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Abstract: In this paper, series solution of fuzzy initial value problems under slyogeneralized differentiability by means of the
homotopy analysis method is considered. The new approach provigeslilition in the form of a rapidly convergent series with
easily computable components using symbolic computation software. Alhthhe homotopy analysis method contains the auxiliary
parameter, the convergence region of the series solution can bellszhtroa simple way. The proposed technique is applied to a
few test examples to illustrate the accuracy and applicability of the meth@dreBults reveal that the method is very effective and
straightforward. Meanwhile, analysis results show that the homotogdysisanethod is a powerful and easy-to-use analytic tool to
solve fuzzy initial value problems.
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1 Introduction (see e.g. $-11]) as well as of their applications, for
example, in  population models 17], civil

When a real world problem is transformed into aﬁngmele_nnlg 13, physics 4], and in modeling
deterministic initial value problem of ordinary differdait ydraulic [L15]. )
equations (ODEs), namely (t) = f (t,x(t)), to <t < There are several approaches to studying
to +a subject to the initial conditionx(t)) = x°, we  FIVPs [16-20]. The first approach was the use of the
cannot usually be sure that the model is perfect. ForHukuhara differentiability for fuzzy-valued functions.
examp|e, the initial value may not be known exact]y and Under thl-S setting, malﬂly the eX.IStence and uniqueness of
the functionf may contain uncertain parameters. If they the solution of FIVP were studied (see e.§, 16, 20)).
are estimated through certain measurements, they arhis approach has a drawback: the solution becomes
necessarily subject to errors. The analysis of the effect ofuzzier as time goes by2[l,22). Hence, the fuzzy solution
these errors leads to the study of the qualitative behavioPehaves quite differently from the crisp solution. To
of the solutions of aforementioned equation. Thus, it alleviate the situation, author 28] interpreted FIVPs as
would be natural to employ fuzzy initial value problems @ family of differential inclusions. The main shortcoming
(FIVPs) [1]. of using differential inclusions is that we do not have a
Fuzzy set theory is a powerful tool for modeling derivative of a fuzzy-valued function.
uncertainty and for processing vague or subjective The strongly generalized differentiability was first
information in mathematical models. Their main introduced in R4] and studied in 21, 25-27]. This
directions of development have been diverse and itsconcept allows us to resolve the above-mentioned
applications to the very varied real problems, for instance shortcoming. Indeed, the strongly generalized derivative
in the golden mean2], particle systemsJ, quantum s defined for a larger class of fuzzy-valued functions than
optics and gravity 4], synchronize hyperchaotic the Hukuhara derivative. Hence, we wuse this
systems %], chaotic system €], medicine [f/], and differentiability concept in the present paper. Under
engineering problems8]. Particularly, FIVP is a topic appropriate conditions, the FIVP considered under this
very important as much of the theoretical point of view interpretation has locally two solutiong7].
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The purpose of this paper is to extend the application In the recent years, extensive work has been done
of the homotopy analysis method (HAM) under strongly using HAM, which provides analytical approximations
generalized differentiability to provide symbolic for linear and nonlinear equations. This method has been

approximate solution for FIVP which is as follonwg]{ implemented in many branches of mathematics and
engineering, such as nonlinear water wavety],[
X (t) = f(t,x(t)),to <t <to+a, (1) unsteady boundary-layer flowd€], solitary waves with
discontinuity @7], Klein-Gordon equation48], boundary
subject to the fuzzy initial condition value problems for integro-differential equation49],
systems of fractional differential equations5(],
X(to) =X°, (2)  fractional differential equations5[, 52], systems of

fractional algebraic-differential equationsd, fractional

where f : [to,to+a] x Rz — R4 is a continuous fuzzy- SIR model p4], MHD fluid flow and heat transfer
valued functionx’ € R, andto, a are real finite constants problem F5], and others.
with a > 0. Here,R ~ denote the set of fuzzy numberson  The outline of the paper is as follows: in the next
R. section, we present some necessary definitions and

In general, FIVPs do not always have solutions which preliminary results that will be used in our work. The
we can obtain using analytical methods. In fact, many oftheory of solving FIVPs is presented in section 3. In
real physical phenomena encountered, are almossection 4, basic idea of the HAM is introduced. In section
impossible to solve by this technique. Due to this, some5, we utilize the statement of the HAM for solving FIVPs.
authors have proposed numerical methods to approximati section 6, numerical examples are given to illustrate
the solutions of FIVPs. To mention a few, the Euler the capability of HAM. This article ends in section 7 with
method has been applied to solve Edb) énd @) as  some concluding remarks.
described in 28]. In [29] the authors have developed the
Runge-Kutta method (RKM). In30] also, the author has
provided the residual power series method to further2 Preliminaries
investigation to the above equations. Furthermore, the

predictor-corrector method (PCM) is carried out Bl ~ The material in this section is basic in some sense. For the
In [32] the author has discussed the continuous genetigeader’s convenience, we present some hecessary
algorithm for solving FIVP {) and Q). Recently, the  definitions from fuzzy calculus theory and preliminary
artificial neural network approach for solving fuzzy Egs. results. For the concept of fuzzy derivative, we will adopt
(1) and @) is proposed in33]. The numerical solvability  strongly generalized differentiability, which is a

of other version of differential equations and other redate modification of the Hukuhara differentiability and has the
equations can be found iB4-41] and references therein. advantage of dealing properly with FIVPs.

Anyway, investigation about FIVPs under strongly Let X be a nonempty set. A fuzzy setin X is
generalized differentiability is scarce. However, none of characterized by its membership function X — [0,1].
previous studies propose a methodical way to solveThus,u(s) is interpreted as the degree of membership of
FIVPs under this type of differentiability. Moreover, an elemensin the fuzzy seti for eachs € X.
previous studies require more effort to achieve the results A fuzzy setu onR is called convex if for eacht € R
they are not accurate but are usually developed for lineaand) ¢ [0,1], we have
form of FIVP (1) and @). Meanwhile, the proposed
method has an advantage that it is possible to pick any U(As+(1—A)t) > min{u(s),u(t)},
point in the interval of integration and as well the ) ] ]
approximate solution and its derivative will be applicable and is called normal if there s€ R such that(s) = 1.

