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Abstract: The generalized difference operator ,a b∆  on the sequence space pl  is defined by , , ( )a b a b kx x∆ = ∆ =  

1 1 0( )k k k k ka x b x ∞
− − =+  with 1 0,x − =  where ( )ka  and ( )kb  are two convergent sequences of nonzero real numbers 

satisfying certain conditions. It is the purpose of this paper to completely determine the spectrum, the point 
spectrum, the residual spectrum and the continuous spectrum of the operator ,a b∆  on the sequence space pl , where 
1 p< < ∞ . 
 
Keywords: Spectrum of an operator, Generalized difference operator, Sequence spaces. 
 

1  Introduction 

Several authors have studied the spectrum and 
fine spectrum of linear operators defined by some 
particular limitation matrices over some sequence 
spaces. We summarize the knowledge in the 
existing literature concerned with the spectrum and 
the fine spectrum. The fine spectrum of the 
difference operator ∆ over the sequence spaces 0c  

and c has been studied by Altay and Başar [9]. 
Akhmedov and Başar [1,2] have studied the fine 
spectrum of the difference operator ∆ over the 
sequence spaces pl  and pbv , where 1 p≤ < ∞ . 

Note that the sequence space pbv  was studied by 

Başar and Altay [12] and Akhmedov and Başar [2]. 
Malafosse [17] has studied the spectrum of the 
difference operator ∆ over the space rs , where rs  

denotes the Banach space of all sequences )( kxx =  

normed by 

sup , ( 0)
r

k
ks

k

x
x r

r∈
= > . 

The fine spectrum of the Zweier matrix operator 
sZ over the sequence spaces 1l  and bv has been 

examined by Altay and Karakuş [11]. The fine 
spectrum of the generalized difference operator 

( , )B r s  over the sequence spaces 0c  and c has been 

studied by Altay and Başar [10]. Also, the fine 
spectrum of the operator ( , )B r s  over the sequence 

spaces pl  and pbv , where 1 p< < ∞  has been 

determined by Bilgiç and Furkan [13]. The fine 
spectrum of the generalized difference operator 

Applied Mathematics & Information Sciences    
                                                                            An International Journal

       @ 2012 NSP 
       Natural Sciences Publishing Cor. 



  
                           Saad R. El-Shabrawy:  On the Fine Spectrum of the Generalized ….      

 

112

( , , )B r s t  over the sequence spaces 0c  and c has 

been studied by Furkan et al. [15]. Also, the fine 
spectrum of the operator ( , , )B r s t over the 

sequence spaces pl  and pbv , where 1 p< < ∞  has 

been determined by Furkan et al. [16]. The fine 
spectrum of the operator v∆ over the sequence 

spaces 0c  and 1l  has been studied by Srivastava 

and Kumar [19,20]. In [7], Akhmedov and El-
Shabrawy have revised some results which have 
been given in [20]. The fine spectrum of the 
operator v∆ over the sequence space c has been 

studied by Akhmedov and El-Shabrawy [6]. Also, 
the fine spectrum of the operator v∆ over the 

sequence space pl , where 1 p< < ∞  has been 

determined by El-Shabrawy [14]. Recently, 
Akhmedov and El-Shabrawy [5,8] have modified 
the operator v∆  and have studied the fine spectrum 

of the modified operator v∆ over some sequence 

spaces. Panigrahi and Srivastava [18] have studied 
the fine spectrum of the generalized second order 
difference operator 2

uv∆  over the sequence space 0c . 

The fine spectrum of the generalized difference 
operator ,a b∆  over the sequence spaces 0c  and c has 

been studied by Akhmedov and El-Shabrawy [3,4]. 

We begin this paper by presenting some basic 
concepts of spectral theory concerning the spectrum 
and fine spectrum of linear operators in normed 
spaces. In Section 3, we completely determine the 
fine spectrum of the operator ,a b∆  on the sequence 

space pl , where 1 p< < ∞ . 

 
2 Preliminaries, Background and Notation 

By w, we shall denote the space of all real or 
complex valued sequences. Any vector subspace of 
w is called a sequence space. We shall write 

0, , andl c c bv∞  for the spaces of all bounded, 

convergent, null and bounded variation sequences, 

respectively. Also by 1l , pl  and pbv  we denote the 

spaces of all absolutely summable sequences, p-
absolutely summable sequences and p-bounded 
variation sequences, respectively. 

