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Abstract: With B5G moving towards 6G, the possibility of having even higher capacity and lower latency is becoming more realistic

and expected to be driven more by mmWave frequencies. However, a major issue in these systems remains the downlink beam alignment

and training procedure within mmWave cellular networks. Beam selection, as part of the physical layer and the medium access control

sublayer, is critical for discovering and pairing superior beams for reliable connections. In this research, machine learning using neural

networks (NN) and K-nearest neighbours (KNN) is proposed for selecting the beam based only on the GPS coordinates of the receiver.

This method is more efficient than conventional methods that may involve, for instance, protracted or computationally expensive beam

searches or hard-to-obtain side information. An improved selection is achieved by proposing a novel selection architecture in the

proposed method using NN-KNN while ensuring the best performance out of competing methods by using the average received signal

reference power (RSRP) and top-K accuracy metric. This approach has shown that, despite imprecise data of the receiver location, it

is a more efficient solution for future wireless communications systems. The results imply potential improvements in beam selection

concerning efficiency, which can support the further development of mmWave for future B5G and 6G networks.
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1 Introduction

As for the B5G and 6G wireless systems, they show an
apparent trend towards a substantially higher capacity and
lower latency compared to the current LTE systems [1],
[2] and [3]. There is the possibility of transforming this
situation due to the ability to use millimeter-wave
(mmWave) frequencies ranging approximately from
30-300 GHz, whereby the available bandwidth is
extremely large. However, a technical challenge arose in
downlink beam alignment/training in the domain of
mmWave cellular systems.

Beam management, which surrounds a range of Layer
1 and MAC layer procedures, is carefully combined to
define and maintain a proper beam pair. This makes the

transmit beam and its associated receive beam this crucial
pair for establishing stable and reliable links. It will be
important to recognize that the source of this process is
related to the determination of the BF direction to the
Subscriber Device (SD), which is a central stage in
creating what is called the Primary Connection (PC). PC
is defined as a procedure through which an SD makes a
mechanical and logical connection with a Gateway as an
initial step to data transmission [4]. Unlike the
conventional cellular systems, in which the sounding
signals are released into all directions, followed by
establishing the physical link connection of BF, the
mmWave communiqué requires the incorporation of the
BF into the initiation stage of the PC phase. This tactical
modification is compulsory for harnessing the vast
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directionality advantage provided by the muteness of
mmWave antenna arrays, which is a very useful ability
necessary for circumventing the serious challenges of
high path loss in alternate mmWave mobile networks.
They are equally significant in Beyond 5G and 6G
wireless systems where fine-tuning beam management
procedures is indispensable for enhancing the set’s value
that harnesses these systems [5].

In the presented scenario, the future development of
millimeter-wave (mmWave) technology entails marked
growth in the number of antenna elements used in the
corresponding communication systems. This expansion is
expected to increase with the usage of higher frequencies
in future revisions. In the case of the PC phase within the
5G New Radio (NR) framework, the compared phase is
beam sweeping, which implies rather extensive searches
on the exhaustive set of beams both at the transmitter and
the receiver ends. This thorough search is meant to find
the beam pair of the highest reference signal received
power (RSRP). This holds because, with the new era of
mmWave communications, there is an increase in the
number of antenna elements and beams, making the
computational cost of exhaustive beam searches rocket.
Thus, these extensive searches result in long initial access
times, which can be a major problem for network
operations [6].

A hierarchical search methodology has been
presented in[7], to meet this challenge. In this approach,
the Gateway undertakes a serial, top-down exploration
over broader beams before tightening to the narrower
ones in subsequent steps. Although this search strategy
reduces latency compared to exhaustive searches, it
unintentionally lowered the MUEs’ coverage at the cell’s
edge. This restriction has also been observed in[8],
showing that different BM decision approaches for
network performance maximization come with trade-offs.
It was found that recent investigations have introduced
context information (CI) to support approaches to beam
training. The Gateway in [9] and [10] tilts its beam
towards the nearest SD, relying on the geographical
position of the SDs. However, these strategies may be
disrupted and cause inaccuracies arising from barriers
between the nearest Gateway and SD. Instead, [?]
describes a method in which the Gateway uses a prior
multipath fingerprint measurement repository. The
suggestion has been made in [?] and [13] to use
out-of-band information below 6 GHz for beam
alignment at mm-wave frequencies. In the same context,
[14] proposes a beam alignment scheme for vehicle
communication that relies on onboard radars.

