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Abstract: In this paper, the exponential stability is investigated for a class of BAM neural networks with distributed delays and
nonlinear impulsive operators. By using Lyapunov functions and applying the Razumikhin technique, delay–independent sufficient
conditions ensuring the global exponential stability of equilibrium points are derived. These results can easily be utilized to design and
verify globally stable networks. An illustrative example is given to demonstrate the effectiveness of the obtained results.

Keywords: Impulsive BAM neural networks, Global exponential stability, Distributeddelays, Lyapunov method, Razumikhin
technique.

1 Introduction

Due to their wide range of applications in pattern
recognition, associative memory and combinatorial
optimization, bidirectional associative memory
(abbreviated by BAM) neural networks and their various
generalizations have attracted the attention of many
mathematicians, physicists and computer scientists in the
last two decades. A series of neural networks concerning
BAM models have been first proposed by Kosko in [1,2,
3]. These models are very general classes of neural
network models. Indeed, some famous ecological systems
and neural networks such as the Lotka–Volterra
ecological system and the Hopfield neural networks have
been under consideration.

In the design and applications of networks, it is of
prime importance to ensure that the designed neural
networks are stable. It should be noted that in both
biological and man–made neural networks the delays
occur due to the finite switching speed of the amplifiers
and communication time [4]. However, time delays may
lead to non–oscillation, divergence or instability which
may be harmful to the system [4,5,6]. Therefore, the
study of neural dynamics with the consideration of time
delays has become extremely important to manufacture
high quality neural networks. In the papers [7,8,9,10,11]

some various stabilities have been studied for BAM
neural networks with delays. The circuits diagram and the
connection pattern implementation for the delayed BAM
neural networks can be found in [10,11]. In reality,
nevertheless, it is desirable that the neural network not
only converges to an equilibrium point but also has a
convergence rate which is as fast as possible. It is to be
noted that the exponential stability gives a fast
convergence rate to the equilibrium point. Therefore, it is
crucial to determine the exponential stability and to
estimate the exponential convergence rate.

On the other hand, impulsive effect likewise exists in
a wide variety of evolutionary processes in which states
are changed abruptly at certain moments of time. Such
processes often appear in fields as medicine and biology,
economics, mechanics, electronics and
telecommunications, etc. As artificial electronic systems,
neural networks such as Hopfield neural networks,
bidirectional neural networks and recurrent neural
networks are best described under impulsive perturbations
which can affect dynamical behaviors of the systems just
as time delays. Therefore, it would be more appropriate to
consider both impulsive and delay effects on the stability
of neural networks. Yet, few results have been developed
in this direction for neural networks [12,13,14,18,19,20,
21,22,24]. Although the use of constant fixed delays in
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models of delayed feedback provides a good
approximation in simple circuits consisting of only a
small number of cells, neural networks usually have a
spatial extent due to the presence of a multitude of
parallel pathways with a variety of axon sizes and lengths.
Thus, it is common to have a distribution of propagation
delays. Recently, some authors have investigated the
stability of BAM neural networks with distributed delays
but without impulses, see for instance the papers [11,15,
25,26] and the references quoted therein.

In this paper, inspired by Song and Cao in [25], we
formulate a BAM neural network model with distributed
delays and nonlinear impulsive operators. By means of
piecewise continuous Lyapunov functions [17] and the
Razumikhin technique [13,16,22,23] we establish criteria
for global exponential stability of the equilibrium point.
The conditions are independent of the form of specific
delays and have important significance in both theory and
applications. Thus, the results improve the ones
established in the earlier literature. An example is given
to demonstrate the effectiveness of the results.

2 The system, notations and definitions

Let R+ = [0,∞), Rn denote then–dimensional Euclidean

space and‖y‖ =
( n

∑
j=1

y2
j

)1/2
define the norm ofy ∈ R

n.

