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Abstract. The scattering problem of three particles interacting via Coulomb poten-
tials is studied using generalized parabolic coordinates. The scattering solutions are
obtained by solving a driven equation. The ‘perturbation’ operator appearing in the
driven term is the non-orthogonal part of the kinetic energy operator. The approxi-
mated solution appearing in the driven term is the product of two two-body Coulomb
wave functions. As a test for our proposal, a simple two-dimensional model problem
has been solved numerically by using so called parabolic quasi-Sturmian basis repre-
sentation. Convergence of the solution has been obtained as the basis set is enlarged.
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1 Introduction

The three-body continuum Coulomb problem is one of the fundamental unresolved prob-
lems of theoretical physics. In atomic physics, a prototype example is a two-electron con-
tinuum which arises as a final state in electron-impact ionization and double photoion-
ization of atomic systems. Several discrete-basis-set methods for the calculation of such
processes have recently been developed including convergent close coupling (CCC) [1,2],
the Coulomb-Sturmian separable expansion method [3,4], the J-matrix method [5–7], the
Generalized Sturmian approach [8, 9]. In all these approaches the continuous Hamilto-
nian spectrum is represented in the context of complete square integrable bases. Despite
the enormous progress made so far in discretization and subsequent numerical solutions
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of three-body differential and integral equations of the Coulomb scattering theory, a num-
ber of related mathematical problems remain open. Actually, the use of a product of two
fixed charge Coulomb waves for the two outgoing electrons as an approximation to the
three-body continuum state is typical of these approaches. As a consequence, a long-
range potential appears in the kernel of the corresponding Lippmann-Schwinger (LS)
equation. Since this integral equation is, in principle, non-compact, its formal solution
therefore should be divergent. Note, however that for the two-body problem this type
of definition for the ‘free particle solution’ is not leading to a divergent solution [10]. In
addition, for the three-body case approaches such as the exterior complex scaling [11]
and the generalized Sturmian approaches [8, 9] lead to correct solutions for the driven
equation from which the LS equations are derived. One of the aims of this paper is to un-
derstand the reason for that differences between the solution corresponding to LS type
and driven equations.

On the other hand, it is well known [12, 13] that for large particle separations (in the
Ω0 region) the Schrödinger equation for a three-body Coulomb system is separable in
terms of so called generalized parabolic coordinates

{

ξ j,ηj

}

, j=1,2,3 [13, 14]. Moreover,
a representation of the corresponding Green’s function operator has been derived in [15].
Thus, at first glance it would seem that a formal solution for the three-body Coulomb
problem can be expressed in the form of a Lippmann-Schwinger-type equation, where
the potential operator, which coincides with the non-orthogonal part of the kinetic en-
ergy operator, is expressed in terms of second partial mixed derivatives whit respect to
the parabolic coordinates. No complete studies of the compactness of the kernel of this
integral equation can be found in the literature [16]. Actually, a differential operator of
this type seems to be unbounded in a Hilbert space and therefore the corresponding LS
equation could presents difficulties in its formal solution. To avoid these problems, an
alternative approach can be performed by considering an inhomogeneous Schrödinger
equation whose driven term is square integrable. In this paper we formulate a procedure
for solving the driven equation using so called quasi-Sturmian (QS) functions. Unlike
Sturmian functions (see, e. g., [17–20] and references therein), which are eigensolutions
of a Sturm-Liouville differential or integral equation, and form a complete set of basis
functions, the QS are constructed from square-integrable basis functions with the help
of an appropriate Coulomb Green’s function operator. In order to test practically the QS
approach and the solution to an equation of a driven type instead of LS equations we con-
sider a simple two-dimensional model problem on the plane (ξ1,ξ3). Here the total wave
operator, aside from the one-dimension Coulomb wave operators ĥ1 and ĥ3, contains the

‘perturbation’ term ∂2

∂ξ1 ∂ξ3
.

This paper is organized as follows. In Section II we introduce the notations, recall
the generalized parabolic coordinates definition and express a formal solution for the
three-body Coulomb problem in the form of a driven equation. In Section III we present
the quasi-Sturmian functions and its properties. We also present its representation in
terms of Laguerre basis functions and some of its properties. In Section IV a simple two-
dimensional model is presented and used to test the parabolic QS approach. The calcu-
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lations of the continuum wave function is performed. A study of the convergence rate as
a function of the number of the quasi-Sturmians used is presented. Some conclusion are
given in Section V. Atomic units are used throughout.

