:Ais finite}, called ideal of finite subsets,

4].={ACX:Aiscountablé, called ideal of countable
subsets,
5la={BCX: BCA},

6.If (X,7) is a topological space, then the family of
namely

nowhere dense subsets,
In={AC X :A’= ¢} forms an ideal orX.

Definition 2.3[15] Let & be a binary relation oR(X). For
anyA, B,C € P(X), consider the following axioms:-

(S)ASB = BOA

(S2)Ad(BUC) < AdB or AdC, and
(BUC)OA < BOA or CoA.

(S3)A0B = A= @ andB # .

(S)A0B andbdC Vb € B = AdC.

(S)ANB # @ = AdB.

(Ss)ABB = 3C,D C X such thaAFCS, D¢ 3B andCND =
0.

Thend is said to be:-

1.A Leader proximity orX, if it satisfies &), (S3), (S4)
and &).

2.A Lodato proximity onX, if it is Leader proximity and
satisfies &).

3.A Pervin proximity onX, if it satisfies &), (S3), (S5)
and &).

a generalized Proximity Space.

3 New Approach of Generalized Proximity
Spaces

Definition 3.1.Let | be an ideal on a nonempty s¢tand
d be a binary relation oR(X). For anyA,B,C € P(X),
consider the following axioms:-

(IL1)AS B = B A,

(IL2)AS (BUC) < AgBor A5 C, and
(BUC)§ A< ByAOrCHA,

(IL3)AgBVYAE I, Be P(X),

(IL4)AS B andbd C vb € B = A5 C,

(ILs)ANB ¢ | = A§ B.

(ILeg)AB B = 3C,D C X such thatA$C® D° B andCn
Del,

Thenyd, is said to be:-

(@)An | —Leader proximity orX, if it satisfies (L), (IL3),
(|L4) and QL5).

(b)An 1—Lodato proximity on X, if it is |—Leader
proximity and satisfiesl;).

(c)An | —Pervin proximity onX, if it satisfies (L), (IL3),
(|L5) and QL(—;).

If & is an |—Leader (respectivelyf —Lodato and
| —Pervin) proximity onX, then the pair(X, &) is called
an |—Leader (respectivelyl—Lodato and |—Pervin)
proximity space.

By this generalized definition, we obtain all preceding
definitions introduced by Leadef]], Lodato [L3], and

If & is a Leader (respectively Lodato and Pervin) Pervin [L5] as special cases of the current definition, as

proximity on X, then the pair(X,d) is called a Leader
(respectively Lodato and Pervin) proximity space.

Definition 2.4[7] Let | be an ideal on a nonempty s¢t
A binary relationd onP(X) is called an -proximity onX
if & satisfies the following conditions:-

(IP))A3 B = B3 A,

(IP,)Ad (BUC) < Ad B or A3 C,

(IP;)AZBVYAE |, Be P(X),

(IPy)ANB¢ | = AdB,

(IPs)AZB = 3C,D C X such thatA$ C®, D¢ B andCn
Del.

follows

Proposition 3.2.1f | = {¢} in Definition 3.1, then we get
the generalized proximity relations in Definition 2.3.

Proof. Straightforward.

Definition 3.3. A binary relationd on P(X) is called a
generalized -Proximity relation if it is anl-Leader or an
[-Pervin or anl-Lodato proximity. Moreover, if§ is a
generalized -proximity relation onP(X), then the pair
(X,d) is called a generalizeldProximity Space.

Lemma 3.4.Let (X,&) be a Generalized—proximity
spaceAd B, ACC, andB C D, thenCD.
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Proof. The result follows immediately frorfiL ).

Example 3.5.Let | be an ideal on a nonempty S¢tand
a be a binary relation oR(X) defined as:

AGB<ABEI. ©)

Indeed, one easily sees thatsatisfies condition$L; —
ILg. Therefore, it is a generalizédproximity relation.

Theorem 3.6. Every | —Pervin proximity onX is also
| —Leader proximity orX.

Let & be anl—Pervin proximity onX. It is sufficient
to show thatd satisfies (L4). Let A§B and Vb € B,
boH. If AgH, then3C,D C X such thatA$C¢, D¢ 4B
andCnND € |. This result, combined withd B and (L>),
impliesB Z C°, i.e.BNC # ¢. It follows that3k € X such
that ko H andk € C. Two cases exist: eithdt € D or
k € D If ke D. Hence{k} € I. (IL3) implies thatk 3 H,
which is contradiction. Ik € D¢, thenk & B. This result,
combined with [Ls) and (L3), implies thatk  H, which
is contradiction. SGASH.
Theorem 3.7.Let (X, &) be a generalizet— proximity
space. Then th§ - operator

0 : P(X) = P(X)

defined by:
A% = {xe X:x3A} (4)
satisfies the following:-
1.09 = o,

2ACB= A% CBY,
3.(AUB)% =A% UBY,
4(ANB)2 CAYNBI,
5.(A%)% C AS,

6.AZ A%, in general.

