Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.12785/amis/070549

Some New Perturbed Generalizations of Ostrowski-Grüss Type Inequalities for Bounded Differentiable Mappings and Applications

Shunfeng Wang¹, Qiaoling Xue² and Wenjun Liu^{2,*}

Received: 11 Feb. 2013, Revised: 13 Jun. 2013, Accepted: 16 Jun. 2013

Published online: 1 Sep. 2013

Abstract: In this note, we establish some new perturbed generalizations of Ostrowski-Grüss type inequalities with a parameter for bounded differentiable mappings. Our results in special cases give new bounds for Ostrowski-Grüss type or Ostrowski type inequalities. Some applications to probability density functions are also given.

Keywords: Ostrowski-Grüss type inequalities, Differentiable mappings, Ostrowski inequality

1 Introduction

The following Ostrowski-Grüss type integral inequality was proved by Dragomir and Wang in [2].

Theorem 1.Let $I \subset \mathbf{R}$ be an open interval, $a,b \in I, a < b$. If $f: I \to \mathbf{R}$ is a differentiable function such that there exist constants $\gamma, \Gamma \in \mathbf{R}$, with $\gamma \leq f'(x) \leq \Gamma, x \in [a,b]$. Then for all $x \in [a,b]$, we have

$$\left| f(x) - \frac{f(b) - f(a)}{b - a} \left(x - \frac{a + b}{2} \right) - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{1}{4} (b - a) (\Gamma - \gamma). \tag{1}$$

In [1], Cheng not only gave a sharp version of the above inequality but also generalized it as follows.

Theorem 2.Let the assumptions of Theorem 1 hold. Then

$$\left| \frac{1}{2} f(x) - \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{(x-a)^{2} + (b-x)^{2}}{8(b-a)} (\Gamma - \gamma), \tag{2}$$

for all $x \in [a,b]$.

Theorem 3.Let the assumptions of Theorem 1 hold. Then

$$\left| \left(1 - \frac{\lambda}{2} \right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{\Gamma + \gamma}{2} (1-\lambda) \left(x - \frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left(1 - \lambda + \frac{\lambda^{2}}{2} \right) \frac{(x-a)^{2} + (b-x)^{2}}{4(b-a)} (\Gamma - \gamma), \tag{3}$$

for all $x \in [a,b]$ and $\lambda \in [0,2]$.

More recently, Theorem 3 was proved for general time scales by Tuna and Daghan in [8]. Sarikaya [6] established a similar inequality of Ostrowski-type involving functions of two independent variables. In [7], Set, Sarikaya and Ahmad improved and further generalized some Čebyšev type inequalities involving functions whose derivatives belong to L_p spaces via

¹ Binjiang College, Nanjing University of Information Science and Technology, Nanjing 210044, China

² College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

In [9], two perturbations of an Ostrowski type inequality were established. Recently in [10], the present authors obtained the following perturbed generalization of Ostrowski-Grüss type inequality for bounded differentiable mapping with a parameter, which not only generalize Theorem 2, but also give some other interesting inequalities as special cases.

^{*} Corresponding author e-mail: wjliu@nuist.edu.cn

certain integral identities. In [3], Liu derived the following sharp generalized Ostrowski-Grüss inequality by using a variant of Grüss inequality (See also [4,5] for other related works).

Theorem 4.Let the assumptions of Theorem 1 hold. Then

$$\left| \left(1 - \frac{\lambda}{2} \right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} \right|$$

$$-S(1-\lambda) \left(x - \frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{\Gamma - \gamma}{2} I(\lambda, x), \tag{4}$$

for all $x \in [a,b]$ and S = (f(b) - f(a))/(b-a) and

for $\lambda \in [0,1]$, and

$$I(\lambda, x) = \begin{cases} \left[\frac{a+b}{2} - \frac{\lambda}{2}a - \left(1 - \frac{\lambda}{2}\right)x \right]^2, \\ x \in \left[a, \frac{a+(\lambda-1)b}{\lambda} \right], \\ \frac{1}{4}[1+(\lambda-1)^2][(x-a)^2 + (b-x)^2], \\ x \in \left(\frac{a+(\lambda-1)b}{\lambda}, \frac{(\lambda-1)a+b}{\lambda} \right), \end{cases}$$

$$\left[\left(1 - \frac{\lambda}{2} \right)x + \frac{\lambda}{2}b - \frac{a+b}{2} \right]^2, \\ x \in \left[\frac{(\lambda-1)a+b}{\lambda}, b \right],$$

$$(6)$$

for $\lambda \in [1,2]$.