The HAM, which proposed by Liao4p-47], is The support of a fuzzy setu is defined as
effectively and easily used to solve some classes of lineatS € R : u(s) > 0}.

and  nonlinear  problems  without linearization, Definition 2.1. [9] A fuzzy numberu is a fuzzy subset of
perturbation, or discretization. The HAM is based on thethe real line with a normal, convex, and upper

homotopy, a basic concept in topology. The auxiliary semicontinuous membership function of bounded
parameterh is introduced to construct the so-called support.

zero-order deformation equation. Thus, unlike all ; .

previous analytic techniques, the HAM provides us with a OFor eachr € (0,1], set[ul = {SE_R tu(s) > r} and
family of solution expressions in auxiliary paramefer  [U]” = {s€ R:u(s) > 0}. Then, it easily to establish that
As a result, the convergence region and rate of solutiort is a fuzzy number if and only ifu]" is compact convex
series are dependent upon the auxiliary paranfeemd  subset oRR for eachr € [0, 1] and[u]1 % @ [56]. Thus, ifu
thus can be greatly enlarged by means of choosing as a fuzzy number, thefu]' = [u(r),t(r)], whereu(r) =
proper value of. This provides us with a convenient way min{s:se [u]'} andu(r) = max{s:s¢ [u]'} for eachr €

to adjust and control convergence region and rate of0,1]. The symbolu]' is called ther-cut representation or
solution series given by the HAM. parametric form of a fuzzy number
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The previous discussion leads to the following H-difference. It follows that Hukuhara differentiable
characterization of fuzzy numbeu in terms of its function has increasing length of suppo#.[To avoid
endpoint functionsu(r) and t(r). This theorem is a this difficulty, we consider the following definition.

fundamental rule in fuzzy numbers theory and thelrDefinition 2.3.[21] Letx: [a,b] — R andto € [a,b]. We

applications. say thatx is strongly generalized differentiable &t if

Theorem 2.1. [56] Suppose thatu : [0,1] — R and there exists an elemext(to) € R » such that either:

u: [0,1] — R satisfy the following conditions: (i) vh > 0 sufficiently close to 0, the H-differences
(i) uis a bounded increasing function, X(to+h) © x(to), x(to) © Xx(to—h) exist and
(i) is a bounded decreasing function, X (to) = limp_,q+ Mg}ex(to) = limp_,o+ Mh(to*h)

(iii) u(1) <u(1), or
(iv) for each k € (0,1], lim,_,-u(r) = u(k) and (i) Yh > 0 sufficiently close to 0, the H-differences
lim, - U(r) =u(k), X(t)) © X(to+h), x(to—h) & x(tp) exist and

u
(v) lim; o+ u(r) = u(0) and lim_,+ U(r) = U(0).
Thenu: R — [0,1] defined by

X(to)extoth) _ X(to—h)&x(to)
= =limp e = —7—

X (to) = limy,_,q+

Here the limit is taken in the metric spa¢R ~,D)
and at the endpoints ¢&,b], we consider only one-sided
derivatives. In the previous definition, case (i)
corresponds to the H-derivative introduced 58] so this
differentiability concept is a generalization of the
Hukuhara derivative. Moreover, in2{], the authors
consider four cases for derivatives. Here, we only
consider the two first cases of Definition 5 @1]. In the

Based on Theorem 2.1, we can represent an arbitrarpther cases, the derivative is trivial because it is reduced
fuzzy numberu by an order pair of function&u, ) which ~ to a crisp element ifR. The reader is asked to refer
satisfy the requirements (i-v) above. Frequently, we will to [21, 24-26] in order to know more details about
write simply u, and U, instead of u(r) and u(r), strongly generalized differentiability and its applicats.
respectively, for eache [0, 1]. Definition 2.4. [26] Let x : [a,b] — Rz. We sayx is
dist‘;:gemgtn.c Etruc;urﬂz Eﬁi ISRQ:VS”{%mEUFéﬁUS?ﬁ;f (1)-differentiable onfa,b] if x is differentiable in the

d 4 sense (i) of Definition 2.3 and its derivative is denoted

D (u,V) = SUpy<; <1 max{|u, — V|, |Ur —V|} for arbitrary L T L
fuzzy numberal andv. It is shown in B7] that (R >, D) is D1x, and similarly for(2)-differentiability we haveD,x.

a complete metric space. The principal properties of the defined derivatives are
Two fuzzy numberss andv are equal, iffu]’ = [v]"  well known and can be found i2], 26]. In this paper, we
for eachr € [0, 1]. For the arithmetic operations on fuzzy make use of the following theorem.

numbers we refer tol]. The following results are well 1 o5rem 2.3.[26] Let x: [a,b] — R and put[x(t)]' =

u(s) =sup{r:u(r) <s<u(r)} (3)

is a fuzzy number with parameterizatidn(r),u(r)].
Furthermore, ifu: R — [0,1] is a fuzzy number with
parameterizatioriu(r),tu(r)], then the functions andT
satisfy conditions (i-v).

known and follow from the theory of interval analysis. I, (t),% ()] for eachr € [0, 1].
Theorem 2.2.[1] If u andv are two fuzzy numbers, then (i) if x is (1)-differentiable, thenx, and X are
for eachr € [0,1], we have differentiable functions anfD1x (t)]" = [x; (t) X (t)],
() [u+v" = [u" + V" = U +V,, T + V], (i it x s (2)_—differentiab|e, thenx, and X, are
- AU, AT, A >0 differentiable functions anfD,x (t)]" = [X. (t),X. ()].
(ii) [/\u]r)\[u}r{ R & ’ .
AU, AL ], A <O, Theorem 2.3 shows us a way to translate FIVP into a
@iy [w" = [u'v" = [minS,maxS]|, where system of ODEs. As a conclusion one does not need to
S ={uV,, UV, 0V, 0V }. rewrite the numerical methods for ODEs in fuzzy setting,

but instead, we can use the numerical methods directly on

The collection of all the fuzzy numbers with addition the obtained ordinary differential system.

and scalar multiplication defined by part (i) and (i) of
Theorem 2.2 is a convex congg. Also, it can be shown
that these parts are equivalent to the addition and scal .
multiplication as defined by usingcut approachd6] and aé Theory of solving FIVPs

the extension principleSp]. In this section, we define a first-order FIVP under

Definition 2.2.[58] Letu,ve R z. Ifthere existsave Rz strongly generalized differentiability, then we replate i
such thatu = v+ w, thenw is called the H-difference af by its parametric form. Furthermore, we present an

andyv, denoted byiov. algorithm to solve the new system which consists of two
i ) classical ODEs for each type of differentiability.
Here, the sign&” stands always for H-difference and Consider the following crisp ODE:
let us remark thatlS v # u+ (—1)v. Usually we denote
u+ (=1)v by u—v, while uev stands for the X (t) = f(t,x(t),to<t<to+a, 4
© 2013 NSP
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subject to the initial condition Theorem 3.1.[2€] Let f : Jto,to+a xRy — R4 is a
continuous fuzzy-valued function. If there exiks> 0
X(to) =X°, (5) such that D(f(t,x),f(t,y)) < kD(x,y) for each

t € [to,to+a] andx,y € Rz. Then, the FIVP 1) and @)
wheref : [to,to+a] x R — R is a continuous real-valued has two unique solutions offtp,to+a]. One is (1)-
function,x’ € R, andto, a are real finite constants with> differentiable  solution and the other one is
0. o (2)-differentiable solution.