Consider the following BAM impulsive system with
distributed delays
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


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
















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


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
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ẋi(t) =−cixi(t)+
n

∑
j=1

a ji f j (y j(t))

+
n

∑
j=1

w ji

∫ t

−∞
K ji (t −s) f j (y j(s))ds+ Ii , t 6= tk,

∆xi(tk) = Tik(xi(tk)), k= 1,2, . . . , (2.1)

ẏ j(t) =−d jy j(t)+
m

∑
i=1

bi j gi (xi(t))

+
m

∑
i=1

hi j

∫ t

−∞
Ni j (t −s)gi (xi(s))ds+Jj , t 6= tk,

∆y j(tk) =U jk(y j(tk)), k= 1,2, . . . ,

for t ≥ 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n wherexi(t) and
y j(t) correspond to the states of thei−th unit and j−th
unit, respectively, at timet; ci and d j are positive
constants;K ji and Ni j are the delay kernels;w ji and hi j
are the connection weights;f j and gi are the activation
functions;Ii andJj , denote the external inputs;Tik andU jk
are the abrupt changes of the states at the impulsive
moments tk; by ∆xi(tk) and ∆y j(tk) we mean the
differences xi(tk + 0) − xi(tk) and y j(tk + 0) − y j(tk),
respectively, and the sequence 0< t1 < t2 < .. . is strictly
increasing such that lim

k→∞
tk = ∞. The numbers

xi(tk) = xi(tk − 0) and xi(tk + 0) are, respectively, the
states of thei−th unit before and after the impulse

perturbation at the moment tk; the numbers
y j(tk) = y j(tk − 0) and y j(tk + 0) are, respectively, the
states of the j−th unit before and after the impulse
perturbation at the momenttk.

Let ϕ ∈ PCB[(−∞,0],Rm], ϕ = (ϕ1,ϕ2, . . . ,ϕm)
T and

φ ∈ PCB[(−∞,0],Rn], φ = (φ1,φ2, . . . ,φn)
T where

PCB[(−∞,0],Rm] is the class of all piecewise continuous
and bounded on(−∞,0] functions with points of
discontinuity of the first kind att = tk, k = 1,2, . . ., which
they are continuous from the left. Denote by

col(x(t),y(t)) = col(x(t;0,ϕ),y(t;0,φ)) ∈ R
m+n,

where

col
(

x(t;0,ϕ),y(t;0,φ)
)

=
(

x1(t;0,ϕ), . . . ,xm(t;0,ϕ),y1(t;0,φ), . . . ,yn(t;0,φ)
)T

the solution of system (2.1), satisfying the initial
conditions






xi(s;0,ϕ) = ϕi(s), −∞ < s≤ 0, i = 1,2, . . . ,m,
y j(s;0,φ) = φ j(s), −∞ < s≤ 0, j = 1,2, . . . ,n,
xi(0+,0,ϕ) = ϕi(0), y j(0+,0,φ) = φi(0).

(2.2)

The solution
col(x(t),y(t)) = col(x(t;0,ϕ),y(t;0,φ)) ∈ R

m+n of
problem (2.1), (2.2) is a piecewise continuous function
[22] with points of discontinuity of the first kind att = tk,
k = 1,2, . . ., which it is continuous from the left, i.e., the
following relations are valid

{

xi(tk+0) = xi(tk)+Tik(xi(tk)), i = 1,2, . . . ,m,
y j(tk+0) = y j(tk)+U jk(y j(tk)), j = 1,2, . . . ,n. (2.3)

Throughout the paper, we make the following
assumptions:

H2.1 The signal functions f j and gi (i = 1,2, ...,m;
j = 1,2, ...,n) are Lipschitz continuous, that is, there
exist constantsL j > 0 andMi > 0 such that

∣

∣

∣
f j(u)− f j(v)

∣

∣

∣
≤ L j |u−v|,

∣

∣

∣
gi(u)−gi(v)

∣

∣

∣
≤ Mi |u−v|

for all u,v∈ R, i = 1,2, . . . ,m, j = 1,2, . . . ,n.
H2.2 The delay kernelsK ji ,Ni j : R+ → R+ are real valued

piecewise continuous nonnegative functions and there
exist positive numbersr ji andsi j such that