Several studies have explored integrating Machine
Learning (ML) techniques into the beam training process.
Typically framed as a classification task, machine
learning algorithms leverage extrinsic information such as
lidar data, GPS signals, and roadside camera images to
recommend a subset of promising beam pairs. This
approach mitigates the need for exhaustive searches by
focusing the beam selection process on the selected

subset. For instance, [15] utilizes received
omnidirectional sounding signals from multiple gateways
to predict the optimal beam. Nevertheless, this method is
vulnerable to mismatches between the coverage ranges of
sounding signals and beamforming communication. In
contrast, [16] formulates the beam training problem
within a multi-armed bandit framework, while [17] trains
ML models to predict optimal beams in vehicular
networks using the locations of all vehicles.

This research introduces a novel approach that
harnesses the power of neural networks (NN) and
K-nearest neighbours (KNN) for beam selection, utilizing
solely the GPS coordinates of the receiver. The proposed
technique requires only the locations of SD. The SD can
easily acquire these locations by leveraging technologies
such as GPS and developing localization algorithms.
Moreover, the transmission of DS locations can be
conveniently accomplished over lower-frequency lines, a
feature already endorsed in LTE’s Minimization of Drive
Tests (MDT) mode and expected to undergo additional
standardization in the coming years. The method being
proposed exhibits robustness in the face of inaccuracies in
DS locations, in contrast to prior methodologies that
depend on more difficult-to-acquire supplementary data,
such as radar measurements [18], received sounding
signals from multiple gateways [19], and multipath
fingerprints [20]. By fixing the transmitter and scattered
locations, the research generates training samples
comprising receiver locations (GPS data) paired with the
true optimal beam pair index, determined through
exhaustive search. A novel NN-KNN architecture is
designed and trained using this dataset, where the
receiver’s location serves as input and the true optimal
beam pair index as the label. During testing, the
NN-KNN model outputs a set of K promising beam pairs,
followed by an exhaustive search over these candidates to
select the final beam pair with the highest average RSRP.
The proposed method is evaluated using two key metrics:
average RSRP and top-K accuracy. The methodology’s
effectiveness is assessed based on its ability to streamline
the beam selection process while maintaining
high-performance metrics. The subsequent sections of
this paper delve into the method, experimental results,
and implications of the proposed approach for enhancing
beam selection efficiency in wireless communication
systems.

2 Background

Beamforming is a technique that enhances wireless
communication and sensing systems by the intelligent
concentration of signals toward specific targets. The
manipulation of weights and phases of signals generated
by individual antenna elements allows for the direct
control of the primary lobe of the antenna’s emission
pattern. This technology enhances the quality of signals,
increases the system’s capacity, and optimizes resource
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utilization, rendering it indispensable for contemporary
and forthcoming communication systems. There are two
distinct categories of beamforming techniques. Phase
shifters and attenuators are employed in the process of
analogue beamforming. This approach is straightforward
and appropriate for systems with limited antennas. Digital
Signal Processing (DSP) uses digital beamforming to
modify signals after converting from analogue to digital.
This technology facilitates the utilization of sophisticated
and adaptable beamforming algorithms, rendering it
well-suited for extended antenna arrays. The early
development of three beamforming methods
encompassed the time-domain, frequency-domain, and
hybrid approaches. Time-domain beamforming is a
technique that utilizes signal time-delays to achieve
constructive alignment. The system employs a delay
mechanism for received signals to achieve constructive
summation in the desired direction. Frequency domain
analysis is widely used in several domains. Beamforming
involves the blending of signals from several antennas in
terms of frequency. The primary lobe can be oriented by
adjusting the signal weights [21].

Hybrid beamforming achieves a harmonious
equilibrium between system complexity and performance
by integrating analogue and digital beamforming
techniques. The suggested approach eradicates radio
chains and analogue components while retaining some
advantages of digital beamforming. Beamforming
encounters two significant challenges. Digital
beamforming can be computationally demanding when
handling several antennas and data streams. Optimal
results in beamforming necessitate accurate channel state
information. Acquiring accurate CSI is challenging,
particularly in dynamic settings. The acronym BS denotes
multi-beam systems capable of generating beams in many
directions [22].