Suppose that the initial conditior” in Eq. () is : : . .
uncertain and modeled by a fuzzy number. Also, assume roc-:rehgu?ebjticéo(lj\jetrlﬁvﬁi(gr?(ljgE;IEEmalrsarfr?e{?cpllg:?r?m a
that the functionf in Eq. @) contain uncertain parameters tperm f its r-cut representation IFZ) lowina26l. we
modeled by a fuzzy number. Then we obtain the FIXYP ( 0 u presenta ro - 0 0, ng .
and Q) observe that the relations ;x| and[D2x]" in Theorem

In order to solve this problem, we write the fuzzy 2.3 give us a useful procedure to solve FIVPs.
function x(t) in its r-cut representation form to get Algorithm 3.1. To find the solutions of FIVP) and @),
[x(t)(])r = [x(),% ()] and [x(0)]" = [x(0),% (0)]  we discuss the following cases:
= X% - : i i r

. L Case L If x(t) is (1)-differentiable, theriD1x(t)]' =

On the other hand, the extension principle of Zadeh, , 1~ : .
leads to the following definition of (t,x(t)) whenx(t) is [x (1), % (1)] and solv_lng.FIVP D and @) translates into

the following subroutine:

afuzzy numberd]: Step (i): solve the following system of ODEs fgr(t)

f(t,x(t))(s) = sup{x(t)(1) : s= f (t,T),s€ R}. andx; (t):
From this according to Nguyen theore&9] it follows that X (1) = foe (6% (1), % (1), (6)
‘ X () = f2r (% (1) % (1),
[F(tx(1))]
= [f, (t,x(1)), f (t,x(1)] = T (t,[x x(1)]") subject to the initial conditions
={T(ty) rye Xt o
= [frr (L% (8) % (1), far (X (1), % (1)), % (fo) =X, @)
where the two term endpoint functions are given as % (to) =%,
_ ) . ] r Step (ii): ensure that the solutidr, (t),%; (t)] and its
fur (% (1), % (1)) = min{ f (t,y) sy € (O]}, derivative [x (t),% (t)] are valid ?g{/t(el) set(s)]for each

for (t,% (1), % (1)) := max{f (t,y) :y € [x(t)]'}. re(01], :
Step (iii): use Eq. 3) to construct g1)-solutionx(t)

The reader is asked to refer ®960] in order to know  such thafx(t)]" = [x, (t),% (t)] for eachr € [0, 1].
more details about Zadeh'’s extension principle, including Case II. If x(t) is (2)-differentiable, theriDx (t)]" =

its justification and conditions for use, properties, asd it X (t),, (t)] and solving FIVP {) and @) translates into
applications. the following subroutine:

It is worth stating that in many cases, since FIVPs are . :
often derived from problems in physical world, existence an dSt(?p) (): solve the following system of ODEs fi(t)

and uniqueness are often "obvious” for physical reasons.

Notwithstanding this, a mathematical statement about X (1) = far (t,% (1), % (1),

existence and uniqueness is worthwhile. Uniqueness (8)

would be of importance if, for instance, we wished to X (1) = for (6% (1), % (1)),

approximate the solution. If two solutions passed through

a point, then successive approximations could very wellSUPject to the initial conditions

jump from one solution to the other-with misleading 0

consequences. X (o) = Xy, )
The following definition is needed by the succeeding X (to) = X0,

theorem regarding the existence and unicity of two
solutions (one solution for each lateral derivative) totfirs Step (ii): ensure that the solutidg, (t),X%; (t)] and its
order FIVPs under strongly generalized differentiahility  derivative [X/ (t),x/ (t)] are valid level sets for each
- relo,1

Definition 3.1. [26] Let X: [to,to + & — R # such thaD1x AP i .

or Dox exists. I_fx andD1x satisfy FIVP @._) a_nd Q),_We say ¢, Cﬁtt?]%&%i)lffsi E(q(s) ;(: ((t:ﬁr}ir:;tcézé [SC;) If]tlonx(t)

x is a(1)-solution of FIVP @) and @). Similarly, if x and r o

Dox satisfy FIVP (1) and @), we sayx is a(2)-solution of Sometimes, we can't decompose the membership
FIVP (1) and Q). function of the solutiorjx (t)]" as a function defined oR
@© 2013 NSP
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for eacht € [to,to+a]. Then, using identity3) we can  function, Xo (t) is an initial guess ok(t), which satisfies
leave the solution in term of its-cut representation. We the initial condition, and? is an auxiliary linear operator
mention here that, Case Il above is an extension of thewith the property

procedure used in6fl] for solving FIVPs, where the

derivative is considered in the first form of Definition 2.3 Z[f ()] =0whenf (1) =0. (12)
only; which is coincident with our Case |. Thus, from It should be emphasized that one has great freedom to
Case Il we obtain new solution for FIVR)(and @). choose the initial guesg (t), the auxiliary linear operator

The characterization theorem states that under certair, the auxiliary parameten, and the auxiliary function
conditions a FIVP is equivalent to a system of ODEs. TheH (t). According to the propertyl@) and the suitable
next result utilizes the characterization theorem of FIVPsinitial condition, wheng = 0, we have
under strongly generalized differentiability.

j ®(1:0) =% (1), (3)

Theorem 3.2.[27] ConS|d_er the FIVPY) and @) where and wherg = 1, sincefi £ 0 andH (t) # 0, the zeroth-order

K [E%’t[ofj(:a}(a%? — R is such that deformation equatiori() is equivalent to Eq.10), hence
= [frr (% (1), % (1)), for (£, % (1), % (1)), ®(t;1) =x(t). (14)

(i) for andfy, are equicontinuous functions,

(i) there exists_ > 0 such that for eache [0, 1] Thus, according to Eqsl8) and (L4), asqincreasing from

0 to 1, the solution® (t; g) various continuously from the

initial approximationxg (t) to the exact solutior (t).
‘ fl,l' (t,Xl,yl) - fl,r (tax23y2)| ni . . X .
< Lmax{|x; —Xo|, ly1 — y2|}, Define the so-calledth—;nrgir ;jeformatlon derivatives
_ 1 g
o (LX0Y2) — for (32,32 ()= am |o 13)

< Lmax{|xy —x2[,[y1 — 2|} : . . .
expanding® (t;q) in a Taylor series with respect to the

Then, for (1)-differentiability, the FIVP {) and @) and  embedding parametey, by using Egs.13) and (L5), we
the system of ODE5] and (7) are equivalent and if2)- have -
differentiability, the FIVP {) and @) and the system of Dt;q) =X )+ T Xm(t)g™ (16)
ODEs @) and Q) are equivalent. m=1
Assume that the auxiliary parameterthe auxiliary
"~ = . ction H (t), the initial approximationxy (t), and the
[f (t_,x(t))]r = [for (6% (1),% (1), for (t’xf (t)”?f (1)) is auxiliary linear operatorZ’ are properly chgsen so that
achieved by any fuzzy-valued function obtained from 3the series 16) of @ (t:q) converges af = 1. Then, we

cr?ntinu%gs function by Zad_eh’s extension principle. SOhave under these assumptions the series solution
this condition is not too restrictive. o
X(t) =0 (t) + 5 m1 Xm(t).