∫ t

−∞
K ji (t−s)ds≤ r ji <∞,

∫ t

−∞
Ni j (t−s)ds≤ si j <∞

for all t ≥ 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n.
H2.3 The functionsTik and U jk are continuous onR,

i = 1,2, . . . ,m, j = 1,2, . . . ,n, k= 1,2, . . . .
H2.4 0= t0 < t1 < t2 < .. . < tk < tk+1 < .. . andtk → ∞ as

k→ ∞.
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H2.5 There exists a unique equilibrium

col(x∗,y∗) = col(x∗1,x
∗
2, ...,x

∗
m,y

∗
1,y

∗
2, . . . ,y

∗
n)

of the system (2.1) such that

cix
∗
i =

n

∑
j=1

a ji f j(y
∗
j )+

n

∑
j=1

w ji

∫ t

−∞
K ji (t−s) f j

(

y∗j
)

ds+ Ii ,

d jy
∗
j =

m

∑
i=1

bi j gi(x
∗
i )+

m

∑
i=1

hi j

∫ t

−∞
Ni j (t−s)gi (x

∗
i )ds+Jj ,

and

Tik(x
∗
i ) = 0, U jk(y

∗
j ) = 0,

wherei = 1,2, . . . ,m, j = 1,2, . . . ,n, k= 1,2, . . . .

The problem of existence and uniqueness of equilibrium
states of BAM neural networks with distributed delays
without impulses have been investigated in [25]. Efficient
sufficient conditions for the existence and uniqueness of
an equilibrium of impulsive BAM neural networks with
constant delays are given in [18,24].

Definition 2.1.The equilibrium
col(x∗,y∗) = col(x∗1,x

∗
2, . . . ,x

∗
m,y

∗
1,y

∗
2, . . . ,y

∗
n) of system

(2.1) is said to beglobally exponentially stable, if there
exist constantsη > 0 andΛ ≥ 1 such that

‖x(t)−x∗‖+‖y(t)−y∗‖≤Λe−ηt
(

‖ϕ−x∗‖∞+‖φ −y∗‖∞

)

for t ≥ 0, where

‖ϕ −x∗‖∞ = sup
s∈(−∞,0]

‖ϕ(s)−x∗‖, ϕ ∈ PCB[(−∞,0],Rm],

and

‖φ −y∗‖∞ = sup
s∈(−∞,0]

‖φ(s)−y∗‖,φ ∈ PCB[(−∞,0],Rn].

Let Gk = (tk−1, tk)×R
m×R

n, k = 1,2, . . .; G = ∪∞
k=1Gk.

In the further considerations, we shall use piecewise
continuous auxiliary functions [17], which belong to the
class V0 = {V : [0,∞) × R

m × R
n → R+ : V ∈

C[G,R+], t ∈ [0,∞),V is locally Lipschitzian in
(x,y) ∈ R

m × R
n on each of the sets Gk,

V(tk − 0,x,y) = V(tk,x,y) and
V(tk+0,x,y) = lim

t→tk
t>tk

V(t,x,y) exists}.

For V ∈ V0 and for any(t,x,y) ∈ [tk−1, tk)× R
m × R

n,
k = 1,2, . . ., the upper right–hand derivative
D+
(2.1)V(t,x(t),y(t)) of the function V with respect to

system (2.1) is defined by

D+
(2.1)V(t,x(t),y(t)) =

limsup
h→0+

1
h

[

V(t +h,x(t +h),y(t +h))−V(t,x(t),y(t))
]

.