In this note, motivated by above research, we shall another perturbed generalization Ostrowski-Grüss type inequalities with a parameter for bounded differentiable mappings. Our results in special cases give new bounds for Ostrowski-Grüss type or Ostrowski type inequalities. Some applications to probability density functions are also given.

2 Main Results

Theorem 5.*Let* $I \subset \mathbf{R}$ *be an open interval,* $a, b \in I, a < b$. *If* $f: I \to \mathbf{R}$ *is a differentiable function such that there exist* constants $\gamma, \Gamma \in \mathbf{R}$, with $\gamma \leq f'(x) \leq \Gamma$, $x \in [a,b]$, then, we

$$\left| \left(1 - \frac{\lambda}{2} \right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} \right|$$

$$-\gamma (1-\lambda) \left(x - \frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (S - \gamma), \quad (7)$$

$$\left| \left(1 - \frac{\lambda}{2} \right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} \right|$$

$$-\Gamma(1-\lambda) \left(x - \frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (\Gamma - S), \quad (8)$$

*Proof.*Let us define the following mapping as in [10]:

$$K(x,t) = \begin{cases} t - \left(a + \lambda \frac{x - a}{2}\right), \ t \in [a, x], \\ t - \left(b - \lambda \frac{b - x}{2}\right), \ t \in (x, b]. \end{cases}$$
(9)

Integrating by parts, we har

$$\frac{1}{b-a} \int_{a}^{b} K(x,t) f'(t) dt = \left(1 - \frac{\lambda}{2}\right) f(x) \\ -\lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{1}{b-a} \int_{a}^{b} f(t) dt.$$
 (10)

$$\frac{1}{b-a} \int_{a}^{b} K(x,t)dt = (1-\lambda) \left(x - \frac{a+b}{2}\right). \tag{11}$$

Let $C \in \mathbf{R}$ be a constant. From (10) and (11), it follows that

$$\frac{1}{b-a} \int_{a}^{b} K(x,t)[f'(t) - C]dt
= \left(1 - \frac{\lambda}{2}\right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)}
-C(1-\lambda) \left(x - \frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt. \tag{12}$$

If we choose $C = \gamma$ in (12), then we get

$$\frac{1}{b-a} \int_{a}^{b} K(x,t) [f'(t) - \gamma] dt$$

$$= \left(1 - \frac{\lambda}{2}\right) f(x) - \lambda \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)}$$

$$-\gamma (1-\lambda) \left(x - \frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(t) dt.$$
(13)

On the other hand, we have

$$\left| \frac{1}{b-a} \int_{a}^{b} K(x,t) [f'(t) - \gamma] dt \right|$$

$$\leq \max_{t \in [a,b]} |K(x,t)| \frac{1}{b-a} \int_{a}^{b} |f'(t) - \gamma| dt. \tag{14}$$

We also have

$$\max_{t \in [a,b]} |K(x,t)| = \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right]$$
(15)

and (see [9])

$$\frac{1}{b-a} \int_{a}^{b} |f'(t) - \gamma| dt = S - \gamma. \tag{16}$$

From (14)-(16), it follows that

$$\left| \frac{1}{b-a} \int_{a}^{b} K(x,t) \left[f'(t) - \gamma \right] dt \right|$$

$$\leq \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (S - \gamma). \quad (17)$$

From (13) and (17) we see that (7) holds.

If we choose $C = \Gamma$ in (12), then we get (8) similarly.

Corollary 1. *Under the assumptions of Theorem 5 and with* $\lambda = 1$, we have

$$\left| \frac{1}{2} f(x) - \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{1}{2} \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (S-\gamma) \tag{18}$$

and

$$\left| \frac{1}{2} f(x) - \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{1}{2} \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (\Gamma - S), \tag{19}$$

for all $x \in [a,b]$.