The system employs a dynamic methodology to
choose the most optimal beam from a predetermined set
to establish communication with a user or device. This
selection is contingent upon the specific conditions of the
channel and various other considerations. Beam selection
is an automated process that aims to optimize
communication performance and resource usage by
selecting the most suitable beam for each user. Due to
their excellent directionality, multiple antennas in large
MIMO and mmWave systems necessitate meticulous
beam selection for each user. Beamforming is crucial for
the selection of beams. Before beam selection, the system
is required to generate several beams through
beamforming. Beamforming generates test beams to
select a beam. Beam selection involves the utilization of
beamforming weights and CSI data to assess potential
beams suitable for a user’s specific channel conditions.
Beam selection is a technique that enhances
communication and improves the performance of
beamforming systems by dynamically selecting the most
suitable beam for each user. The beamforming process
involves the generation of many beams, whereas beam

selection utilizes real-time channel circumstances to
determine the optimal beam for individual users
autonomously. The integration of these elements enables
the effective and adaptable utilization of antenna
resources, rendering it indispensable for contemporary
wireless communication systems, particularly in
scenarios involving extensive antenna arrays and
fluctuating channel conditions [23].

2.1 Beam selection methods

Modern wireless communication systems, especially
those with many antennas, require beamforming. The
above methodologies use dynamic selection to get the
best beam from a set of beams to optimize
communication with a user. We will discuss beam
selection methods in this discussion:

The maximum ratio combining: the receiver combines
the signals from many antennas to maximize the signal
strength. MRC is applied to MIMO systems to enhance
communication capacity and reliability. Conventional
MRC is beneficial in multipath fading scenarios such as
reflections, diffractions, and scattering [24].

The transmit beamforming enhances the quality of the
signal and lowers the interference since the signal
transmitted steers in a certain direction. Transmit
beamforming is one method used in directional antennas
to enhance data rate. This is true when the spectrum
resources are scarce, and the bandwidth is narrow; in this
case, transmit beamforming is beneficial and needs to be
optimized [25].

Receive beamforming: increases the signal quality
and reduces interferences because the received signal
appears to come from a particular direction. Receive
beamforming is widely applied in MIMO systems to
improve communication flexibility and dependability.
Receive beamforming is very useful when there is much
interference, hence endangering the signal. This is more
likely when the signal is exposed to noise and other forms
of interference [26].

Codebook-based beamforming: This method uses a
pre-existing codebook to select the optimal beam
direction. Codebook-based beamforming is simple and
efficient, making it popular in natural systems.
Codebook-based beamforming reduces beam selection
complexity in cases with limited processing resources
[27].

Machine learning-based beam selection, such as
neural networks, in beam selection can help identify the
optimal beam direction by exploiting the CSI. Machine
learning algorithms for beam selection can improve
network performance by responding to dynamic channel
circumstances. Machine learning techniques for beam
selection are beneficial in complex and ever-changing
channel conditions, where the best beam direction may
vary over time. Machine ML improves beam selection in
future wireless communications. Table 1 shows that this
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approach achieves flexibility, optimization, and increased
performance in complex and dynamic circumstances.
Machine learning algorithms must be carefully designed
and trained to provide reliable and durable performance
in practical scenarios [28].

Modern technologies like AI, ML, and DL have
changed many parts of our existence. These technologies
affect wireless communications, communication
security[29], finance, healthcare, driverless vehicles,
natural language processing, and many other fields.

AI allows computers to think and learn like humans.
AI aims to enable computers to do human-like activities
like visual perception, speech recognition,
decision-making, and language comprehension. Machine
learning and deep learning are used in AI to make
machines smart.

ML is a branch of AI that develops algorithms and
statistical models to help computers learn and improve
from data without being programmed. ML algorithms
learn patterns, predict, and act on data. Machine learning
includes supervised, unsupervised, and reinforcement
learning [30]. ML has a specialized subfield called DL.
For complex problems, it uses artificial neural networks
as computer models. The brain’s physical and metabolic
properties inspired DL algorithms with numerous layers
of interconnected artificial neurons. In picture analysis,
language understanding, and speech interpretation, neural
networks perform well because they can learn
autonomously and encode data across multiple levels of
abstraction. Artificial intelligence applications have
advanced significantly thanks to DL.