For the sake of convenience, we shall also use the
following notations in the sequel

x(t) = (x1(t),x2(t), . . . ,xm(t))
T ,

y(t) = (y1(t),y2(t), . . . ,yn(t))
T ,

f (y(s)) = ( f1(y1(s)), f2(y2(s)), . . . , fn(yn(s)))
T ,

g(x(s)) = (g1(x1(s)),g2(x2(s)), . . . ,gm(xm(s)))
T ,

C= diag(c1,c2, . . . ,cm), D = diag(d1,d2, . . . ,dn),

A= (a ji )n×m, B= (bi j )m×n, R= (r ji )n×m, S= (si j )m×n,

M = diag(M1,M2, . . . ,Mm), L = diag(L1,L2, . . . ,Ln),

W = (w ji )n×m, H = (hi j )m×n,

I = (I1, I2, . . . , Im)
T , J = (J1,J2, . . . ,Jn)

T ,

λmin(P) is the smallest eigenvalue of matrixP,

λmax(P) is the greatest eigenvalue of matrixP,

and

‖P‖=
[

λmax(P
TP)
]

1
2 is the norm of matrixP.

3 The main result

Theorem 3.1.Assume that

1. ConditionsH2.1–H2.5hold.
2. There exist symmetric positively definite matrices

Pm×m and Qn×n such that

‖A‖‖L‖‖P‖ + ‖B‖‖M‖‖Q‖

+ ‖W‖‖R‖‖L‖‖P‖
(λmax(P)+λmin(Q)

λmin(Q)

)

+ ‖H‖‖S‖‖M‖‖Q‖λmax(P)
λmin(P)

< µ ,

and

‖A‖‖L‖‖P‖ + ‖B‖‖M‖‖Q‖

+ ‖H‖‖S‖‖M‖‖Q‖
(λmin(P)+λmax(Q)

λmin(P)

)

+ ‖W‖‖R‖‖L‖‖P‖λmax(Q)

λmin(Q)
< ν ,

whereµ ,ν = const> 0.
3. The functions Tik and Ujk are such that

Tik(xi(tk)) =−γik(xi(tk)−x∗i ), 0< γik < 2,

and

U jk(y j(tk)) =−δ jk(y j(tk)−y∗j ), 0< δ jk < 2,

for i = 1,2, . . . ,m, j = 1,2, . . . ,n, k= 1,2, . . . .
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Then the equilibrium col(x∗,y∗) o f (2.1) is globally
exponentially stable.

Proof. Set u(t) = x(t) − x∗ and v(t) = y(t) − y∗ and
consider the following system































































u̇i(t) =−ciui(t)+
n

∑
j=1

a ji [ f j(y
∗
j +v j(t))− f j(y

∗
j )]

+
n

∑
j=1

w ji

∫ t

−∞
K ji (t −s)[ f j(y

∗
j +v j(s))− f j(y

∗
j )]ds, t 6= tk,

v̇ j(t) =−d jv j(t)+
m

∑
i=1

bi j [gi(x
∗
i +ui(t))−gi(x

∗
i )] (3.1)

+
m

∑
i=1

hi j

∫ t

−∞
Ni j (t −s)[gi(x

∗
i +ui(s))−gi(x

∗
i )]ds, t 6= tk,

∆ui(tk) = Iik(ui(tk)), ∆v j(tk) = Jjk(v j(tk)), k= 1,2, . . . ,

where
Iik(ui(tk)) = Tik(ui(tk)+x∗i )

and
Jjk(v j(tk)) =U jk(v j(tk)+y∗j ),

for i = 1,2, . . . ,m, j = 1,2, . . . ,n, k= 1,2, . . . .
We define a Lyapunov function

V(t,u(t),v(t)) = uT(t)Pu(t)+vT(t)Qv(t).