Define the vector

4 Basic idea of the HAM Kn(t)={X (), X (t),.... % (1)}

o . o Differentiating Eq. (1) mtimes with respect to
The principles of the HAM and its applicability for empedding parameter and then setting = 0 and finally

various kinds of differential equations are given dividing them by m!, we have, using Eq.165), the
in [42-55]. For convenience of the reader, we will present sg-calledmth-order deformation equation

a review of the HAM j2-47] then we will implement the
HAM to construct a symbolic approximate solution to £ [Xm(t) = XmXm-1(t)] = AH () Oxn (X m-1(t), (17)

We mention here that the requirement fun

FIVPs.
. . . 0, m<1,
To achieve our goal, we consider the nonlinearwherem=1,2...n, X, = 1Lm>1 and
differential equation ’ ’
_ 1 0™IN[@(tq)
N[X(t)] = 0,1 > to (10) DK a(0) = o =gt | (19
; ; ; ; ; For any given nonlinear operat®, the termOxm
whereN is a nonlinear differential operator amdt) is an .
unknown function of the independent variable (Xm-1(t)) can be easily expressed by Egg). Thus, we
Liao [42-47] constructs the so-called zeroth-order C&N 9@iNXo(t).X1(t),.... % (t) by means of solving the
deformation equation linear high-order deformation EgLT) one after the other

in order. Themth-order approximation of(t) is given by
(1-q)Z[@ g —x®)] =dHON[® G, 1) XU =Sox®.

It should be emphasized that the so-calletth-order
whereq € [0,1] is an embedding parametér 0 is an  deformation equationl(?) is linear, which can be easily
auxiliary parameterd (t) # 0 is an auxiliary functionN solved by symbolic computation software’s such as Maple
is a nonlinear differential operato® (t;q) is an unknown  or Mathematica.

© 2013 NSP
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5 Solution of FIVPs by HAM

In this section, we employ our technique to construction

the HAM solution for FIVPs with respect tq1)-
differentiability only in order not to increase the length o

the paper without the loss of generality for the remaining
type. However, similar construct can be implemented for

the (2)-differentiability.

Let g € [0,1] be the so-called embedding parameter.
The HAM is based on a kind of continuos mappings

X (t) — @, (t;q) and X, (t) — @, (t;q) such that, as the
embedding parametey increases from 0 to 1¢, (t;q)
and @ (t;q) varies from the initial approximation to the
exact solution.

Define the nonlinear operators

—

Np [@, (

.Q)d
= [P

Nzrrt ]
:gtrftq]

Leth; # 0 andH; (t) #0,i = 1,2, denote the so-called
auxiliary parameter and auxiliary function, respectively
Using the embedding parametgrwe construct a family
of zeroth-order deformation equations

()] — for (LQr (t;q), @ (t;Q)) )

for (t, @ (t;0),Pr (t;0)) .

(1—Q)$1 [Qr( _) ﬁX|[|O( )]N ® )
i 1 (N [@ (t0)], (19)
(1-0a) 2 [@r (;0) - Xro()]
= ahz2H2 () N2 [@; (8;0)]
subject to the initial conditiongp, (to;q) = X, o(t) and

D (to;q) = X0 (t), wherex, o (t) andX o (t) are the initial
guesses approximations f(t) andx; (t), respectively.

Obviously, whenqg = 0, since x,(t) and X o(t)
satisfy the initial conditions ) and according to the
property (2, we have @, (t0) = x,(t) and
@, (t;0) = X o(t). Also, whenq = 1, sincef; # 0 and
Hi (t) # 0,1 = 1,2, the zeroth-order deformation equation
(19 gives @, (t;1) = x, (t) and Py (t;1) =% (1).

By Taylor’s theorem, we expand, (t;q) and @ (t;q)
by a power series of the embedding paramejeas
@, (t;0) o) + ImaXm®9™  and
@ (t;0) = Xo(t) + Yp_1%m(t) g™, where x, (t) and

X0 (t)
% (t) andX; (t), respectively, then we can calculagg (t)

From the so-callednth-order deformation equations
(17) and (18), we have

()]

[X (t) erﬁ(rml

%
fﬁle)Dxrm( 1 (), Xem1 (1))
(21)
SZ) [er(t) mer m— 1(t)] .
aHz (8) D%m (Xem-1. (0, Xeam-1 (1)
where
%
D&m (Yr,m—l (t) » Xrm-1 (t))
oML 1y, [t (t:0), Pr (t;))
= @Xm®— i —— [aqm—l I
. q—0 (22)
O%r m (?r,m—l (t), Xrm-1 (t))
o oM g [t (), Pr (tiq)
= &Xem®) = g [aqul I
q—0

For simplicity, we can choosH; (t) = 1, i = h, and
% = &,i=1.2. Then, the right inverse of will be
ﬂO (-)dt. Hence, themth-order deformation equatio21)
for m> 1 becomes

Xrm (t) = Xnﬁr,m—l (t)
+ ﬁf:o UXr m (Yr,m—l (1) »?r, (T)) dr,
(23)
%em () = Xe¥em-1 (t)
1t D% (X em-1(0), Xeme2 (1) ) .
If we choose X,(t) = x(to) = x° and

=X (tp) = X° as initial guesses approximations of

andx; (t), i = 1,2,...,n by using the iteration formula
(23). Finally, we approximate the solutioq(t) andx; (t)
of system 6) and (/) by the kth-truncated series

k—1 k-1
w&,k (t)= méoxr,m (t) and Lllyr.k (t)= mEo)i(r.m (t).

6 Numerical results and discussion

The HAM provides an analytical approximate solution in
terms of an infinite power series. However, there is a
practical need to evaluate this solution, and to obtain
numerical values from the infinite power series. The
consequent series truncation and the practical procedure
are conducted to accomplish this task. In this section, we
consider three examples to demonstrate the performance
and efficiency of the present technique.

Throughout this paper, we will try to give the results
of the all examples; however, in some cases we will
switch between the results obtained for the examples in
order not to increase the length of the paper without the
loss of generality for the remaining examples and results.

Xm(t) are given, respectively, a%w’ 0 and
q:
%% o Thus, alg = 1, the series becomes
X (t) :Xr,o(t)+%1¥rm<t)7
w (20)
X (1) =%Xo(t) + 3 Xm(t)
m=1
@© 2013 NSP
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In the process of computation, all the symbolic and calledhr-plane which provide us with a way to determine
numerical computations performed by using Mathematicathe valid region of the auxiliary parametlrat various
7.0 software package. values ofr which corresponds to the horizontal line
segment resulting by the intersection of the plarerg
with the flat surface. Figure 1 shows tHar-plane

- oy corresponding to the 6th-order approximation HAM
X (t)=2x(t) +1u,0<t < /In(3), (24) solution ofx, (t) andx, (t) for eachr € [0,1]. It is evident
that the valid region of the auxiliary parametefor both
componentg, (t) andX, (t) is about—1.8 < h < —0.4 for
x(0) = u, (25)  eachr € [0,1]. Thus,—1is available value foh.

Example 4.1.Consider the following linear FIVP:

subject to the fuzzy initial condition

whereu(s) = max(0,1—1g)), se R.
The fuzzy (1)-differentiable exact solution is
x(t) =3 (3et2 - 1) u, while the fuzzy(2)-differentiable

exact solution ix(t) = 3 (3e*t2 — 1) u.
For finding the fuzzy(1)- and (2)-solutions of FIVP

(24) and @5) which are corresponding to their parametric

¥ 0
form, we have the following two cases of ODEs system: e

Case |.The system of the ODEs corresponding 1¢- ol ¥
differentiability is:

X (t) = 20 (1) +(r 1),

% (1) = 2% (1) +t(1-r), (20) o

subject to the initial conditions
X (0)=r—1,
7({ (0) - 1 —TI.