2 Coulomb three-body system in parabolic coordinates

2.1 General considerations

We consider three particles of masses m1, m2, m3, charges Z1, Z2, Z3 and momenta k1, k2,
k3. The Hamiltonian of the system in the center of mass frame of reference is given by

Ĥ=− 1

2µ12
∆R−

1

2µ3
∆r+

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13
, (1)

where rls denotes the relative coordinates

rls = rl−rs, rls = |rls|, (2)

R and r are the Jacobi coordinates

R= r1−r2, r= r3−
m1r1+m2r2

m1+m2
. (3)

The reduced masses are defined as

µ12=
m1m2

m1+m2
, µ3=

m3(m1+m2)

m1+m2+m3
. (4)

In the Schrödinger equation

ĤΦ=EΦ (5)

the eigenenergy E>0 is given by

E=
1

2µ12
K2+

1

2µ3
k2, (6)

where K and k are the momenta conjugate to the variables R and r. By substituting

Φ= ei(K·R+k·r)Ψ (7)

into (5), we arrive at the equation for the reduced wave function Ψ

[

− 1

2µ12
∆R−

1

2µ3
∆r−

i

µ12
K·∇R−

i

µ3
k·∇r+

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13

]

Ψ=0. (8)
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The leading-order asymptotic terms of Ψ in the Ω0 domain are expressed in terms of the
generalized parabolic coordinates [13]

ξ1= r23+k̂23 ·r23, η1= r23−k̂23 ·r23,

ξ2= r13+k̂13 ·r13, η2= r13−k̂13 ·r13,

ξ3= r12+k̂12 ·r12, η3= r12−k̂12 ·r12,

(9)

where kls =
klms−ksml

ml+ms
is the relative momentum, k̂ls =

kls
kls

and kls = |kls|. The operator in

the square brackets, denoted by D̂, can be decomposed into two terms [13]

D̂= D̂0+D̂1, (10)

where the operator D̂0 contains the leading term of the kinetic energy and the total po-
tential energy

D̂0=
3

∑
j=1

1
µls(ξ j+ηj)

[

ĥξ j
+ ĥηj

+2klstls

]

,

for j 6= l, s and l< s,

(11)

ĥξ j
=−2

(

∂

∂ξ j
ξ j

∂

∂ξ j
+iklsξ j

∂

∂ξ j

)

, (12)

ĥηj
=−2

(

∂

∂ηj
ηj

∂

∂ηj
−iklsηj

∂

∂ηj

)

. (13)

Here tls =
Zl Zsµls

kls
and µls =

mlms

ml+ms
. D̂1 represents the remaining part of the kinetic energy

operator [13] which, in the case of the (e−, e−,He++)= (123) system with m3 =∞, takes
the form [21]

D̂1=
2

∑
j=1

(−1)j+1
[

u−
j ·u−

3
∂2

∂ξ j ∂ξ3
+u−

j ·u+
3

∂2

∂ξ j ∂η3

+ u+
j ·u−

3
∂2

∂ηj ∂ξ3
+u+

j ·u+
3

∂2

∂ηj ∂η3

]

,

(14)

where
u±

j = r̂ls∓k̂ls. (15)

The asymptotic behavior of Ψ is determined by the operator D̂0. In particular, there
exist solutions to the equation

D̂0ΨC3=0, (16)

which satisfy the Redmond conditions in Ω0. These solutions are the well-known C3
wave function. ΨC3 is expressed in terms of a product of three Coulomb waves. For
example, ΨC3 with pure outgoing behavior is written as

ΨC3 =
3

∏
j=1

1F1

(

itls, 1;−iklsξ j

)

. (17)

In turn, D̂1 is regarded as a perturbation which does not violate the asymptotic conditions
[13, 14].
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2.2 Formal solution of the problem

At first sight, given the Green’s function operator Ĝ= D̂−1
0 (see [15]), one could take into

account the non-orthogonal term D̂1 of the kinetic energy operator by putting it into the
kernel of the Lippmann-Schwinger type equation