By virtue of condition 3 of Theorem 3.1, we obtain for
t = tk

V(tk+0,u(tk+0),v(tk+0))

= uT(tk+0)Pu(tk+0)+vT(tk+0)Qv(tk+0)

= ((1− γ1k)u1(tk), . . . ,(1− γmk)um(tk))
T

× P((1− γ1k)u1(tk), . . . ,(1− γmk)um(tk))

+ ((1−δ1k)v1(tk), . . . ,(1−δnk)vn(tk))
T

× Q((1−δ1k)v1(tk), . . . ,(1−δnk)vn(tk))

< uT(tk)Pu(tk)+vT(tk)Qv(tk)

= V(tk,u(tk),v(tk)), k= 1,2, . . . . (3.2)

Let t ≥ 0 and t 6= tk, k = 1,2, . . .. Then from H2.1 and
H2.2, for the upper right–hand derivative of the function
V D+

(3.1)V(t,u(t),v(t)) with respect to system (3.1) we get

D+
(3.1)V(t,u(t),v(t)) = u̇T(t)Pu(t)+uT(t)Pu̇(t)

+ v̇T(t)Qv(t)+vT(t)Qv̇(t)

≤
(

−Cu(t)+ALv(t)+WRL sup
−∞<s≤t

v(s)
)T

Pu(t)

+ uT(t)P
(

−Cu(t)+ALv(t)+WRL sup
−∞<s≤t

v(s)
)

+
(

−Dv(t)+BMu(t)+HSM sup
−∞<s≤t

u(s)
)T

Qv(t)

+ vT(t)Q
(

−Dv(t)+BMu(t)+HSM sup
−∞<s≤t

u(s)
)

.

Since the matricesCP+PC andDQ+QD are positively
definite, then there existµ > 0 andν > 0 such that

D+
(3.1)V(t,u(t),v(t))≤−µ‖u(t)‖2−ν‖v(t)‖2

+ 2‖A‖‖L‖‖P‖‖v(t)‖‖u(t)‖
+ 2‖B‖‖M‖‖Q‖‖v(t)‖‖u(t)‖
+ 2‖P‖‖W‖‖R‖‖L‖ ‖ sup

−∞<s≤t
v(s)‖ ‖u(t)‖

+ 2‖H‖‖S‖‖M‖‖Q‖ ‖ sup
−∞<s≤t

u(s)‖ ‖v(t)‖.

Using the inequality 2|a||b| ≤ a2 + b2, we get for
t 6= tk, k= 1,2, . . . .

D+
(3.1)V(t,u(t),v(t))≤−µ‖u(t)‖2−ν‖v(t)‖2

+
(

‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖
)(

‖v(t)‖2+‖u(t)‖2
)

+ ‖P‖‖W‖‖R‖‖L‖
(

‖ sup
−∞<s≤t

v(s)‖2+‖u(t)‖2
)

+ ‖H‖‖S‖‖M‖‖Q‖
(

‖ sup
−∞<s≤t

u(s)‖2+‖v(t)‖2
)

. (3.3)

Since for the functionV(t,u(t),v(t)), we have

λmin(P)‖u(t)‖2+λmin(Q)‖v(t)‖2

≤ uT(t)Pu(t)+vT(t)Qv(t)

≤ λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2, t ≥ 0, (3.4)

then foru(t) andv(t) that satisfy the Razumikhin condition

V(s,u(s),v(s))≤V(t,u(t),v(t)), −∞ < s≤ t,

we obtain

λmin(P)‖u(s)‖2 + λmin(Q)‖v(s)‖2

≤ uT(s)Pu(s)+vT(s)Qv(s)

≤ uT(t)Pu(t)+vT(t)Qv(t)

≤ λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2,

and hence























‖u(s)‖2 ≤ λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2

λmin(P)
,

‖v(s)‖2 ≤ λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2

λmin(Q)
,

(3.5)

for −∞ < s≤ t, t ≥ 0.
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From (3.3) and (3.5), we obtain
D+
(3.1)V(t,u(t),v(t))≤−µ‖u(t)‖2−ν‖v(t)‖2

+ (‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖)(‖v(t)‖2+‖u(t)‖2)

+ ‖P‖‖W‖‖R‖‖L‖

×
(

λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2

λmin(Q)
+‖u(t)‖2

)

+ ‖H‖‖S‖‖M‖‖Q‖

×
(

λmax(P)‖u(t)‖2+λmax(Q)‖v(t)‖2

λmin(P)
+‖v(t)‖2

)