ML models that mimic the brain’s anatomy and
function are called NN. ML algorithms are used for
Classification, regression, image recognition, NLP, and
other tasks. NN are layers of interconnected artificial
neurons that process and learn data patterns. NNs do
forward and backpropagation iteratively. Forward
propagation sends input data through a neural network’s
layers. An activation function is applied after computing a
weighted total of inputs at each neuron. An activation
function adds non-linear properties to the model, making
it easier to learn complex dataset relationships. After
forward propagation, the model’s predictions are
compared to labels. A loss function is used to measure
prediction error. Backpropagation calculates loss function
gradients relative to model parameters. Gradients are used
to optimize model parameters using stochastic gradient
descent (SGD) or Adam. The above approach iterates
over numerous epochs until the model converges and
yields a good solution [31].

The KNN algorithm is a simple ML approach used for
Classification and regression. The KNN method assumes
that data instances with similar features are more likely to
be grouped or have similar target values. The main
procedure uses a dataset with class labels or goal values.
The goal is to find the best value for ’k,’ the number of
nearest neighbours to consider while predicting new data
points. During prediction, the KNN algorithm estimates

the distance between the latest data point and all other
training set data points. This is usually done with
Euclidean or Manhattan distance. KNN algorithm finds
the ’k’ nearest data points to find the class label with the
highest frequency in Classification or the regression task’s
average target value for the new data point. The selection
of ’k’ strongly affects KNN algorithm performance.
Intricate decision boundaries with noise can be created
with a smaller ’k.’ A higher ’k’ creates smoother decision
limits. Fe scaling is essential to ensure that all features
contribute proportionally to distance calculation. KNN is
also a non-parametric method because it makes no data
distribution assumptions. It learns from training data
directly. KNN is easy to implement, but it requires
calculating distances to all training points for each
prediction, which increases processing costs for larger
datasets [32].

3 Methodology

The beam selection algorithm integrates the predictive
capabilities of NN with the localized reasoning of KNN
to achieve a resilient and precise selection of ideal beam
pairings for wireless communication across diverse
settings. Integrating these algorithms seeks to optimize
the overall efficiency and flexibility of the beam selection
procedure. The primary objective of the beam selection
algorithm is to identify the most favourable combination
of transmit and receive beams in a wireless
communication system to maximize the received signal
power, also known as the received signal reference power
(RSRP). The selection of optimal beams is determined by
evaluating the projected performance of a collection of
candidate beams. This approach comprises two primary
constituents: the NN and the KNN classifier.

3.1 System Model

Consider a scenario with a transmitter and receiver pair,
each equipped with analogue antenna arrays comprising
Nt and Nr antenna elements. Additionally, let’s assume
there are fixed and pre-established DFT codebooks at
both ends, denoted by

H = {h1, . . . ,h|H| : hi ∈ C
Nt×1}, (1)

for the transmitter and

D = {d1, . . . ,d|D| : di ∈C
Nr×1} (2)

for the receiver. In this context, for a given channel
H ∈ CNr×Nt , which is usually estimated or unknown at
both ends; the beam selection problem entails
maximizing the beamformed channel gain by selecting
the pair of transmitter and receiver beams, expressed as:

max
(i, j)∈|H|×|D|

g(i, j) =
∣

∣dT
j Hhi

∣

∣ (3)
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Table 1: Table 1 compares the traditional and machine learning techniques used in the beam selection process.

Criteria Machine Learning-Based Beam Selection Traditional Beam Selection Techniques

Basis The methodology employed in this method is

characterized by a data-driven approach, which

involves the utilization of real-world data and

experiences for learning and analysis.

The utilization of predetermined tactics and

heuristics in rule-based approaches.

Adaptability The system exhibits high adaptability when faced

with changing channel conditions and user mobility.

The system’s adaptability is constrained and heavily

dependent on predetermined codebooks or rule-

based mechanisms.

Complexity The adoption of this approach necessitates a more

intricate process involving the acquisition of data and

subsequent training.

A more streamlined implementation with reduced

computational overhead.

Performance The proposed approach performs better than

conventional approaches, particularly in intricate

situations.