Ψ=ΨC3−ĜV̂Ψ,

V̂ ≡ D̂1.
(18)

If the kernel ĜV̂ is compact, then the integral equation (18) can be solved by an algebraic
method based on the fact that a compact operator may be uniformly approximated by
operators of finite rank. For this purpose a set of square-integrable parabolic Laguerre
basis functions [22]

|N〉≡BN(ξ,η)=
3

∏
j=1

φnj m j

(

ξ j,ηj

)

, (19)

φnj m j

(

ξ j,ηj

)

=ψnj

(

ξ j

)

ψm j

(

ηj

)

, (20)

ψn (x)=
√

2bj e
−bjxLn(2bjx), (21)

could be used. The index N lists all the indexes of the basis function N={n1,m1,n2,m2,n3 ,
m3} and the argument (ξ,η) of the function BN(ξ,η) represents in compact form the de-
pendence on all the parabolic coordinates. The basis functions (20), (21) are parametrized
with different Coulomb Sturmian exponents bj for each pair

{

ξ j,ηj

}

, j = 1,3. Thus, the

operator V̂ is represented by its projection V̂N onto a subspace of basis functions,

V̂N =
N0

∑
N,N′=0

|N〉〈N|V̂
∣

∣N′〉〈N′∣
∣, (22)

and the solution Ψ of the problem is obtained for V̂N . Inserting V̂N into Eq. (18) then
leads to a finite matrix equation for the expansion coefficients [a]N= 〈N|Ψ 〉,

a= a(0)−GV a, (23)

which has the solution

a=(1+GV)−1 a(0). (24)

Here [G]NN′ = 〈N|Ĝ |N′〉 and [V ]NN′ = 〈N|V̂ |N′〉 are the Green’s function operator and

potential operator matrices of the size N0+1, and a(0) is the coefficient vector of ΨC3. The
wave function Ψ is expressed in terms of the solution of Eq. (23)

Ψ=ΨC3−
N0

∑
N=0

[C]N Ĝ |N〉, (25)
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where C=V a.
We performed different studies of this equation and we found that the kernel is not

compact when is expressed in terms of L2-spaces. Actually the problem is that the stan-
dard L2 bases do not possess the appropriated asymptotic behavior of the problem. Thus,
this means that the asymptotic behavior has to be constructed and then the perturbation
operator D̂1 (14) seems to be not bounded. However, if the basis already possesses the
asymptotic behavior of the problem, then, the operator turns to be of a short range and
then becomes compact and manageable.

Even when what we just mentioned is possible, we will explore an alternative ap-
proach to the problem based on the study of the driven equation

[

D̂0+D̂1

]

Ψsc=−D̂1ΨC3, (26)

where the wave function Ψ is split into an outgoing (incoming) part ΨC3 and a scattering
Ψsc part

Ψ=Ψsc+ΨC3. (27)

Note that the inhomogeneity in (26) is a square-integrable function. Eq. (25) in turn gives
a hint as to how the solution Ψsc to (26) may be constructed with the help of the square-
integrable basis (19). Namely, we suppose that the wave function Ψ can be expressed in
the form (25), i. e., propose to expand Ψsc as

Ψsc= ∑
N=0

[c]N |QN〉 , (28)

where
|QN〉≡Ĝ |N〉. (29)

We will call |QN〉 quasi-Sturmian functions. The word ‘quasi’ refers to the fact that in
order to obtain these functions there is no need to solve a Sturm-Liouville equation.

3 Quasi Sturmian functions

According with the definition of Eq. (29) the QS functions satisfy the following driven
equation

D̂0QN(ξ,η)=BN(ξ,η) (30)

and they possess the same asymptotic behavior as the Green’s function Ĝ. In this case
we are using on the right-hand-side the Laguerre type basis functions BN(ξ,η), but any
basis set can be used. However, to preserve the asymptotic behavior of the QN functions,
the extent of the basis functions in the configuration space has to be finite. A closed form
expression for the Green’s function Ĝ was given in Ref. [23] and this allows one to express
the QS functions in terms of special functions. The right hand side of (30) depends on the
indexes N, thus for each set of values N we have different functions QN. All of these
functions form a complete basis set even when they are not orthogonal.
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When solving Eq. (26) with the proposal (28) we enforce the solution to possess the
correct outgoing behavior of the scattering function. This is similar to what it is observed
when generalized Sturmian functions are used [8, 9]. The completeness of the QN, the
short-range of both the right-hand-side and D̂1QN allow to assure that this expansion
converges. To exemplify this affirmation we will solve in the following sections a two-
dimensional model problem presented in [21]. We will use a product of one-dimensional
QS functions obtained from one-dimensional Green’s function