Proof.

1.If 3x € X such thatxd ¢. Then (L3) implies ¢ ¢ I,
which is contradiction. Sap® = .

2.Letx € A%, Then formula 4) implies thatxd A and
Lemma 3.4 implies thatd B. Hencex € B3 .

3.By part (2), we geA% UB% C (AUB)J. To prove the
other inclusion, letx € (AUB)2. Thenxd (AU B).
Hence(IP,) implies thatxd A or x4 B, consequently
x € (A% UB?). Hence the result.

4.The result is a direct consequence of part (2).

S.letx € (A%)%. Thenxd A% andVy c A%, we have
y& A. (IL4) implies thatxd A. Hence the result.

6.We give an example. L&t be a nonempty set,= I+,
A be a nonempty subset ¥fand ¢, is any generalized
| —proximity relation onX. ThenA% = .

Theorem 3.8.Let (X,d) be a generalizet—proximity
space. Then
ASB?% = A B. (5)

Proof. Let A§BY andVy e B%, we haveyd B. Hence
(IL4) impliesAd B.

Remark 3.9. The converse of Theorem 3.8 is not true.
ConsiderX an infinite set] =1t andd is a generalized
I-proximity relation defined as Example 3.5.AfB are
infinite subsets oK, thenB% = ¢ and henceA 3 B% but
By A.

Theorem 3.10.Let (X, &) be a generalized-proximity
space. Then the operator

Cl9 : P(X) = P(X)
defined by
CI%(A) = AUA2 (6)
satisfies Kuratwski's axioms and induces a topologyon
calledts given by:

T5 = {AC X :CI?(A%) = A%} 7)

Proof.

1.By Theorem 3.7 (1), we ha@i? (¢) = ¢.

2.formula @) implies thatA C CI% (A).

3.By Theorem 3.7 (3), we ha@i® (AUB) =CI% (A)U
Cl9(B).

4.By Theorem 3.7 (2), we have

CI9(A) CCI2(CI2 (A)). (8)

So, it suffices to show thavA C X, we have
CI9 (CI% (A)) C CI9 (A) or equivalently that

ifx ZCI9 (A), thenxg CI3 (CIZ (A)).  (9)

Letx ¢ CI% (A). Hencex ¢ A andx$ A. Theorem 3.8
implies thatx® A% and(1P,) implies thatxg (AUA?Y),
i.e. Xx#Cl% (A). This result, combined wit & A and
formula @), completes the proof.

4 Compatibility of Generalized |-Proximity
Spaces

Definition 4.1. A topological spacéX, 1) is compatible
with the generalizedl-Proximity relationd,, denotedr ~
a,if T=T15.
Example 4.2 Let| be an ideal on a nonempty s€t(X, 1)
be a topological space, addbe a binary relation oR(X)
defined as:

AdB< ANB¢I. (10)

Theng, is anl-Pervin Proximity relation o®(X). Indeed,
one easily sees that satisfies conditiondL,), (IL3) and
(ILs). So, to check thad also satisfies conditiofiLg), let
Ad B. It follows thatANB € | and by takingC = (B)¢ and
D = B have the required properties.

The following theorem shows that the topology
generated by the formuld.@) is finer than the topology
(X, 7).
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Theorem 4.3.Let (X, 1) be a topological space ady is
the formula (0). Thent C 5.

Proof. To prove the theorem, we want to show that
CId(A) CAVAC X. Letx € CI%(A). Thenx € A or

x e A% If x € A, hence the result. Now, lete A%, then
x3 A and hence{x} NA ¢ |. Consequentlk € A. Then
the result.

Example 4.4 Let| be an ideal on a nonempty s€t(X, 1)
be a topological space, aiddbe a binary relation oR(X)
defined as:

AdB < ANCI*(B) £1. (11)

Then ¢ is anl-Pervin Proximity relation orK. Indeed,
one easily sees thét satisfies conditiondL), (IL3) and
(ILs). So, to check thad also satisfies conditiofiLg),

let Ag B. It follows thatANCI*(B) € | and by takingC =

(CI*(B))¢ andD = CI*(B) have the required properties.
Theorem 4.5.Let (X, 1) be a topological space a{ is

the formula (1). Thent* C 15.