The system’s suitability is sufficient for basic

applications, although it may exhibit suboptimal

performance in specific scenarios.

Optimization One can optimize the selection of beams to achieve

specific aims.

The optimization capabilities are limited.

Beam

Codebook

Can generate optimized beam codebooks tailored to

environments

Relies on fixed, predefined codebooks.

Interference

Mitigation

The ability to effectively reduce interference is

enhanced by using acquired patterns.

A set of straightforward measures constrains the

ability to manage interference.

Training

Data

To achieve optimal performance, the utilization of

training data is necessary, and it is imperative to

update the model regularly.

Utilizing training data is unnecessary as the decision-

making process is based on predetermined rules.

Real-time

Decision

The ability to make real-time judgments is enhanced

following a period of training.

Real-time decision-making processes that rely on

pre-established rules.

Suitability This technology is highly suitable for intricate

situations characterized by expansive antenna arrays.

Appropriate for elementary systems characterized by

a limited number of antenna combinations.

This involves selecting the transmitter and receiver
beam pair that maximizes the beamformed channel gain.

However, due to the imperfect knowledge of the
quantity to maximize (precisely estimating H is often
unfeasible, especially in the massive MIMO regime), the
beam selection problem is typically addressed through
sequential procedures[33]. Moreover, it is frequently
likened to a multi-armed bandit problem [34].

3.2 Data Collection and Preprocessing

–The method begins by acquiring training and test data
from a pre-established scenario. The training dataset
comprises the geographical coordinates of receivers,
and for each receiver location, the method computes
the channel’s received signal strength indicator
(RSSI) for every potential beam pair [35].

–Using a ray-tracing propagation model generates the
dataset utilized to train the model in practical
applications. The utilization of the ray-tracing model
is prevalent in the realm of wireless communication
research as a means to forecast the behaviour of radio
wave propagation within intricate settings. The
software programmer emulates electromagnetic wave
transmission by tracking individual rays’ trajectories
as they undergo reflection, refraction, and diffraction
while interacting with objects and surfaces within

their surroundings. The procedure for constructing the
real-world dataset can be succinctly outlined as
follows:

a)Environment Modelling: The process of
environment modelling involves the creation of a
representation of the physical surroundings,
encompassing various elements such as buildings,
walls, obstacles, and other structures that have the
potential to influence the propagation of radio
waves. The propagation model is a 3D
Geometric-based mmWave channel model [36].

b)Antenna Placement: The simulation represents
every element present in the environment. The
precise positions of the transmitter and reception
antennas are designated within the given
environment. Multiple elements (arrays) can be
incorporated into these antennas to facilitate
beamforming. An 8x8 Uniform Linear Array
(ULA) is used in the transmitter to provide 16
beam pair.

c)Ray Tracing: The ray-tracing algorithm initiates
the emission of rays from the transmitter antenna
and subsequently monitors their trajectories as
they engage with the surrounding environment.
Rays can undergo reflection off walls, bounce off
surfaces, and exhibit diffraction phenomena [37].

d)Channel State Information (CSI) Collection:
The algorithm acquires CSI for every ray during
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the ray-tracing procedure. CSI encompasses data
about the received signal’s magnitude and phase
for each ray at the reception antenna. This data
describes the behaviour of the channel, including
attributes such as signal strength and phase shifts
[38].

e)Optimal Beam Pair Generation: An ideal beam
pair is determined for each simulated channel
realization, which includes CSI. The beam pair
presented above exemplifies the optimal
amalgamation of transmit and receive beams,
maximizing the power of the received signal or
minimizing interference.

f)The data undergoes preprocessing to facilitate the
training of the neural network and the application
of the KNN technique [39]. The data is split into
two parts. The first is 80% of the whole dataset for
the training phase. The second is 20% of the entire
dataset to test the algorithm.

3.3 Neural Network Training

–The training of the NN involves utilizing the training
data, wherein the input to the network consists of the
coordinates of the receiver position, and the output
corresponds to the predicted optimal beam pair index,
as shown in Fig. 1.

Fig. 1: Training Phase.