Qn(k,ξ)≡
∫

dξ′G(+)(k; ξ,ξ′)ψn(ξ
′). (31)

This will allow us to probe the convergence of the expansion of two-dimensional scatter-
ing wave function before considering a very elaborate and cumbersome six-dimensional
case as required for the full three-body problem.

3.1 Definitions and asymptotic behaviors

We start with the Green’s function which satisfies the equation

[

−2
∂

∂ξ
ξ

∂

∂ξ
−2ikξ

∂

∂ξ
+2kt

]

g(+)
(

k; ξ,ξ′
)

=δ(ξ−ξ′) (32)

One of the solutions of the equation (32) can be written

gs(+)
(

k; ξ,ξ′
)

=
Γ(it)

2
1F1(it, 1,−ikξ<)U(it, 1;−ikξ>) eikξ ′ . (33)

Lets us define the functions

qs
n(k,ξ)≡

∫

dξ′gs(+)(k; ξ,ξ′)ψn(ξ
′), (34)

It follows from (33) and (34) that

qs
n(k,ξ) ∼

ξ→∞
vn U(it, 1;−ikξ) , (35)

where

vn ≡
Γ(it)

2

∞
∫

0

dξ1F1(it, 1,−ikξ) eikξ ψn(ξ)

=
1√
2b

(

1+ω

2ω

)1−it

(−ω)−n Γ(it)Γ(n+1−it)

n!Γ(1−it)
2F1(−n, it; it−n; ω),

ω=
b−ik

b+ik
.

(36)
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Figure 1: Real parts of QS functions Qn (51), (43), (40) for Z=−2, k=1, b=1, µ= 1
2 .
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Figure 2: The same as in Fig. 1 but for the imaginary parts.

Using the integral representation for the Whittaker functions [24] we can write

gs(+)(k; ξ,ξ′)=
1

2
ei k

2 (ξ
′−ξ)

∞
∫

0

dzexp

{

i
k

2
(ξ+ξ′)cosh(z)

}

×
[

coth(
z

2
)
]−2it

I0

(

−ik
√

ξξ′ sinh(z)
)

,

(37)
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Figure 3: The same as in Fig. 1 but for Z=1, k=0.1, b=0.1, µ=1.

where Iν is the modified Bessel function [24]. Inserting (37) into the integral (34), we get

qs
n(k,ξ)=

(−1)n

√
2b

1
∫

0

dxxit−1

(1− ik
b −x)

(

1+ ik
b −x

1− ik
b −x

)n

exp

(

ikξx

1− ik
b −x

)

×Ln

[

2k
b kξx

(1− ik
b −x)(1+ ik

b −x)

]

.

(38)

Expanding the exponential factor in (38) qs
n can be expressed in the form

qs
n(k,ξ)=

e−bξ

√
2b

1+ω

2ω

∞

∑
m=0

(bξ)m

m!

[

n

∑
ℓ=0

(−1)ℓ
(

n

ℓ

)

(2bξ)ℓ

ℓ!

{

n−ℓ

∑
j=0

(−1)j

(

n−ℓ

j

)(

1+ω

ω

)j

×Γ(m+ j+1)Γ(it+ℓ)

Γ(it+ℓ+m+ j+1)
2F1

(

it−ℓ,m+ j+1; it+ℓ+m+ j+1;
1+ω

2ω

)

}]

.

(39)
Assuming that there exist a factor xǫ, ǫ=+0 in the integrand, we can perform the integral
(38) by parts

qs
n(k,ξ)=

1

2kt
ψn(ξ)−

(−1)n

it
√

2b

1
∫

0

dxxit

× d

dx











(

1+ ik
b −x

)n

(

1− ik
b −x

)n+1
exp

(

ikξx

1− ik
b −x

)

Ln

[

2k
b kξx

(1− ik
b −x)(1+ ik

b −x)

]











.