=

[

−µ +‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖

+ ‖P‖‖W‖‖R‖‖L‖
(

λmax(P)+λmin(Q)

λmin(Q)

)

+ ‖H‖‖S‖‖M‖‖Q‖λmax(P)
λmin(P)

]

‖u(t)‖2

+

[

−ν +‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖

+ ‖H‖‖S‖‖M‖‖Q‖
(

λmin(P)+λmax(Q)

λmin(P)

)

+ ‖P‖‖W‖‖R‖‖L‖λmax(Q)

λmin(Q)

]

‖v(t)‖2, t 6= tk, k= 1,2, . . . .

From condition 2 of Theorem 3.1, we derive fort 6= tk, k=
1,2, . . .
D+
(3.1)V(t,u(t),v(t)) < −p‖u(t)‖2−q‖v(t)‖2

≤ −k1

(

‖u(t)‖2+‖v(t)‖2
)

, (3.6)

wherep,q= const> 0 andk1 = min{p,q}> 0.

Using (3.4), we get

α
(

‖u(t)‖2 + ‖v(t)‖2
)

≤V(t,u(t),v(t))

≤ β
(

‖u(t)‖2+‖v(t)‖2
)

, t ≥ 0, (3.7)

where

α =min
{

λmin(P),λmin(Q)
}

, β =max
{

λmax(P),λmax(Q)
}

.

Then, from the inequalities (3.7), (3.6) and (3.2), we obtain

V(t,u(t),v(t))≤ e−
k1t
β V(0,u(0),v(0))

for all t ≥ 0.

Since
α(‖u(t)‖2+‖v(t)‖2) ≤ V(t,u(t),v(t))

≤ e−
k1t
β V(0,u(0),v(0))

≤ e−
k1t
β β (‖u(0)‖2+‖v(0)‖2), t ≥ 0,

then

‖u(t)‖2+‖v(t)‖2 ≤ e−
k1t
β

β
α

(

‖u(0)‖2+‖v(0)‖2
)

, t ≥ 0.

Using the inequalities

(a2+b2)1/2 ≤ a+b≤
√

2(a2+b2)1/2,

we get

||u(t)||+ ||v(t)|| =
( m

∑
i=1

u2
i (t)
)1/2

+
( n

∑
j=1

v2
j (t)
)1/2

≤
√

2
( m

∑
i=1

u2
i (t)+

n

∑
j=1

v2
j (t)
)1/2

=
√

2
(

‖u(t)‖2+‖v(t)‖2
)1/2

≤
√

2
(

e−
k1t
β

β
α
(

‖u(0)‖2+‖v(0)‖2)
)1/2

≤
√

2β
α

e−
k1t
2β
(

‖u(0)‖+‖v(0)‖
)

, t ≥ 0

or

‖x(t)−x∗‖+‖y(t)−y∗‖≤Λe−ηt
(

‖ϕ−x∗‖∞+‖φ −y∗‖∞

)

,

for t ≥ 0, whereΛ =
√

2β
α andη = k1

2β . This completes
the proof of the theorem.

4 An example

Let t ≥ 0. Consider the impulsive BAM neural network


























































ẋi(t) =−cixi(t)+
2

∑
j=1

a ji f j (y j(t))

+
2

∑
j=1

w ji

∫ t

−∞
K ji (t −s) f j (y j(s))ds+ Ii , i = 1,2, t 6= tk,

ẏ j(t) =−d jy j(t)+
2

∑
i=1

bi j gi (xi(t)) (4.1)

+
2

∑
i=1

hi j

∫ t

−∞
Ni j (t −s)gi (xi(s))ds+Jj , j = 1,2, t 6= tk,

with impulsive perturbations of the form






































x1(tk+0) =
0.125+x1(tk)

2
, k= 1,2, . . . ,

x2(tk+0) =
0.25+x2(tk)

3
, k= 1,2, . . . ,

y1(tk+0) =
0.25+2y1(tk)