Proof. To prove the theorem, it suffices to show that
CI9 (A) CCI*(A) VAC X. Letx € CI9 (A). Thenx € Aor

x e A% If x € A, hence the result. Now, i € A, then
x0A and hence {x} N CI*(A) ¢ |. Consequently
x € CI*(A). HenceCld (A) C CI*(A).

The following example shows that the topological
space(X, 1) is not compatible,in general, with defined
as Example 4.2. Also(X,7*) is not compatible, in
general, withd, defined as Example 4.4.

Example 4.6.Let (X, 1) be a cofinite topological space,
| =lf, A=R*, &' is the formula £0), and &7 is the
formula @1). It is clear thatt # U5t and " # T52 @s

A=R,CI%(A) =R+, andCI*(A) = R.
As a matter of fact, We got the idea of the following
definition from 20].

Definition 4.7. A topological spacéX, 1) is said to be

1.x-normal space it/ F,F> € 7*¢ such thatF,NF, € |
thendH,GetsuchthaF;CH, F, CGandHNGe
l.

2IR,—space ifY x € X, F € T*° such that{x} NF €|
thendH,Ge tsuchthake H, F CGandHNG e l.

Theorem 4.8 Let| be an ideal on a nonempty sé&t(X, 1)
be anlR,—topological space and is the formula (11).
Thent* ~ § andg is the smallest compatible-Leader
or | —Pervin proximity relation orP(X).

Proof. Let x ¢ CI9 (A). It follows thatx ¢ A andx §A.
Hence{x} NCI*(A) € |. Since(X, 1) is IR,—space, then
3H,G € 1 such that

xeH, Cl"(A)CGand HNG e | (12)

. By the definition of ideal part (2) and formuld3), we
getHNA€,i.e.dH e 1,xe H suchthaH NAc|. Hence
x ¢ A" and we have ¢ A. So,x ¢ CI*(A). It follows that

CI*(A) CCIA(A).

This result, combined with Theorem 4.5, implies
T5 = T*". Hencet* ~ &. Finally, to prove that is the
smallest compatiblel —Pervin Proximity. Let a; be
another compatible—Pervin Proximity andA g, B. Hence
Theorem 3.8 impliesA ¢,CI?(B) and (Ls) implies
ANCI*(A) € I. HenceAg B, Hence the result.

Example 4.9.Let | be an ideal on a nonempty skt
(X,1*) be a topologicaR,—space, andy be a binary
relation onP(X) defined as:

AdB <= CI*(A)NCI*(B) £ 1. (13)
Then & is anl-Lodato Proximity relation orP(X). It
follows directly from formula 13) that § satisfies
conditions(IL1)-(IL3) and(ILs). So, to check thad also
satisfies conditior{IL4), let AGB andbdC V b € B. It
follows that CI*(A) n CI"(B) ¢ | and
ClI*({b})NCI*(C) ¢ |. Hence there exists ac CI*(C)
such thatc € CI*({b}). Since(X,1*) is Ry—space, then
b € CI*({c}) C CI*(C), showing thatB C CI*(C). As a
consequenceCl*(A)NCI*(C) £ 1, i.e. A§C. Then the
result.

Theorem 4.10.Let | be an ideal on a honempty s¥{
(X, 1) be ax—normal space(X, 1*) be aR,—space, and
g is the formula 13). Thent* ~ §.
Proof. To prove the theorem, it suffices to show that the
topology generated by the closure operdtdt coincide
with the topology generated b2 . In other words, we
show thatvA C X,
CI*(A) =CI9 (A). (14)
Letx € CI% (A), thenxc Aorx e Ad. If x € A, hence the
result. Now, let x € A%, then x&A, and hence
CI*({x})NCI*(A) £ I. It follows that3 y € CI*(A) such
that y € CI*({x}). Since (X,1*) is Ry—space, then
x € CI*({y}) CCI*(A). Consequently € CI*(A). Hence
CI% (A) C CI*(A). (15)
Now, we want to prove thatCl*(A) C CI9(A) or
equivalently, if x ¢ CI%(A), then x ¢ CI*(A). Let
X ¢ CI9 (A), thenx ¢ A andx ¢ Ad. It follows thatx § A
and hence formula 10 implies that
CI*({x})nCI*(A) € I. Since(X,1) is x—normal space,
thendH, G € 1 such that
CI*({x}) CH,CI*(A) CGand HNG € I. (16)
By the definition of ideal part (2) and formula), we get

HNAe€l,i.edH € 1,x € H such thatH NA € I. Hence
x ¢ A*and we havex ¢ A. So,x € CI*(A). It follows that

Cl*(A) CCIA (A).

This result, combined with formulalf) and Definition
4.1, completes the proof of the theorem.
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