(40)
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Figure 4: The same as in Fig. 3 but for the imaginary parts.

We have found in our numerical calculations that it is preferable to use this represen-
tation rather than the series (39).

Note that the Green’s function

g(+)
(

k; ξ,ξ′
)

=
Γ(it)

2
1F1(it, 1,−ikξ<) [U(it, 1;−ikξ>)

− α1F1(it, 1,−ikξ>)] e
ikξ ′ ,

(41)

also meets the equation (32). In particular, with

α= e−πtΓ(1−it) (42)

the asymptotic behavior of the function

qn(k,ξ)≡
∫

dξ′g(+)(k; ξ,ξ′)ψn(ξ
′)=qs

n(k,ξ)−α1F1(it, 1,−ikξ)vn, (43)

in view of the asymptotic formulae

1F1(it, 1,−ikξ) ∼
ξ→∞

eπt

Γ(1−it)
(−ikξ)−it

(

1− t2

ikξ

)

+
e−ikξ

Γ(it)
(−ikξ)it−1, (44)

U(it, 1,−ikξ) ∼
ξ→∞

(−ikξ)−it

(

1− t2

ikξ

)

, (45)

becomes

qn(k,ξ) ∼
ξ→∞

vn
e−

πt
2

ik

Γ(1−it)

Γ(it)

e−ikξ+itlnkξ

ξ
. (46)
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These (decaying) functions (43) serve as a basis for the quasi-Sturmian construction.
We note only that the Green’s function G(+) which satisfies the equation

ĥ(k)G(+)(k; ξ,ξ′)=δ(ξ−ξ′), (47)

ĥ(k)=
1

µξ

[

−2
∂

∂ξ
ξ

∂

∂ξ
−2ikξ

∂

∂ξ
+2kt

]

, (48)

is related to (41) by

G(+)(k; ξ,ξ′)=µg(+)(k; ξ,ξ′)ξ′. (49)

Thus, it follows from the recurrence relation

ξψn =
1

2b
[−(n+1)ψn+1+(2n+1)ψn−nψn−1] (50)

that the one-dimensional quasi-Sturmian of Eq. (31) are expressed in terms of qn (43)

Qn =
µ

2b
[−(n+1)qn+1+(2n+1)qn−nqn−1]. (51)

In Figs. 1-4 we present the plots of various QS functions for different parameters and
energies used in our calculations below.

3.2 Laguerre representation of the Quasi Sturmian functions

3.2.1 Expressions for the qn and Qn functions

The coefficients in the basis set (21) expansion of the Green’s function (33)

gs(+)(k; ξ,ξ′)=
∞

∑
m,n=0

ψm(ξ)g
s(+)
mn (k)ψn(ξ) (52)

are expressed in terms of well-known special functions

g
s(+)
mn (k)= i

2k
ω−1
ωn+1 pν(t; ω)q

(+)
µ (t; ω),

ν=min(n,m),µ=max(n,m),
(53)

where

pn(t; ω)=
(−1)n

n!

Γ(n+1−it)

Γ(1−it)
2F1(−n, it; it−n; ω), (54)

q
(+)
n (t; ω)=(−1)n n!Γ(it)

Γ(n+1+it)
2F1

(

it,n+1; n+1+it; ω−1
)

. (55)

Then, it follows from (41), (36), (57), (56) and the expression

an =

√

2

b

(

1+ω

2

)it

(−1)n Γ(n+1−it)

n!Γ(1−it)
2F1(−n, it; it−n; ω). (56)
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Figure 5: Convergence of the equation (70) solution real part vs the number N of the basis quasi-Sturmians
used in the calculation (for each of the coordinates ξ1 and ξ3) on the diagonal ξ1= ξ3.

for the coefficients of the Kummer function expansion

1F1(it, 1,−ikξ)=
∞

∑
n=0

anψn(ξ), (57)

that
g
(+)
mn (k)= g

s(+)
mn (k)−αam vn. (58)

Finally, from (31) it follows that

Qn(k,ξ)=
∞

∑
m=0

G
(+)
mn (k)ψm(ξ), (59)

where
G
(+)
mn =

µ

2b

[

−(n+1)g
(+)
mn+1+(2n+1)g

(+)
mn −ng

(+)
mn−1

]