According to Egs.15) and @2), we have

DXf’m (?r,m—l (t> s ?Em—l (t)) ’ [l, ; ) _,2
= X1 (t) =2 1 () =t (r = 1) (1= Xpn),

o -
O (Kem-1(0), Xem-1 (1)) | A |
do -~ Fig. 1: Thehr-plane ofx; (1) andx; (1) which are corresponding
= gXrm-1(t) = 2%em-a () —t(1—r) (1—Xm)- to the 6th-order approximation HAM solution gf (t) and: (t)

. L for Egs. @6) and 7).
As we mentioned earlier, if we select the initial guesses as. €6) en

approximations ag o (t) =r —1 andxo(t) = 1—r, then
according to the iteration formul28), the first few terms Now. substitute i — —1 into the 6th-order
of the HAM series solution for Eqs2€) and €7), are as 555 oximation HAM solution of, (t) and, (t) to get the

N

follows: following series:
X1 (t)=3(1-r)ht?, w, (1)
X1 (t) = 3 (r —1)RAt? o 2, 3¢44 346, 348, 3410 q)(r _
, 2 : =3 (3+3t2+ 3t4+ 20+ 284+ 3:t10—-1) (r—1)
)7(1.72 (t _ 1 > (tz)j
=3(1-nR?+3(1-r)RPt2+ 3 (r—1)Rt%, AN =9
X2 (t
—3(r— A2+ 3 (r— )R+ 3 (1—r)Rt4, Py, (1)

1

It is to be noted that the series solution contains the 2 j
auxiliary parameteri and the truth parameter. So, 1 3§ ) 4 (1-1).
similarly to the so-calledh-curve, we can consider the so 2\7%
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Thus, the exact solution of Eqs26) and @7) has the

Thus, the exact solution of Eqs28) and @9) has the

general form which are coinciding with the exact general form which are coinciding with the exact

solutions

So, the exact solution of FIVP2§) and @5) in the
sense of (1)-differentiability is x(t) = %<3et2—1) u,
whereu(s) = max(0,1—|g]), se R.

Case Il. The system of the ODEs corresponding to

(2)-differentiability is:

~

X (t) = 2% (t) +t(r—1), 28)
X (t) =2t% () +t(1-r),
subject to the initial conditions

solutions

So, the exact solution of FIVP2§) and @5) in the

sense of(2)-differentiability is x(t) = % (3e*t2 - 1) u,

whereu(s) = max(0,1—1s]),s€ R.

Next, we show by example that the crisp IVPs can be
modeled in a natural way as FIVPs. Consider a sinihle
circuit (The 'RL-circuit” is an abbreviation of
Resistance-Inductance circuit). The ODE corresponding
to this electrical circuit isi’(t) = —{*i(t) + v(t),
to <t <tp+a, subject to the initial condition(tp) = i
where R is the circuit resistancel. is the coefficient
corresponding to the solenoid, andis the voltage
function. Environmental conditions, inaccuracy in
element modeling, electrical noise, leakage, and other
parameters cause uncertainty in the aforementioned
equation. Considering it instead as a FIVP yields more

Choose the initial guesses approximations asrealistic results. This innovation helps to detect unknown

Xo(t)=r—1andXo(t) = 1-r, then according to the
iteration formula 23), the first few terms of the HAM
series solution for Eqs2@) and @9) are as follows:

X1 (t) =3 (1—r)At?,
%a(t) =3 (r—1ht?,
Xr,2 (t

=3(1-r)R2+3(1-r)RPt24+ 3 (r — 1) R?t?,

=3(r— R+ 3(r— )R+ 3 (1) A%

If we set the auxiliary parametér= —1, then the 6th-
order approximation HAM solution of, (t) andx; (t) are

l’ul(rﬁ(t)

:%(3—3tz+%t4—%t6+2%t8—1—§0t10—1) (r—1)
5 (_t2))

:% 3% ( j!) _1> (r=1),
j=0

Wy o (1)

=3(3-3t2+3t4 - 36+ 8- 30— (1)
5 (_42)

=§<3ij( j!) —1> (1—r).

conditions in circuit analysis3g].

Example 4.2.Consider an electric&L circuit with anAC
source:
i'(t) = —Ri(t) +v(t),0<t <1, (30)

subject to the uncertain initial condition

i(0)=u. (31)

Suppose thaR =1 Ohm,L = 1 Henry,v(t) = sin(t),
255— 24, 096<s<1,

and u(s) = ¢ —100s+101 1<s<1.01, Then the
0, otherwise.
fuzzy (1)-differentiable exact solution is

i(t) = 1 (sin(t) —cos(t)) + e + cosh(t)u— sinh(t)u,
while the fuzzy (2)-differentiable exact solution is
i(t) = 3 (sin(t) —cos(t)) + 3e t +etu.

For finding the fuzzy(1)- and (2)-solutions of FIVP
(30) and @1) which are corresponding to their parametric
form, we have the following two cases of ODEs system:

Case |.The system of the ODEs correspondind 1¢-
differentiability is:

it (t) = —ir (t) +sin(t),
ir (t) = =i (t) +sin(t),

(32)
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Wy ., (1) =sin(t) - cos(t)
subject to the initial conditions 1 z+2 D@l | K2 (i)
i T2 2. !
i, (0)= %@ 2i5r7 ) 2 T j=0 (:i)rz
~ + JtJ 4 1 + t2i
r _101_ 1 24, 1 :
ir (0) = 105 — Too"- Z +(5+ ") .ZO @
As we mentioned earl|er if We select the initial guesses 101 1 K2 o5
approximations ag o (t) = 25+ 20 andiio(t) = 155 — - (Too*Too ) (& @I
ﬁr, then according to the iteration formul23), the first
few terms of the HAM series solution for EqL2) and
(33 are l’UTrAkJrZ( ) =sin(t) —cos(t)
. +2 J 2j+1 AK+2  1je2j
_ 101 _ 1 1 t 1 it
ica () = cos(t) — 1) + (33— zhor) . 33 ehor 1 3
i1 (t) = R(cos(t) — 1) + (2 + &r) t, i1 Z+2 1t f(a %r)llkfz 2
T il 2 (2))!
ir2 (t) = A(cos(t) — 1) + (155 — 150") Pt =0 4ki2 o
2 1 1 2 2j+1
+P(le(cosl(t))+ﬁ§|£1(t)—l + (156 — 507 ) Pt — (24 A1) ‘Zo (éjl%)!’
+ *5+§)r t ) 1=
ir2(t) =h(cos(t) — 1)+ (32 + 25 r)ft, . LB g2
+R? (cos(t) 4 sin(t) — 1) + (zi — 5 ) %t Wi 45 (D) =SiN(t) = 3 JZO NG
+ (38 - o) Ret2. S i 443 )iy
Choose the auxiliary parameter Bs= —1. Then the 25 @ 25 0
4kth, (4k+1)th, (4k+2)th, and(4k -+ 3)th-truncated series oa | 1.\ HE3 o
of the HAM solution ofi, (t) andi, (t) are as follows: +(35+ 27) 2 @
4k i.2i 4k i\2i k43 i1
1 ( 1)Jt21+1 1 (,l)JtZJ _ LOJ__ 1 t'l
"ULAk( )=3 IZOW -5 2, @ (100 — 100") 2, @I
aK i &
1 (—1)it 24 1 t2] 4k+3 2j+1
+ i— + (55 + =f . 1)it2i+
22,1 (5+2 )]ZO @ Wi 4y M =sSiNO)—3 3 %
4k oy e i
(38— o) (£j+1>" 1 k§3 1) tZJ L3 iy
2.4, 2 iz T
K - aK j K43,
1 1 Jt2]+l 1 —1 JtZJ 0 1 t2j
Wi, ) =3 1107( (2,)+1)! -2 jZO( (2%)! + (166~ 1607) JZO @
aK i &, 4+3
1o (=it | 101 1 12i (24, 1 {2t
+3 i+ (106~ 100) T @y (25 +35") 2 i
j=0 j=0 i=0
&, . . . .
— (%4 L) %7 Thus, in all cases the analytic approximate solutions of
=0 Egs. B2 and @3) agree well with the exact solutions