A triangle is a lower triangular matrix with all of 
the principal diagonal elements nonzero. Let 

andλ µ  be two sequence spaces and ( )nkA a=  be 

an infinite matrix of real or complex numbers ,nka  

where { },  0,1,2,...n k ∈ = . Then, we say that A 

defines a matrix mapping from intoλ µ , and we 

denote it by :A λ µ→  if for every sequence 

( ) ,kx x λ= ∈  the sequence {( ) }nAx Ax= , the A-

transform of x, is in µ , where  

( ) , ( )n nk k
k

Ax a x n= ∈∑ .          (2.1) 

For simplicity in notation, here and in what follows, 
the summation without limits runs from 0 to ∞. 
By ( , )λ µ , we denote the class of all matrices A 

such that :A λ µ→ . Thus, ( , )A λ µ∈  if and only if 

the series on the right side of (2.1) converges for 
each n∈ and every x λ∈ , and we have 

{( ) }n nAx Ax µ∈= ∈  for all x λ∈ . We use the 

convention that any term with negative subscript is 
equal to naught. 

We recall some basic concepts of spectral theory 
which are needed for our investigation [see 21, pp. 
370-372]. 

Let { }X θ≠  be a complex normed space and 

 :  ( )T D T X→  be a linear operator with domain 

( ) .D T X⊆  With T we associate the operator  

   T T Iλ λ= − , 

where λ is a complex number and I is the identity 
operator on ( )D T . If Tλ  has an inverse which is 

linear, we denote it by 1Tλ
− , that is 

1 1 (   )T T Iλ λ− −= − , 
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and call it the resolvent operator of T.  

Many properties of Tλ  and 1Tλ
−  depend on λ, 

and spectral theory is concerned with those 
properties. For instance, we shall be interested in 
the set of all λ in the complex plane such that 1Tλ

−  

exists. The boundedness of 1Tλ
−  is another property 

that will be essential. We shall also ask for what λ’s 
the domain of 1Tλ

−  is dense in X, to name just a few 

aspects.  

Definition 2.1. Let { }X θ≠  be a complex normed 

space and  :  ( )T D T X→  be a linear operator 

with domain ( )D T X⊆ . A regular value λ  of T is 

a complex number such that 
(R1) 1  Tλ

− exists, 

(R2) 1  Tλ
− is bounded, 

(R3) 1  Tλ
− is defined on a set which is dense in X. 

The resolvent set of T, denoted by ( , )T Xρ , is 

the set of all regular values λ of T. Its complement 
( , ) \ ( , )T X T Xσ ρ=  in the complex plane is 

called the spectrum of T. Furthermore, the spectrum 
( , )T Xσ  is partitioned into three disjoint sets as 

follows: 

The point (discrete) spectrum ( , )p T Xσ  is the 

set such that 1Tλ
− does not exist. Any such 

( , )p T Xλ σ∈  is called an eigenvalue of T. 

The continuous spectrum ( , )c T Xσ  is the set 

such that 1  Tλ
−  exists and satisfies (R3) but not (R2), 

that is, 1Tλ
−  is unbounded. 

The residual spectrum ( , )r T Xσ  is the set such 

that 1Tλ
−  exists (and may be bounded or not) but 

does not satisfy (R3), that is, the domain of 1Tλ
− is 

not dense in X. 

Hence if ( )T I xλ θ− =  for some θ≠x , then 

( , )λ σ∈ p T X , by definition, that is, λ is an 

eigenvalue of T. The vector x is then called an 
eigenvector of T corresponding to the eigenvalue λ. 

Let X be a Banach space and : →T X X  be a 
bounded linear operator. By R(T), we denote the 
range of T, i.e., 

{ }( ) : , .= ∈ = ∈R T y X y Tx x X  

By B(X), we denote the set of all bounded linear 
operators on X into itself. If ( )T B X∈ , then the 

adjoint *T of T is a bounded linear operator on the 
dual *X of X defined by *( )( ) ( )T f x f Tx=  for all 

*f X∈  and x X∈ . 

Now, we may give: 

Lemma 2.1 [22]. The matrix ( )nkA a=  gives rise to 

a bounded linear operator 1( )T B l∈  from 1l  to 

itself if and only if the supremum of 1l  norms of the 

columns of A is bounded. 