3
, k= 1,2, . . . ,

y2(tk+0) =
0.75+2y2(tk)

5
, k= 1,2, . . . ,

(4.2)

where the impulsive moments are such that 0< t1 < t2 <
.. . , lim

k→∞
tk = ∞, and
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K ji = Ni j = e−t , i, j = 1,2,

f j(u) = gi(u) =
1
2
(|u+1|− |u−1|), i, j = 1,2, u∈ R,

x(t) =

(

x1(t)
x2(t)

)

, y(t) =

(

y1(t)
y2(t)

)

, C=

(

9 0
0 9

)

,

D =

(

6 0
0 6

)

, A=

(

1/2 1/2
1/2 −1/2

)

, B=

(

1/3 1/3
−1/3 1/3

)

,

W =

(

1/2 −1/2
1/2 1/2

)

, H =

(

−1/3 1/3
1/3 1/3

)

,

and

I =

(

I1
I2

)

, J =

(

J1
J2

)

.

Upon substitutingI1 = I2 = 0.875 andJ1 = J2 = 1.416667,
we find that system (4.1), (4.2) has an equilibriumx∗1 =
x∗2 = 0.125, y∗1 = y∗2 = 0.25.

Let P =

(

2 0
0 2

)

and Q =

(

1 0
0 1

)

. Since

L = M =

(

1 0
0 1

)

, R = S =

(

1 1
1 1

)

, then

CP+ PC =

(

36 0
0 36

)

, DQ+ QD =

(

12 0
0 12

)

and for

µ = 36 andν = 12, we have

−µ +‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖

+ ‖W‖‖R‖‖L‖‖P‖
(

λmax(P)+λmin(Q)

λmin(Q)

)

+ ‖H‖‖S‖‖M‖‖Q‖λmax(P)
λmin(P)

=−36+8
√

2< 0

and

−ν +‖A‖‖L‖‖P‖+‖B‖‖M‖‖Q‖

+ ‖H‖‖S‖‖M‖‖Q‖
(

λmin(P)+λmax(Q)

λmin(P)

)

+ ‖W‖‖R‖‖L‖‖P‖λmax(Q)

λmin(Q)
=−12+

13
3

√
2< 0.

Moreover, one can easily deduce thatγ1k = 1
2, γ2k = 2

3,
δ1k =

1
3 andδ2k =

3
5. Thus, all conditions of Theorem 3.1

are satisfied. This implies that the equilibriumx∗1 = x∗2 =
0.125, y∗1 = y∗2 = 0.25 of (4.1) is globally exponentially
stable.

On the other hand, if we consider again system (4.1)
but with impulsive perturbations of the form






























x1(tk+0) =
0.125+x1(tk)

2
, k= 1,2, . . . ,

x2(tk+0) = 4x2(tk)−0.75, k= 1,2, . . . ,

y1(tk+0) =
0.25+2y1(tk)

3
, k= 1,2, . . . ,

y2(tk+0) =
0.75+2y2(tk)

5
, k= 1,2, . . . ,

(4.3)

then the pointx∗1 = x∗2 = 0.125, y∗1 = y∗2 = 0.25 will be
again an equilibrium of (4.1), (4.3) but there is nothing we
can say about its exponential stability becauseγ2k =−3<
0.

This example shows that by means of appropriate
impulsive perturbations, we can control the stability
behavior of the neural networks.

Conclusions

In this paper, we have obtained a matrix format sufficient
conditions for the global exponential stability of the
equilibrium point of a general class of BAM neural
network model with distributed delays and nonlinear
impulsive operators. Although, the matrix format
sufficient conditions are easy to be resolved, a few
authors have studied the stability of the delayed BAM
neural networks with impulses using matrix theory. The
main result is established by using a suitable piecewise
continuous Lyapunov function and by applying the
Razumikhin technique. We show that by means of
appropriate impulsive perturbations we can control the
stability behavior of the neural networks. The technique
can be extended to study other types of impulsive delayed
systems.
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