4k+l( l)Jt21+1

Ui, 4., (1) = —cos(t) + 2 Z RGN
4k+1 1)1,[2] 4k+l (71)“]
+3 z +3 'Zo i
kil
24, 1 2]
+(2—5+2—5r) 2
j=0
(m_ir)m«rl 24
100 — 100 OEIE

4k+l jy2j+1
1)t
Vinaa = —COSO 3 5 oty
4k+1 2 4k+1 ivi
1My AL i
+3 jzo 2 T 2, 0
MKFL
101 1 t4
+ (100~ 100") 2 @y

Mt1 ojin
2D
0 (2j+1)!

L (sin(t) —cos(t)) + Le
+ (& + 4 cosr‘(t) (201 _ L r)sinh(t),

L (sin(t) —cos(t)) + Le
+ (382 — Lor) cosh(t) — (22 + %r) sinh(t).

in the sense dfl)-

1r (t) =

ir(t) =

So, the exact solution
differentiability is

"= % (sin(t) —cos(t)) + %e_t +coshit)u—sinh(t)u,
where[u]" = [%Jr 2%“ %_ 17(1)0@

The solution sefi(t)]" and its derivativeli’ (t)]" are
plotted in Figure 2. It can be shown that theses sets
satisfies the FIVP 30) and @1) with respect to(1)-
differentiability. On the other hand, it is clear from the
figure that for eacht € [0,1] and r € [0,1] the r-cut
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O

10 00

formula @3), the first few terms of the HAM series
solution for Eqgs. 84) and @5) are

i1 (t) =R(cos(t) — 1)+ (% + 5r) ft,

i1 (t) = A(cos(t) — 1) + (395 — 15o7) T,

i2(t) =R(cos(t) - 1) (% 7007 it
+R? (cos(t )+sm — 1)+ (35— =of) P2t
+ (B +dnFe

ir2(t) =R(cos(t) — 1) + (% + %r) At
+ R (cos(t )+S|n( 1)+ (45 — 55 ) Pt

+ (28— =007) P2
Similarly to the previous discussion, if we set the
auxiliary parameteh = —1, then the kth, (4k + 1)th,
(4k4-2)th, and (4k + 3)th-truncated series of the HAM
solution ofi, (t) andi, (t) are as follows:

4k 4k i+2j
R N L W e )
Y, =3 s Sl éJZ 2!

w@r 2 ;
4K qyig Dl
3F g §
= %o
4k 12+l K 4ig2i
. 1 1 ¢ (Dt
Wi, (V) = 2]:0 21+1 2,2, @
4k 4k j
1 ¢ (D 101 2 ('t
+3 T+ (156~ 00") >
j=0 j=0
Vi, sia (t) = —cos(t)
A1, 2] ki1
Fig. 2: The solution]i (t)]" and its derivativdi’ (t)]" of Egs. B2) +1 f % +1 ay (—;)_'52'
and B3): lower surfaces denote thg(t) andi/ (t), while upper = 2o @)
surfaces denote thg(t) andi’ (t). 1 ®EL i g1\ L (gt
(0 andint +3 3 St (ErE) 3 S
j=0 j=0
representation of the solution and its derivative are valid w7r74k+1( )= 74(;015(0 et
level sets. In fact these results are in agreement with Case 41 L A I G UG
| of Algorithm 3.1. 25 @0 T 2,5, @)
4k+1 ivi 4k+1
_ 1 (-1t | s100 1 =yt
Case II._The_ system of the ODEs corresponding to +3 2 + (Too—foor) ) T
(2)-differentiability is: 1= =
il (t) = —i, (t) +sin(t), a0 Wi, 4., (1) = sin(t) — cos(t)
_ _ 4k+-2 j+2j+1 4k+2 2
=/ T . 1 (,1)lt I+ 1 (,1)lt J
i (t) = —ir () +sin(t), -3 jZO i+ +3 jgo 2n
subject to the initial conditions 12 it o 1 M2yt
) +3 i+ (54 5") T
j=0 j=0
Iy (O) = 55 + 75r, (35)
0= 1 U ©) =Sin(0) ~cOS(Y)
_ 1Py A2y
As in the previous, if we select the initial guesses 25 @t T2 @)
approximations  as i(t) = 22 + Zr and V2 Cpi qor 2
iro(t) = 1% — -Lr, then according to the iteration t2 % + (100~ 100") 0 T
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Case |.The system of the ODEs corresponding 1¢-
differentiability is:

L3 it AKE3 g o) X (t) =sinh(tx; (1)), (38)
22 @hRDr 2.2 @) X (t) = sinh(tx (t))
2j:0<1+- =g X () = ,
13 i K43,
+3 3 (’}?J“ +(Bin 3 ! }?J“, subject to the initial conditions
j=0 7 j=0 ~
Xr(o):_%vl_r» (39)
0 0) = SN % (0) = $VI-T.
AK+3  4\je2j+l 4k+3 12 )
—% 2 ( (2:1)! — % JZO ( é)j;! According to Egs.15) and @2), we have
AK+3 0 4y AK+3 i —
+% ‘ZO ( }?t + (%— ﬁl’) 2 ( }?t ) UXrm (Yr,m—l (1), Xr,m—l(t))
1= 1= _dy (t)— 1 ™ Lsinhta, (t;q))
; . . . ot rm 1 (m—1)! g1 0’
It is clear that in all cases the analytic approximate a
solutions of Eqgs.34) and @5) agree well with the exact 0% m (Yrm—l(t) ?r m_1(t))
solutions AT T o
deo 1 0™ Lsinh(td (t;q))
i (1) = gXrm-1(t) — (m—1)! agn1T .
- —
= 3(sin(t) —cos(t)) +3e '+ (5 + r)e B d
ir (1) where @, (t;q) and @, (t;q) are unknown functions to be
= 1 (sin(t) —cos(t)) + st + (1% — .r) et determined. Assuming that the |n|t|al guesses
apprOX|mat|ons have the form o(t) = \/ r and