–During training, the NN acquires the ability to
comprehend and represent the intricate connections
between receiver locations and their corresponding
ideal beam pair indices. This acquired knowledge
enables the network to make accurate predictions
regarding the optimal beam pair for receiver sites it
has not encountered before. The input layer has two
neurons, one for the receiver’s x-coordinate and one
for the receiver’s y-coordinate. The output layer has
16 neurons, one for each possible beam pair. The
network uses three hidden layers, each with 100
neurons. The hidden layers use the ReLU activation
function. The ReLU activation function is a non-linear
function that is practical for neural networks.

–During the training phase, the neural network is
trained using the stochastic gradient descent (SGD)
algorithm. The stochastic gradient descent (SGD)
technique is an iterative optimization method that
adjusts the weights of a neural network by considering
the prediction errors. The Adam optimizer was
utilized for stochastic gradient descent (SGD). The
Adam optimizer is a hybrid optimization algorithm
that incorporates the benefits of both the AdaGrad and
RMSProp optimizers. The AdaGrad optimizer
employs a learning rate inversely proportional to the
square root of the cumulative sum of the squared
gradients. This implies that the learning rate is higher
for weights that have undergone minimal updates and
lower for weights that have experienced significant
updates. The RMSProp optimizer employs a learning
rate that is inversely correlated with the root mean
square of the gradients. This implies that the learning
rate is higher for weights with significant gradients
and lower for weights with minimal gradients. The
Adam optimizer integrates both approaches by
employing a learning rate inversely proportional to the
square root of the cumulative sum of the squared
gradients. This cumulative sum is further averaged
across a specified number of previous steps. This
approach aids in mitigating the issue of the learning
rate becoming excessively little or excessively large.
The Adam optimizer is widely favoured for training
neural networks due to its ease of implementation and
demonstrated efficacy across several tasks. The
evaluation of the procedure is performed using the
cross-entropy loss function. The cross-entropy loss
function is a commonly employed loss function for
assessing the efficacy of neural networks. The
cross-entropy loss function quantifies the disparity
between the expected and goal probabilities. The
cross-entropy loss function quantifies the accuracy of
a neural network in predicting the appropriate class
for individual input points. A neural network
performs better when the cross-entropy loss is more
minor. The cross-entropy loss function can be
formally stated as follows:

H(y, p) =−∑
i

yi log(pi) (4)

Where:yi is the target vector, which is a one-hot vector
that indicates the correct class for each data point. pi

is the predicted probability vector, which is a vector
of probabilities that the neural network assigns to each
class for each data point.

3.4 KNN Approach

–Once the neural network has undergone training, the
method utilizes the KNN strategy on the test data to
enhance the beam selection process.
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–The algorithm finds the KNN from the training data
for each receiver location in the test data based on the
Euclidean distance metric (distance between receiver
locations).

–The KNN technique generates k candidate beam pairs
by leveraging the beam pairs linked to the KNN.

3.5 Combined Beam Selection

–The algorithm acquires two sets of candidate beam
pairs for each receiver position in the test data:

–Candidate beam pairs predicted by the NN (Top-K
predictions).

–The candidate beam pairs derived using the KNN
technique.

–The algorithm merges the two sets of possible beam
pairs by performing a union operation on the sets. The
current collection comprises beam pairs that have
been predicted by either the NN or picked by the
KNN algorithm.

3.6 Final Beam Selection

–The algorithm chooses the most suitable beam pair
from the collective set of potential beam pairs for
every receiver position. The selection process is
predicated upon evaluating each beam pair’s received
signal strength (RSS), with the algorithm opting for
the beam pair exhibiting the highest RSS.

–The beam pair that is ultimately chosen is the one that
the algorithm uses to transmit data to the receiver.

3.7 Evaluation Metrics

During the testing phase, the system operates with unseen
data, which comprises the remaining portion of the
dataset that was not utilized during the training phase.
The testing process commences by inputting the location
of the Subscriber Device (SD), which serves as the
starting point for beam selection. The system predicts the
K most suitable beam pairs for the given SD location by
leveraging the trained Neural Network (NN) and
K-Nearest Neighbors (KNN) algorithms. Subsequently,
the predicted beam pairs are juxtaposed against the true
optimal beam pair associated with the SD location. This
comparison is facilitated through the utilization of
performance evaluation metrics, which provide
quantitative insights into the effectiveness and accuracy of
the beam selection process, as shown in Fig.2

Performance Evaluation Metrics serve as crucial
benchmarks for assessing the quality of predictions made
by the NN and KNN algorithms. These metrics
encompass various parameters, including but not limited
to precision, Recall, accuracy, and top-K accuracy. By

Fig. 2: Testing Phase.

analyzing these metrics, the system can discern how
closely the predicted beam pairs align with the optimal
beam pair for the given SD location.