. (60)

3.2.2 Expansion for the derivatives of Qn

To obtain the coefficients for the expansion

d

dξ
Qn(k,ξ)= ∑

m=0

Cmn(k)ψm(ξ) (61)

let us calculate the integral

Cmn(k)=

∞
∫

0

ψm(ξ)
d

dξ
Qn(k,ξ) (62)
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by parts

∞
∫

0

ψm(ξ)
d

dξ Qn(k,ξ)=−ψm(0)Qn(k, 0)−
∞
∫

0

[

d
dξ ψm(ξ)

]

Qn(k,ξ)

=−
√

2bQn(k, 0)+b

[

∞
∫

0

ψm(ξ)Qn(k,ξ)+2
m−1

∑
ℓ=0

∞
∫

0

ψℓ(ξ)Qn(k,ξ)

]

.

(63)

From (59) it follows that

Cmn(k)=−
√

2bQn(k, 0)+b

[

G
(+)
mn (k)+2

m−1

∑
ℓ=0

G
(+)
ℓn (k)

]

. (64)

Similarly, we obtain that the coefficients dn of the derivative of (57) expansion

d

dξ
1F1(it, 1,−ikξ)=

∞

∑
n=0

dnψn(ξ), (65)

are

dn =−
√

2b+b

[

an+2
n−1

∑
m=0

am

]

. (66)

4 A model problem

4.1 Statement of the problem

As mentioned above, the full three-body problem is very complicated. So we decided,
first, to test the methodology by solving a simpler problem. We found one model prob-
lem which contains many characteristics of the full one. This was introduced in 1997 in
the treatment of a double continuum wave function for two electrons interacting with a
heavy ion [21]. This is actually an extension of the Φ2 model designed to deal with two
heave ions and one electron [25]. In Ref. [21] the authors introduced an approximation to
the full two-electron Schrödinger equation. This equation was obtained by demanding
very particular kinematical conditions on the system. The equation to be solved is

[

ĥ1(k1)+ĥ3(k3)−8
k3

k1

∂2

∂ξ1∂ξ3

]

Ψ(ξ1,ξ3)=0. (67)

In this contribution we solve this equation using our QS functions.
To start with the study, we divide the wave function Ψ into two parts

Ψ(ξ1,ξ3)=ΨC2(ξ1,ξ3)+Ψsc(ξ1,ξ3), (68)

where

ΨC2(ξ1,ξ3)= 1F1

(

i
µ1Z1

k1
, 1,−ik1ξ1

)

1F1

(

i
µ3Z3

k3
, 1,−ik3ξ3

)

. (69)
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Figure 6: The same as in Fig. 5 but for the solution imaginary part.
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Figure 7: The same as in Fig. 5 but on the axis ξ1.

This transforms Eq. (67) into the driven equation
[

ĥ1(k1)+ĥ3(k3)−8
k3

k1

∂2

∂ξ1∂ξ3

]

Ψsc(ξ1,ξ3)=8
k3

k1

∂2

∂ξ1∂ξ3
ΨC2(ξ1,ξ3). (70)

The scattering function Ψsc(ξ1,ξ3) is assumed to have purely outgoing behavior and can
be expressed as a finite series of the QS functions (31) products

Ψsc(ξ1,ξ3)=
N−1

∑
n1,n3=0

cn1 n3Qn1
(p1,ξ1)Qn3(p3,ξ3). (71)
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Figure 8: The same as in Fig. 6 but on the axis ξ1.

Note that in (71) it is not necessary that the parameters pj be equal to the momenta kj.
Rather than use two-dimensional functions obtained from the action of the separable
part of Eq. (67), we propose here an expansion in products of one-dimensional functions.
This is one of the aims of the paper, to see whether this expansion works and whether it
is efficient.