So, the exact solution in the sense dR)-

differentiability is Rro(t) = 2\/ —r. Then according to the iteration

formula 23), we have

. 1 . 1 _
I (t) = é (Sm(t) - COS(t)) + éeﬁt + e7tu7 xl,m(t) = X1m (t) =0,m= 07 1 27 <N,
and forr € [0,1) the 6th-truncated series of the HAM
where[u]" = [22 + 51, 188 — Lor] [0.1)

solution ofy, (t) andx; (t) for Egs. 88) and @9) are
In most real-life situations, the differential equation

that models the uncertainty problem is too complicated to Wy (): 2\/ r+ =L ZOH sml”?( \/1—rt)

solve exactly, and there is a practical need to approximate _[-10+ 2y ( 4ot )

the solution. In the next example, the fuzzg)- and B (1 3
(2)-differentiable exact solutions cannot be found +4(3+r)cosh(3v/I—rt) —2cosh(v/I—rt)
analytically. +2V/1-rt (- 4smh( V1=rt)+sinh(vI=rt))]
; ; ; . _ o2 _ 2 2
Example 3.3.Consider the following nonlinear FIVP: 2\/7[ 2ht< —rt= — 2hrt
X (t) = sinh(tx(t)), 0< t < 15, (36) +(8r—8h— 8>S'”hz( VI=T) + ],
subject to the fuzzy initial condition Wy (1) = 3vVI- smhz( vi=rt)

X(0) = u, 37) +m[ 10+t2 r(4+t?)

+4(3+r)cosh(3v/I—rt) —2cosh(v/I—rt)
whereu(s) = max(0,1 - 45%), s€ R. +2y/I=rt(~4sinh(1y/I—Tt) + sinh(vI—1t))]
According to Zadeh's extension principal and 4 [t? — 2Rt? — rt? — 2Rrt?

Nguyen’s theorem, it is clear that 2y/(1-1)
9 +(8r —8h—8)sint? (3v/I—rt) +...].

sinh(tx(t))]" = [sinh(tx, (t)),sinh(tX; (t))].

| (@) = [sinh(tx (1)), (t% ) The HAM yields rapidly convergent series solution by
This is due to the fact that sirfh) is strictly increasing using a few iterations. For the convergence of the HAM,
function on(—oo, c0) andt > 0. the reader is referred td®]. According to p2], it is to be

For finding the fuzzy (1)- and (2)-approximate noted that the series solution contains the auxiliary

solutions of FIVP 86) and @7) which are corresponding parametem for eachr € [0,1] which provides a simple
to their parametric form, we have the following two casesway to adjust and control the convergence of the series
of ODEs system: solution. In fact, it is very important to ensure that the
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Table 1: The valid region of the auxiliary parametederived from Figure 3.
Component r=0 r=0.25 r=05 r=0.75 r=1
X (1) (-13,-07) (-135-07) (—14,-08) (—1.45-06) (—e0,0)
X (t) (-1.3,-0.7) (-1.35,-0.7) (—1.4,-0.6) (—1.45,-0.6) (—00,00)

Table 2: The optimal values of the auxiliary paramekefor x, (t) andx; (t) whenr =0,r = 0.5, andr = 0.99.

X X (t) Xo(t) Xp5(t) Xo.5(t) X0.99(t) X0.99 (t)

0.1 —1.0000000013 —1.0000000013 —1.0000000013 —1.0000000013 —0.5410000001 —0.5410000001
0.3 —1.0130452602 —1.0130452602 —1.0129118647 —1.0129118647 —0.5498010110 —0.5498010110
0.5 —1.0354529642 —1.0354529642 —1.0351219648 —1.0351219648 —0.5587990098 —0.5587990098
0.7 —1.0766553248 —1.0766553248 —1.0719138996 —1.0719138996 —0.5988990098 —0.5988990098
09 —11508810120 —1.1508810120 —1.1305725598 —1.1305725598 —0.6320000000 —0.6320000000
11 12958134301 —1.2958134301 12284778981 —1.2284778981 —0.6756323170 —0.6756323170
13 —1.6162720895 -1.6162720895 —1.4116937600 —1.4116937600 —0.7357323170 —0.7357323170
15 —2.2546652710 —2.2546652710 —1.8260061609 —1.8260061609 —0.7931021973 —0.7931021973

Table 3: The value of Ex; (t)| andx, (t) ath= —1 andh = h* whenr = 0.5.

X EXOB(tvﬁ: _1) EXOAS(tvﬁ:ﬁ*) XO.S(LHZH*)
0.1 3.67898x 1012 8.72864x 1013 —0.35532577
0.3 2.47288x 10-10 1.99886x 1012 —0.36984328
0.5 1.32890x 10~/ 2.65782x 1012 —0.40078310
0.7 0.68787x 106 1.16784x 10711 —0.45250017
0.9 2.74747x 1074 4.95293x 1012 —0.53329974
11 4.54620x 10°3 4.98122x 10711 —0.65948125
13 5.55665x 102 4.06397x 1011 —0.86927464
15 6.13456x 1071 3.34371x 10710 —1.29064532

series formulaZ0) are convergent. To this end, we have By using the first derivative test, we can easily determine
plotted h-curves of x(0) and X (0) which are the values ohfor which the SK, and SE; are minimum.
corresponding to the 6th-order approximation of the |n Table 2, the optimal values df, denoted byf*,
HAM in Figure 3whemr = 0,r =0.25,r =0.5,r =0.75,  whenr = 0,r = 0.5, andr = 0.99 for the two components
andr = 1. ' o % (t) andx; (t) are tabulated.

_Again, according to thesé@-curves, it is easy to In Tables 3 and 4, the absolute residual erfess (t)|
discover the valid region ofi which corresponds to the gpq IEX; (t)| have been calculated for the varidus the
line segment nearly parallel to the horizontal axis. Thesejependent intervdd, 1.5] ath = —1 andi = i* whenr =
valid regions have been listed in Table 1 for the various o5 From the tables, it can be seen that the HAM provides
in [0,1]. Furthermore, these valid regions ensure us the,s with the accurate approximate solution for E@S) (
convergence of the obtained series. _ and @9). Also, we can note that the approximate solutions