Corollary 2. Under the assumptions of Theorem 5 and with $\lambda = 0$, we have

$$\left| f(x) - \gamma \left(x - \frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (S-\gamma) \tag{20}$$

and

$$\left| f(x) - \Gamma\left(x - \frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left\lceil \frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right\rceil (\Gamma - S),$$
(21)

for all $x \in [a,b]$.

Corollary 3. *Under the assumptions of Theorem 5 and with* $\lambda = 2$, we have

$$\left| \gamma \left(x - \frac{a+b}{2} \right) - \frac{(x-b)f(b) - (x-a)f(a)}{b-a} \right|$$

$$-\frac{1}{b-a} \int_{a}^{b} f(t)dt \left| \right|$$

$$\leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (S-\gamma)$$
(22)

and

$$\left| \Gamma\left(x - \frac{a+b}{2}\right) - \frac{(x-b)f(b) - (x-a)f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] (\Gamma - S), \tag{23}$$

for all $x \in [a,b]$.

Corollary 4. *Under the assumptions of Theorem 5 and with* $x = \frac{a+b}{2}$, we have

$$\left| \left(1 - \frac{\lambda}{2} \right) f\left(\frac{a+b}{2} \right) + \frac{\lambda}{2} \frac{f(a) + f(b)}{2} \right|$$
$$-\frac{1}{b-a} \int_{a}^{b} f(t) dt \left| \leq \frac{b-a}{4} [1 + |\lambda - 1|] (S - \gamma) \right| \tag{24}$$

and

$$\left| \left(1 - \frac{\lambda}{2} \right) f\left(\frac{a+b}{2} \right) + \frac{\lambda}{2} \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \frac{b-a}{4} [1 + |\lambda - 1|] (\Gamma - S), \quad (25)$$

for all $\lambda \in [0,2]$.

Corollary 5. *Under the assumptions of Theorem 5 and with* x = a, we have

$$\left| \left(1 - \frac{\lambda}{2} \right) f(a) + \frac{\lambda}{2} f(b) + \frac{\gamma}{2} (1 - \lambda)(b - a) - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} [1 + |\lambda - 1|] (S - \gamma)$$
 (26)

and

$$\left| \left(1 - \frac{\lambda}{2} \right) f(a) + \frac{\lambda}{2} f(b) + \frac{\Gamma}{2} (1 - \lambda)(b - a) - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} [1 + |\lambda - 1|] (\Gamma - S), \quad (27)$$

for all $\lambda \in [0,2]$.

Corollary 6. *Under the assumptions of Theorem 5 and with* x = b, we have

$$\left| \left(1 - \frac{\lambda}{2} \right) f(b) + \frac{\lambda}{2} f(a) - \frac{\gamma}{2} (1 - \lambda)(b - a) - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} [1 + |\lambda - 1|] (S - \gamma)$$
 (28)

$$\left| \left(1 - \frac{\lambda}{2} \right) f(b) + \frac{\lambda}{2} f(a) - \frac{\Gamma}{2} (1 - \lambda)(b - a) - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} [1 + |\lambda - 1|] (\Gamma - S), \quad (29)$$

for all $\lambda \in [0,2]$.

Remark. We point out that, as in [8] and [6], Theorem 5 may be proved for general time scales or be similarly extended to inequalities involving functions of two independent variables. The details are left for the interested reader.

3 Application to probability density functions

Now, let *X* be a random variable taking values in the finite interval [a,b], with the probability density function $f:[a,b]\to \mathbf{R}^+$ and with the cumulative distribution function

$$F(x) = Pr(X \le x) = \int_{a}^{x} f(t)dt.$$

The following result holds:

Theorem 6. With the above assumptions and that the probability density function f satisfies $\gamma \leq f(x) \leq \Gamma$, $x \in [a,b]$ for some constants $\gamma, \Gamma \in \mathbb{R}^+$, then, we have

$$\left| \left(1 - \frac{\lambda}{2} \right) Pr(X \le x) - \frac{\lambda}{2} \frac{x - b}{b - a} \right|$$

$$-\gamma (1 - \lambda) \left(x - \frac{a + b}{2} \right) - \frac{b - E(X)}{b - a} \right|$$

$$\leq \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right] \left(\frac{1}{b - a} - \gamma \right),$$
(30)

and

$$\left| \left(1 - \frac{\lambda}{2} \right) Pr(X \le x) - \frac{\lambda}{2} \frac{x - b}{b - a} \right|$$

$$-\Gamma(1 - \lambda) \left(x - \frac{a + b}{2} \right) - \frac{b - E(X)}{b - a} \right|$$

$$\leq \frac{1}{2} [1 + |\lambda - 1|] \left[\frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right] \left(\Gamma - \frac{1}{b - a} \right),$$
(31)

for all $x \in [a,b]$ and $\lambda \in [0,2]$, where E(X) is the expectation of X.

*Proof.*By choosing f = F in (7) and (8), and taking into account F(a) = 0, F(b) = 1 and

$$E(X) = \int_{a}^{b} t dF(t) = b - \int_{a}^{b} F(t) dt,$$

we obtain (30) and (31).

In particular, we have:

Corollary 7. With the above assumptions, we have the inequalities

$$\left| \frac{1}{2} Pr(X \le x) - \frac{1}{2} \frac{x - b}{b - a} - \frac{b - E(X)}{b - a} \right|$$

$$\le \frac{1}{2} \left[\frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right] \left(\frac{1}{b - a} - \gamma \right), \quad (32)$$

and

$$\left| \frac{1}{2} Pr(X \le x) - \frac{1}{2} \frac{x - b}{b - a} - \frac{b - E(X)}{b - a} \right|$$

$$\le \frac{1}{2} \left[\frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right] \left(\Gamma - \frac{1}{b - a} \right), \quad (33)$$

for all $x \in [a,b]$.

Proof. We set $\lambda = 1$ in Theorem 6.

Corollary 8. With the above assumptions, we have the inequalities

$$\left| \gamma \left(x - \frac{a+b}{2} \right) - \frac{x-b}{b-a} - \frac{b-E(X)}{b-a} \right|$$

$$\leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] \left(\frac{1}{b-a} - \gamma \right),$$
 (34)

and

$$\left| \Gamma \left(x - \frac{a+b}{2} \right) - \frac{x-b}{b-a} - \frac{b-E(X)}{b-a} \right|$$

$$\leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] \left(\Gamma - \frac{1}{b-a} \right),$$
 (35)

for all $x \in [a,b]$.

Proof. We set $\lambda = 2$ in Theorem 6.

Acknowledgement

The authors are grateful to the anonymous referees for a careful checking of the details and for helpful comments that improved this paper.

References

- X. L. Cheng, Improvement of some Ostrowski-Grüss type inequalities, Comput. Math. Appl., 42, 109-114 (2001).
- [2] S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33, 15-20 (1997).
- [3] Z. Liu, A sharp generalized Ostrowski-Grüss inequality, Tamsui Oxf. J. Math. Sci., 24, 175-184 (2008).
- [4] W. J. Liu and J. Park, A generalization of the companion of Ostrowski-like inequality and applications, Applied Mathematics & Information Sciences, 7, 273-278 (2013).
- [5] M. Matić, J. Pečarić and N. Ujević, Improvement and further generalization of inequalities of Ostrowski-Grüss type, Comput. Math. Appl., 39, 161-175 (2000).
- [6] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenian. (N.S.,) 79, 129-134 (2010).
- [7] E. Set, M. Z. Sarikaya, and F. Ahmad, A generalization of Čebyšev type inequalities for first differentiable mappings, Miskolc Mathematical Notes, 12, 245-253 (2011).
- [8] A. Tuna and D. Daghan, Generalization of Ostrowski and Ostrowski-Grüss type inequalities on time scales, Comput. Math. Appl., 60, 803-811 (2010).
- [9] N. Ujević, Perturbations of an Ostrowski type inequality and applications, Int. J. Math. Math. Sci., 32, 491-500 (2002).
- [10] S. F. Wang, Q. L. Xue and W. J. Liu, Further generalization of Ostrowski-Grüss type inequalities, Advances in Applied Mathematical Analysis, 3, 17-20 (2008).