Lemma 2.2 [22]. The matrix ( )nkA a=  gives rise to 

a bounded linear operator ( )T B l∞∈  from l∞  to 

itself if and only if the supremum of 1l  norms of the 

rows of A is bounded. 

Lemma 2.3 [23]. Let 1 p< < ∞ and suppose 

1 1( , ) ( , )A l l l l∞ ∞∈ ∩ . Then ( , )p pA l l∈ . 

 
3 The Fine Spectrum of the Operator ,a b∆  on the 

Sequence Space ,pl  (1 )p< < ∞  

In this section we consider the operator ,a b∆  

which is represented by the lower triangular double-
band matrix 

0

0 1
,

1 2

0 0
0

.
0a b

a
b a

b a

⎛ ⎞
⎜ ⎟
⎜ ⎟∆ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

             (3.1) 
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We assume here and hereafter that the sequences 
( )ka  and ( )kb  are two convergent sequences of 

nonzero real numbers satisfying 

lim 0,kk
a a

→∞
= >                      (3.2) 

lim ;kk
b b b a

→∞
= =                 (3.3) 

and 
2 2sup ,k k k

k
a a b a≤ ≤ ,   for all k ∈    (3.4) 

It should be noted that the class of the operator 

,a b∆  in this form includes the modified operator 

v∆ of [5]. In this section, we completely 

characterize the sets ,( , )a b plσ ∆ , ,( , )p a b plσ ∆ , 

,( , )r a b plσ ∆  and ,( , )c a b plσ ∆ . We begin with a 

theorem concerning the bounded linearity of the 
operator ,a b∆  acting on the sequence space pl , 

where 1 p< < ∞ . 

Theorem 3.1. The generalized difference operator 

, :a b p pl l∆ →  is a bounded linear operator and 

( )
1

,sup sup sup .
p

p p p
k k a b k klk kk

a b a b+ ≤ ∆ ≤ +  

Proof. The proof is obvious and so is omitted. � 

Theorem 3.2. Let { }:D a aλ λ= ∈ − ≤ and 

{ }: ,k kE a k a a a= ∈ − > . Then 

,( , )a b pl D Eσ ∆ = ∪ . 

Proof. Let D Eλ ∉ ∪ . Then a aλ − >  and 

,kaλ ≠  for all k ∈ . So, ,a b Iλ∆ −  is triangle and 

hence 1
,( )a b Iλ −∆ −  exists. We can calculate that 

0

0
1

0 1 1,

0 1 1

0 1 2 1 2 2

1 0 0
( )

1 0
( )( ) ( )( ) = .

1
( )( )( ) ( )( ) ( )

a b

a
b

a a aI
b b b

a a a a a a

λ

λ λ λλ

λ λ λ λ λ λ

−

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟− − −∆ − ⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − − − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Therefore, the supremum of the 1l  norms of the 

columns of 1
,( )a b Iλ −∆ −  is sup k

k
R , where 

1

1

1 2

1

.... , .

k
k

k k k

k k

k k k

b
R

a a a

b b
k

a a a

λ λ λ

λ λ λ

+

+

+ +

= +
− − −

+ + ∈
− − −

 

Since 
1

lim 1k

k
k

b b
a aλ λ→∞

+

= <
− −

, then there exist 

0k ∈  and a real number 0 1q <  such that 

0
1

k

k

b q
a λ+

<
−

 for all 0k k≥ . Then, for all 

0 1k k≥ + , 

2
0 0

1 1 .... .k
k

R q q
a λ

⎡ ⎤≤ + + +⎣ ⎦−
 

But, there exist 1k ∈  and a real number 1
1q
a

<  

such that 1
1

k

q
a λ

<
−

 for all 1k k≥ . Then, 

1

0

,
1k

qR
q

≤
−

 

for all { }0 1max ,k k k> . Therefore sup k
k

R < ∞ . 

This shows that 1
, 1 1( ) ( , )a b I l lλ −∆ − ∈ . Similarly, 

we can show that 1
,( ) ( , )a b I l lλ −

∞ ∞∆ − ∈ . By 

Lemma 2.3, we have 1
,( ) ( , )a b p pI l lλ −∆ − ∈ . Thus 

,( , )a b pl D Eσ ∆ ⊆ ∪ . 