To determine the optimal values of in a  more accurate at the optimal valuefof
neighborhood otp, an error analysis is performed. We In Table 5, the absolute errot&x, (t)| and |EX: (t)|

substitute the approximationg, . (t) and i ((t) N0 5y6 peen calculated for the various [0,1] ath = —1
Eqg. 38) and obtain the residual functionxEand B as  andh = * whent = 1.5. From the table, it can be seen
follows: that the HAM at the optimal valug® provides us with the
less absolute residual error for EQ88)( and @9) in
Ex (t,0) = Gy, (1) *Sinh(twm (t)) : comparison witth = —1.
Our next goal is to show how the optimal valbé of
EX (t,7) = §Ws (1) —sinh(thﬁ (t)) : the auxiliary parameterh affects the approximate
solutions. Tables 6 and 7, show a comparison between the
Following [63)], we define the square residual error for approximate solutions of the HAM &t= —1 andh = h*
approximation solutions on the intenja) — €,to + €] as together with RKM of order four and PCM of the same
order forx, (t) andX, (t), respectively. Throughout these
SEx, (h) = ﬁgoj; (Ex, (t,h))2dt, tables, the step size for the RKM and PCM is fixed 4t 0
The starting values of the PCM obtained from the
SEX, (M) = [127¢ (Ex: (t,7))?dt. classical fourth-order RKM.
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Table 4: The value of EX; (t)| andx, (t) ath= —1 andh = h* whenr = 0.5.
X Exos (t,h=—1) Exos (t,h=h") Xos (t,hr=h")
0.1 3.67898x 10 12 8.72864x 10713 0.35532577
0.3 2.47288x 1010 1.99886x 1012 0.36984328
0.5 1.32890x 10~ 2.65782x 10712 0.40078310
0.7 0.68787x 1076 1.16784x 1011 0.45250017
0.9 2.74747x 104 4.95293x 1012 0.53329974
11 4.54620x 1073 4.98122x 10711 0.65948125
13 5.55665x 102 4.06397x 10711 0.86927464
15 6.13456x 1071 3.34371x 10710 1.29064532
Table 5: The value of Ex; (t)| and|EX, (t)| ath= —1 andh = i* whent = 1.5 for different values of.
r A [Ex, (15,hi=—1)] [EX (1.5,hi= —1)] [Ex, (1.5, = "] [Ex, (1.5, = h¥)]
0 —2.2546652710 413980 4613980 197757x 1079 1.97757x 1079
025  —2.0578582473 B29180 1829180 765811x 1010 7.65811x 1010
0.5 —1.8260061609 ®13456 0613456 334371x 10710 3.34371x 10710
075  —1.5709161475 135063 0135063 124671x 1072 1.24671x 107°
099  —0.7931021973 026892 0026892 115143x 1078 1.15143x 1078
1 arbitrary 0 0 0 0
Table 6: The approximate solution of (t) at various in [0, 1] whent = 1.5.
r PCM RKM HAM (A= —1) HAM (A=R")
0 —2.77313316 —2.87698498 —1.97719903 —2.09095862
0.25 —1.83692573 —1.83614143 —1.60002889 —1.70174542
0.5 —1.29653388 —1.29547421 —1.22481988 —1.29064532
0.75 —0.83032636 —0.83009093 —0.81477887 —0.83483167
0.99 —0.15443177 —0.15442550 —0.13553931 —0.14478679
1 0 0 0 0

However, it is evident from Tables 6 and 7 that the bothand forr € [0,
approximate nodal values corresponding to the 6th-ordesolution ofx; (t ) andx; (t) for Egs. @0) and @1) are
approximation HAM solution ok, (t) andx; (t) are differ

by the sign only. That ig, (t

)=

—X%; (t) for eacht € [0, 1.5

1) the 6th-truncated series of the HAM

andr € [0,1]. On the other hand, if we set the auxiliary wx,s( )=—3V1- S'”'”?( Vi-rtt)
parameter$i = —1, then the HAM solution is the same 2h° — [ 18+4r + (1_ r)t2
as the Adomian decomposition solutiod¥]65] and the ( n?
homotopy perturbation solutioG]. 4(r —5)cosh(3v1-rt) - ZCOS}‘(V )
C_ase II._Th_e_ system of the ODEs corresponding to I Vi (Z[t(;ﬁnrhi r~ 6ﬁt) 1)?25|nh( ' t))
(2)-differentiability is: Zm p
X, (t) = sinh(tx (1)), ) + (8 —8N—g)sin? (3vI—rt) +..],
% (t) = sinh(tx, (t)),
. o y Py (1) = 3vVI—1+ 20 20 sini? (3v/1-rt)
subject to the initial conditions o 1844 (1 2
+ 21844+ (LT
X (0)=—3vi-T, Ve
2 (41) —4(r —5)cosh(3v/1—rt) —2cosh(vI—rt)
X (0) = 3vI-. +v1 (2tsinh(\/ rt) —8sinh(3v1-rt))
2
As in the previous case, if we select the initial guesses 2,/ [(Zﬁr +r—6n—1jt
approximations  as x(t) = —-3vI-r and + (8r SH 8)sint? (3v/I—rt) +...].

Xro(t) = %\/1— r, then according to the iteration formula

(23), we have

X1m (t) =X1,m (t)

=0,m=0,1,2,....n,

These results are plotted in Figure dhat —1 for the
two components solutions (t) andx; (t) together with
their derivativess, (t) and¥; (t). As the plots show, while
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Table 7: The approximate solution &f (t) at variousr in [0, 1] whent = 1.5.
r PCM RKM HAM (A= —1) HAM (A= Q")
0 277313316 287698498 197719903 209095862
0.25 183692573 183614143 160002889 170174542
0.5 129653388 129547421 122481988 129064532
0.75 083032636 (83009093 B1477887 (B3483167
0.99 015443177 Q15442550 (13553931 Q14478679
1 0 0 0 0
0.0002 p Xo(t) — e — . =
o . . _ Zos® “*f oo e
2,00 3% -15 -10 0.5 " e e T
<008a T T
F—— 7 % () B
, 277 e e ot e = e adneid | x(t) 0.2 04 06 08 10 12 R
X075(0) ’/, _______ e
F A -0.0006 f 02 R
RN T S — e
00008 000 xge(t)  peceeeemeemmeT e
xba:©) // o fos aaf I
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%o (0) 0.0010 ; Eal®)
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ey 0 . Sk ;
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Fig. 3: Theh-curves ofx; (0) andx; (0) which are corresponding

to the 6th-order approximation HAM solution gf (t) andx; (t)
for Egs. 88) and B9) whenr =0,r = 0.25,r = 0.5,r = 0.75,

andr = 1.

the truth valuer decreases, the component (t)

expanding to down for eache [0,1.5]. Meanwhile, the
componentX (t) expanding to up, but the solution

[X (1), % (t)] over[0,1.5] for eachr € [0,1] is a valid level
set. Similar conclusion can be achieved f¢r(t) and
% (t) with full agreement with Case Il of Algorithm 3.1.

7 Concluding remarks

Fig. 4: The 6th-truncated series of the HAM solution set
[% (t),% (t)] and its derivative[x; (t),x; (t)] for Egs. @0) and
(42) whenr =0,r =0.5, andr = 1.

HAM is powerful and efficient technique in finding

approximate solutions for linear and nonlinear FIVPs.
The proposed algorithm produced a rapidly convergent
series by choosing suitable values of the auxiliary
parameteh.

There are two important points to make here. First,
the HAM provides us with a simple way to adjust and
control the convergence region of the series solution by
introducing the auxiliary parametér Second, the results
obtained by the HAM are very effective and convenient in

The main concern of this work has been to propose arinear and nonlinear cases with less computational work.
efficient algorithm for the solution of FIVPs. The goal has This confirms our belief that the efficiency of our
been achieved by extending the HAM to solve this classtechnique gives it much wider applicability for general
of fuzzy differential equations. We can conclude that theclasses of linear and nonlinear problems.
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