In the context of the classification problem, consider
Y = {1, . . . ,m} as the output space representing all
possible gateways or beams. The true optimal gateway or
beam for an SD with coordinates x is represented by
y ∈ Y . The vector p ∈ [0,1]m denotes the posterior
probabilities predicted by the Machine Learning (ML)
model, where each element pi corresponds to the
probability of y being equal to i given x.

pi = P(y = i | x) (5)

The k-th most significant element in p is denoted as pk̄.
Let β denote a function that maps p to a set of candidate
gateways or beams to search.

The proposed beam training method utilizing ML
models is assessed using three metrics:

1.Accuracy is the likelihood of accurately predicting the
sole optimal gateway or beam. Formally,

β (p) = argmax
i∈Y

(pi) (6)

and the loss is given by

L(p,y) = 1(β (p) 6=y) = 1(maxi∈Y pi>py) (7)

2.Precision and Recall for a given class represent the
proportions of correctly predicted samples among all
samples predicted to belong to that class and among
all samples that genuinely belong to that class.
Mathematically, precision is calculated by:

Precision =
True Positive

True Positive+False Positive
(8)

while Recall is computed as:

Recall =
True Positive

True Positive+False Negative
(9)

Since gateway and beam predictions involve multiclass
problems, the models are assessed based on average
precision and recall across all test samples.
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3.Top-k accuracy measures the likelihood of correctly
identifying the optimal gateway or beam among the
top k gateways or beams. Mathematically, β (p) is
given by:

β (p) = {i ∈ Y | pi ≥ p(k̄)} (10)

The loss function is defined as:

L(p,y) = 1y/∈β (p) = 1pk̄>py (11)

It’s worth noting that accuracy is synonymous with
top-1 accuracy, indicating the probability of correctly
predicting the optimal Gateway or beam when
considering only the top-ranked prediction.

4 Results and Discussion

The dataset preparation process is initiated based on the
system described in the reference. The present dataset has
been curated to facilitate the application of supervised
ML techniques. The system was comprised of a total of
16 pairs of beams. The transmitter, known as the network
node, experienced interference from twenty objects in
various positions. On the other hand, the receiver, referred
to as the user equipment, was placed in two hundred
randomly selected locations, as depicted in Fig. 3. The
given activity area is a square of 6m by 6m. The dataset
was generated based on the receiver’s position and the
optimal beam pair that maximizes the RSRP.

Fig. 4 illustrates the likely depiction of the precision
of the beam selection techniques about the varying
number of beam pairs denoted as K. Precision is a metric
that evaluates the correctness of positive predictions,
specifically the accurately predicted beam pairings,
concerning all positive predictions. The assessment of the
models’ proficiency in generating precise positive
predictions is facilitated by varying the value of K.

Fig.5 illustrates the relationship between the model’s
Recall and the varying values of K. The metric of Recall,
which is alternatively referred to as sensitivity or true
positive rate, quantifies the proportion of accurate positive
predictions concerning the total number of real positive
instances. Evaluating the model’s ability to forecast
positive cases accurately is crucial when considering the
variation in the number of anticipated beam pairs.
Approach Comparison: Top-K Accuracy

In this phase, the top-K accuracy metric is employed
to assess the performance of the hybrid algorithm on
unseen test data. This metric is a standard measure
utilized in neural network-based beam selection
methodologies.