Conversely, suppose that ,( , )a b plλ σ∉ ∆ . Then 
1

,( ) ( )a b pI B lλ −∆ − ∈ . Since the 1
,( )a b Iλ −∆ −  

transform of the unit sequence (1, 0, 0, ...)e =  is in 

pl , we have 
1

lim 1
p p

k

k
k

b b
a aλ λ→∞

+

= ≤
− −

 and 

,kaλ ≠  for all k ∈ . Then 

{ } ,: ( , )a b pa a lλ λ σ∈ − < ⊆ ∆  

and  
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{ } ,: ( , )k a b pa k lσ∈ ⊆ ∆ . 

But, ,( , )a b plσ ∆  is compact set, and so it is closed. 

Then 

{ } ,: ( , )a b pD a a lλ λ σ= ∈ − ≤ ⊆ ∆  

and  

{ } ,: , ( , )k k a b pE a k a a a lσ= ∈ − > ⊆ ∆ . 

This completes the proof. � 

Theorem 3.3. ,( , )p a b pl Eσ ∆ =   

Proof. Suppose ,a b x xλ∆ =  for (0, 0, 0, ...)x θ≠ =  

in pl . Then by solving the system of equations 

0 0 0

0 0 1 1 1

1 1 2 2 2

a x x
b x a x x
b x a x x

λ
λ
λ

= ⎫
⎪+ = ⎪
⎬

+ = ⎪
⎪⎭

 

we obtain 

0 0( ) 0a xλ− =    and   1 1( ) 0k k k kb x a xλ+ ++ − = , 

for all k ∈ . Hence, for all { }:ka kλ ∉ ∈ , we 

have 0kx =  for all k ∈ , which contradicts our 

assumption. So, ,( , )p a b plλ σ∉ ∆ . Also, we can 

prove that ,( , )p a b pa lσ∉ ∆ . Thus 

{ } { },( , ) : \p a b p kl a k aσ ∆ ⊆ ∈ . 

Now, we will prove that  

,( , )p a b plλ σ∈ ∆  if and only if .Eλ ∈  

If ,( , )p a b plλ σ∈ ∆ , then ja aλ = ≠  for some j ∈  

and there exists ,px l∈  x θ≠  such that 

, .a b jx a x∆ =  Then 

1lim 1
pp

k

k
k j

x a
x a a

+

→∞
= ≤

−
 

Since 1
j

a
a a

≠
−

,  then ja Eλ = ∈ . Thus 

,( , ) .p a b pl Eσ ∆ ⊆  

Conversely, let .Eλ ∈  Then there exists i ∈  
such that ia aλ = ≠ , and so, we can take x θ≠  

with ,a b ix a x∆ =  and 

1lim 1
p p

k

k
k i

x a
x a a

+

→∞
= <

−
, 

that is px l∈ . Thus ,( , ).p a b pE lσ⊆ ∆  This 

completes the proof. � 

we give the following lemma which is required 
in the proof of the next theorem. 

Lemma 3.1. Let 1 q< < ∞ . If 

{ }: a aλ λ λ∈ ∈ − = ,  

then the series 

0 1 1

1 0 1 1

( )( ) ... ( )
...

q

k

k k

a a a
b b b

λ λ λ∞
−

= −

− − −∑  

is not convergent. 

Proof. Let 1 2iλ λ λ= + ∈  such that a aλ − = . 

Then 

2 2 2
1 2 12 aλ λ λ λ= + = . 

Also, for all k ∈ , we have 

2 2 2
1 2

2 2 2
1 2 1

2
1

2
1

2

( )

( ) 2

2 ( )

2 ( )

.

k k

k k

k k

k k

k

a a

a a

a a a

b a a

b

λ λ λ

λ λ λ

λ

λ

− = − +

= + + −

= + −

≥ + −

≥

 

Therefore 

1,k

k

a
b

λ−
≥  for all k ∈ . 
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This completes the proof. �  

If : p pT l l→ , where 1 p< < ∞ , is a bounded 

linear operator with matrix A, then it is known that 
the adjoint operator * * *: p pT l l→  is defined by the 

transpose of the matrix A. it is well-known that the 
dual space *

pl  of pl  is isomorphic to ql , where 
1 1 1p q− −+ = . 

Theorem 3.4. { }* *
,( , ) :p a b pl a a Eσ λ λ∆ = ∈ − < ∪ . 