Inserting the expansion (71) into (70) and projecting onto ψm1
(ξ1)ψm3(ξ3) gives, in
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Figure 9: The same as in Fig. 5 but on the axis ξ3.
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Figure 10: The same as in Fig. 6 but on the axis ξ3.

view of the evident relation

ĥ(k)= ĥ(p)− 2i

µ
(k−p)

∂

∂ξ
, (72)

the following system of linear equations for the unknown coefficients cn1 n3

N−1

∑
n1,n3=0

{

δm1 n1
G
(3)(+)
m3n3

(p3)+G
(1)(+)
m1 n1

(p1)δm3 n3−
[

2i

µ1
(k1−p1)C

(1)
m1n1

(p1)

×G
(3)(+)
m3 n3

(p3)+G
(1)(+)
m1n1

(p1)
2i

µ3
(k3−p3)C

(3)
m3 n3

(p3)

+8
k3

k1
C
(1)
m1n1

(p1)C
(3)
m3n3

(p3)

]}

cn1 n3

=8
k3

k1
d
(1)
m1

d
(3)
m3

, 0≤m1,m3≤N−1,

(73)

where C
(j)
m,n and d

(j)
m are defined by (64) and (66), respectively.

4.2 Results

We follow Ref. [21] and put Z1=−2, µ1=1, k1 =1, and Z3=1, µ3=
1
2 , k3 =0.4. Intuitively

one expects that convergence can be achieved provided that the sum of the first two
(‘unperturbed’) terms in the figure brackets on the left-hand-side of Eq. (73) appears to
be much larger than the (‘perturbation’) term in the square brackets. We believe that it
should be possible to affect the ratio between these two parts of the matrix element by
varying the basis parameters pj.
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Our calculations show that the convergence rate and numerical stability may be sig-
nificantly improved by taking appropriate values of p1 and p2. The results obtained with
parameters p1=1 and p3=0.1 (the Laguerre scale factors bj are equal to the pj) are shown
in Figs. 5-10 where we plot the real and imaginary parts of the scattering wave function
Ψsc on the diagonal ξ1 = ξ3 and the axes ξ1 and ξ3. We can see in all the figures that the
convergence is achieved showing that the method works. Results for N = 45 are shown
in Figs. 11, 12.
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Figure 11: The solution Ψsc to Eq. (70) (obtained with N=45) real part.
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Figure 12: The same as in Fig. 11 but for the imaginary part.
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5 Conclusions

In this contribution we presented a study of the three-body scattering problem written in
parabolic coordinates. It is well known that the C3 wave function [14] possesses the cor-
rect asymptotic behavior in the Ω0 region where all the particles are far from each other.
Thus, this is a good starting point to formulate a Lipmann-Schwinger type equation or a
driven equation. This means, if we consider the C3 function as the asymptotic solution,
the scattering part (the remaining part of the solution) will satisfy an equation having a
compact kernel or a short range driven term. Due to the character of the perturbation
corresponding to the C3 function [26], the use of standard L2 basis is not appropriated.
Instead, it turns to be necessary to use basis functions possessing the asymptotic behavior
corresponding to the problem being considered. Generalized Sturmian [18] can be used.
The numerical implementation of the calculation of this type of functions in parabolic
coordinates is part of our actual investigations. In this contribution we introduced a set
of basis functions that we named quasi-Sturmian functions. They are defined differently
from the generalized Sturmian as they are solutions of a driven differential equation. We
proposed here the use of QS functions which are the solutions of a driven equation which
includes the separable part of the full three-body kinetic energy in the Klar’s parabolic
coordinates and also all the Coulomb interactions. In the right-hand-side of (30) any ba-
sis set can be used. Depending on the type of the driven term appearing in the full three
body equation, the use of one or other of the bases can be more efficient. The basis on
the right-hand-side should be chosen to obtain the fastest convergence of the driven term.
The QS functions form a complete basis set and this allows to expand the scattering wave
function we are looking for. All the QS basis elements possess the correct asymptotic be-
havior of the full three-body problem in the Ω0 region. This means that, in principle,
only the inner region where the interaction between all the particles takes place must be
expanded.

In this contribution we tested the efficiency of the proposed method by applying it to
a two-dimensional problem which possesses most of the properties of the full problem:
the non-separability and the scattering type boundary conditions. Instead of using non-
separable two-dimensional QS functions, products of one-dimensional ones in terms of
the parabolic coordinates appearing in the model problem were utilized. We showed
that convergence is reached for the scattering wave function with a reasonable number
of basis functions. A more extensive study of the properties of the QS functions for bases
of different types in the driven terms will be presented soon elsewhere.
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