The hybrid NN and K-NN algorithm jointly generate
K-recommended beam pairings based on a receiver
position. These recommendations undergo an exhaustive
search, with the beam pair chosen as the highest average
Received Signal Strength Indicator. A successful
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Fig. 3: Transmitter, Clutters, and receiver locations with optimal

beam pair indices.
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Fig. 4: Precision value comparison of different beam pair

selection schemes with a changed number of beam pairs.

prediction occurs if the final selected beam pair matches
the genuine optimal pair, the neural network, or the KNN
algorithm recommends the genuine optimal pair. The
algorithm finds two possible beam pairs for each receiver

position in the test data: The neural network predicts
Top-K beam pairs in the first batch. KNN-derived
candidate beam pairs are in the second set. A union
operation merges these two sets of probable beam
pairings, resulting in a collection of beam pairs predicted
by the neural network or picked by the KNN method. To
provide a benchmark, NN and KNN algorithms are
considered, each generating K-recommended beam pairs:

NN Given a receiver location, the neural network first
outputs K recommended beam pairs. Then, it performs an
exhaustive sequential search on these K beam pairs and
selects the one with the highest average RSRP as the final
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Fig. 5: : Performance Comparison of Beam Pair Selection

Schemes with Variable Number of Beams: Recall Analysis.

prediction. A successful prediction occurs if the true
optimal beam pair is the final beam chosen pair.
Equivalently, success happens when the true optimal
beam pair is one of the K-recommended beam pairs by
the neural network.

KNN with GPS Coordinates: This method selects the
K nearest training samples for a test sample based on
GPS coordinates, proposing all beam pairs from these K
training examples. While the maximum number of
recommended beam pairings is K, some may be repeated.

The analysis reveals that the trained neural network
selects beam pairs with K set to 8. For each technique
(excluding KNN), exhaustive searches across all 16 beam
pairings lead to 100% accuracy when K equals 16.
However, KNN’s performance is notable; although it
chooses the 16 closest training samples when K is 16, the
number of distinct beam pairings generally falls short of
16. Consequently, KNN fails to achieve 100% accuracy
under these conditions as in Fig. 6.

Fig. 7 likely illustrates the F1-score of the beam
selection algorithms about various values of K. The
F1-score is a statistic that quantifies the balance between
precision and Recall by calculating their harmonic mean.
It serves to address the trade-off between these two
performance measures. The provided analysis
comprehensively evaluates the model’s efficacy across
varying quantities of predicted beam pairs.

Fig. 8 illustrates the mean Reference Signal Received
Power (RSRP) about the variable K. RSRP quantifies the
magnitude of the received signal. This observation
demonstrates the impact of the selection of K on the
quality of the received signal. The evaluation of the
chosen beam pairings is facilitated by analyzing the
signal strength they offer, which aids in determining their
quality.
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Fig. 6: Performance Comparison of Beam Pair Selection

Schemes with Variable Number of Beams: Top K Accuracy

Analysis.
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Fig. 7: Performance Comparison of Beam Pair Selection

Schemes with Variable Number of Beams: F1-score Analysis.

Figures 3 through 8 are pivotal in analyzing the
performance of the beam selection system across diverse
settings and understanding its impact on the system’s
accuracy, precision, Recall, F1-score, and signal quality.
These findings significantly contribute to comprehending
the effectiveness of various beam selection algorithms in
wireless communication environments. The hybrid
suggestion algorithm, which combines KNN and NN
algorithms, demonstrates superior performance compared
to using NN or KNN algorithms independently, mainly
when dealing with a limited number of beam pairs.
Decreasing the number of beam pairings could potentially
simplify the system, reducing complexity in both
beamforming and signal processing operations. Reducing
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Analysis.

the number of beams also lowers the probability of
interference between adjacent beams.

5 Conclusion

In this paper, a new method for beam selection in
mmWave cellular systems was proposed, employing the
GPS position of the receiver as an input to a neural
network (NN) and K-nearest neighbours (KNN)
algorithm. This method solves the existing problems of
traditional beam management methods, which involve the
need to perform multiple beam searches and provide extra
complex input data. This enables the NN-KNN
architecture to reduce the number of beams, thus
simplifying beam selection without compromising
performance, as witnessed by factors such as average
RSRP and top-K accuracy. The simulations reveal that
our procedure is immune to receiver location estimate
errors, which indicates that it can be used effectively in
future wireless communications systems.

Therefore, by enhancing the complexity of beam
selection, this method enhances the applicability of the
mmWave technology in B5G and 6G networks. The
efficiency gain in beam management improves
connectivity and supports the achievement of the high
capacity and low latency expected in the next-generation
wireless networks. Further model development will
involve fine-tuning its parameters, identifying new
features that can be incorporated, and applying the
method to various real-world problems to assess its
practical applicability. This study contributes to achieving
enhanced beam control in state-of-the-art wireless
communication systems.
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