Proof. Suppose that *
,a b f fλ∆ =  for 

0 1 2( , , ,...)f f f f θ= ≠  in * ,p ql l≅  where 
1 1 1p q− −+ = . Then, by solving the system of 

equations 

0 0 0 1 0

1 1 1 2 1

1

,
,

,k k k k k

a f b f f
a f b f f

a f b f f

λ
λ

λ+

+ =
+ =

+ =
 

we obtain that  

1 ,k
k k

k

af f k
b

λ
+

−
= ∈ . 

Therefore we must take 0 0f ≠ , since otherwise we 

would have f θ= . 
It is clear that, for all k ∈ , the vector 

0 1( , , ..., , 0, 0, ...)kf f f f=  is an eigenvector of the 

operator *
,a b∆  corresponding to the eigenvalue kaλ = , 

where 0 0f ≠  and 1
1

1

,n
n n

n

af f
b

λ −
−

−

−
=  for all 

1 .n k≤ ≤  Then { } * *
,: ( , )k p a b pa k lσ∈ ⊆ ∆ . Also, if 

kaλ ≠  for all k ∈ , then 0kf ≠  for all k ∈ , 

and q
k

k
f < ∞∑  if 1lim 1

q q
k

k
k

f a
f a

λ+

→∞

−
= < . Thus 

{ } * *
,: ( , ).p a b pa a E lλ λ σ∈ − < ∪ ⊆ ∆  

Conversely, if * *
,( , )p a b plλ σ∈ ∆ , then there exists 

0 1 2( , , ,...)f f f f θ= ≠  in *
p ql l≅  and *

, .a b f fλ∆ =  

Then, 1 ,k
k k

k

af f
b

λ
+

−
= k ∈  and  q

k
k

f < ∞∑ . 

Therefore  

1lim 1
q q

k

k
k

f a
f a

λ+

→∞

−
= <    or   { }:ka kλ ∈ ∈ . 

(note that a aλ − =  contradicts with q
k

k
f < ∞∑  

by using Lemma 3.1). This completes the proof. � 

Lemma 3.2 [24]. T has a dense range if and only if 
*T  is one to one. 

Theorem 3.5. * *
, , ,( , ) ( , ) \ ( , )r a b p p a b p p a b pl l lσ σ σ∆ = ∆ ∆ . 

Proof. For * *
, ,( , ) \ ( , )p a b p p a b pl lλ σ σ∈ ∆ ∆ , the 

operator ,a b Iλ∆ −  is one to one and hence has an 

inverse. But *
,a b Iλ∆ −  is not one to one. Now, 

Lemma 3.2 yields the fact that the range of the 
operator ,a b Iλ∆ −  is not dense in pl . This implies 

that ,( , )r a b plλ σ∈ ∆ . � 

Theorem 3.6. { },( , ) :r a b pl a aσ λ λ∆ = ∈ − < . 

Proof. The proof follows from Theorems 3.3, 3.4 
and 3.5. � 

Theorem 3.7. { },( , ) :c a b pl a aσ λ λ∆ = ∈ − = . 

Proof. Since ,( , )a b plσ ∆  is the disjoint union of the 

parts ,( , )p a b plσ ∆ , ,( , )r a b plσ ∆  and ,( , )c a b plσ ∆  

we must have 

{ },( , ) :c a b pl a aσ λ λ∆ = ∈ − = . � 

Combining Theorems 3.1, 3.2, 3.3, 3.4, 3.6 and 
3.7, we can have the following main theorem: 

Theorem 3.8. The operator , :a b p pl l∆ →  is a 

bounded linear operator and 



 
Saad R. El-Shabrawy:  On the Fine Spectrum of the Generalized ….               

 

117

1.  ( )
1

,sup sup sup .
p

p p p
k k a b k klk kk

a b a b+ ≤ ∆ ≤ +  

2.  ,( , ) .a b pl D Eσ ∆ = ∪  

3.  ,( , ) .p a b pl Eσ ∆ =  

4.  { }* *
,( , ) :p a b pl a a Eσ λ λ∆ = ∈ − < ∪ . 

5.  { },( , ) :r a b pl a aσ λ λ∆ = ∈ − < . 

6.  { },( , ) :c a b pl a aσ λ λ∆ = ∈ − = . 
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