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Abstract: This paper derives bounds for the covering radius of repetition codes for specific classes of codes with different weights and
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1 Introduction

In coding theory for the last five decades, many
researchers have been interested in codes over finite rings
and the special types of rings Z2n, where 2n is a
characteristic of the ring.

The best well known that codes can be constructed by
cyclic codes and gray map over a finite ring Z4 for binary
non-linear code [13] and many research articles have
indicated codes over a finite ring Z4 received much
attention [1,3,4]. Coding theory to find the maximum
error-correcting capability of codes by using the most
essentially parameter of covering radius of a code.

In binary code, [2,8,9], the researchers are studying
for covering radius of linear codes and nonlinear codes
can be obtained from codes over a finite ring Z4 via the
gray mapping. In [5,6], the author finds bounds of
covering radius with different types of repetition codes
with respect to various weights, by use this, so found to
the another structure of ring in this paper.

In this correspondence, to determine the Repetition
Codes of some classes of blocks with a cover radius of the
codes on the finite commutative chain ring
R = {a+ub : a,b ∈ Z3} of the integer modulo 3 assigned
to different weight.

2 Preliminaries

Let R be a finite commutative chain ring, where
R = Z3 + uZ3 = {a + ub : a,b ∈ Z3}

= {0,1,2,u,u1,u2,u3,u4,u5}, with u2 = 0,u1 =
1 + u,u2 = 2 + u,u3 = 2u,u4 = 1 + 2u,u5 = 2 + 2u and
Z3 = {0,1,2} with characteristic 3. If C ⊆ R, then C is
said to be a code. A code C is called the linear code, if the
ring R is an R-submodule of Rn, where n is the length of a
code. The elements of the code C ⊆ R are called a
codeword of C.

A Gray Map g : (Z3 +uZ3)→ Z2
3 as

g(0) = 00,g(1) = 01,g(2) = 02,

g(u) = 10,g(1+u) = 11,g(2+u) = 12,

g(2u) = 20,g(1+2u) = 21,g(2+2u) = 22,

then the Gray map g1 : (Z3 + uZ3)
n → Z2n

3 is defined by
g1(x) = (g(x1),g(x2), · · · ,g(xn)), where
x = (x1,x2, · · · ,xn) in [12].

In [7], Let x ∈ R. The Bachoc weight of x is defined as

wB(x) =

0 if x = 0
1 if x = 1,2,u1,u2,u4,u5,
3 if x = u,u3.

Let xi ∈ R,i=0 to n−1 be the codeword of Bachoc

weight of xi is defined as
n−1
∑

i=0
wB(xi). If c1,c2 ∈ C, be any

two distinct codewords of Bachoc distance is defined as
dB(C) = {dB(c1,c2)|c1 − c2 ̸= 0, and c1,c2 ∈C}.

The minimum Bachoc weight of C is

dB(C) = min{dB(c1,c2)|c1 − c2 ̸= 0, and c1,c2 ∈C}.
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In C is a linear code, thus

dB(C) = min{wB(c)|c ̸= 0 ∈C}.

Therefore, the minimum distance is equal to the minimum
weight. That is,

dB(c1,c2) = wB(c1 − c2).

Let C ⊆ Rn is a linear code, where n is a length of
code, the number of codewords N and the minimum
Bachoc distance dB, is said to be an (n,N,dB) code in R.

In C is a linear code of length n over R. Define,
dB(z,C) = min{dB(z,c)|∀c ∈ C}, for any z ∈ Rn, here
dB(z,C) be the Bachoc distance between z and C.

Example 1.Let x = 1 u u1 u3 u5 ∈ R. Then, the Bachoc
weight of x is wB(x) = wB(1) + wB(u) + wB(u1)
+wB(u3)+wB(u5) = 1+3+1+3+1 = 9.

In Gray weight, let x = (x1,x2, · · · ,xn) be a codeword
of codes over R is defined as follows

wG(x) =

0 if x = 0
1 if x = 1,2,u and u3
2 if otherwise

in [12]. Use this, found to covering radius of code.
The parameters of Gray weight code are an (n,N,dG).

In the Gray distance(weight), let c1,c2 ∈ Rn be any two
different codewords is defined as
dG(c1,c2) = wtG(c1 − c2). Let C be a linear code of
length n over R. Then dG(z,C) = min{dB(z,c)|∀c ∈ C},
for any z ∈ Rn.

Let x = (x1,x2, · · · ,xn) be a codeword of codes over R
and use ref.[14], the Lee weight of x as given

wL(x) =


0 if x = 0
1 if x = 1,u5
2 if x = 2,u4
3 if x = u,u1,u2,u3.

The parameters of the Lee weight code are (n,N,dL). In
Lee the distance weight between the codewords
c1 and c2 ∈ Rn is defined as dL(c1,c2) = wtL(c1 − c2) and
also dL(z,C) = min{dL(z,c)|∀c ∈C}, for any z ∈ Rn.

The Chinese Euclidean weight of x is

wCE(x) =


0 if x = 0
1 if x = 1,u5
2 if x = 2,u4
3 if x = u,u3
4 if x = u1,u2

in [11], where x = (x1,x2, · · · ,xn) be a codeword of codes
over R.

In C is a linear code with Chinese Euclidean weight, is
an (n,N,dCE) code. Define, dCE(c1,c2) = wtCE(c1 − c2),

where c1,c2 ∈ Rn and dCE(z,C) = min{dCE(z,c)|∀c ∈C},
for any z ∈ Rn.

In Homogeneous weight, if x = (x1,x2, · · · ,xn) be a
codeword in R and use in[13], the Homogeneous weight
of x is

wH(x) =

0 if x = 0
3 if x = u,u3,
2 if otherwise.

In C is a linear code with homogeneous weight, is a
(n,N,dH) code. Define dH(c1,c2) = wtH(c1 − c2), where
c1,c2 ∈ Rn and dH(z,C) = min{dH(z,c)|∀c ∈ C}, for any
z ∈ Rn.

Example 2.Let x = 1 u u1 u3 u5 ∈ R. Then,
wG(x) = wG(1) + wG(u) + wG(u1) + wG(u3) + wG(u5).
From the Gray weight, so wG(x) = 1+1+2+1+2 = 7.
Similarly to the other weight.

So,
Code wG(x) wL(x) wCE(x) wH(x)
x 7 13 12 12

3 Repetition code with Covering radius of
code in R

Let d be the distance of a code C in R with assigned to
alternate weight, such as Bachoc weight, Gray weight,
Lee weight, Chinese Euclidean weight and Homogeneous
weight. The covering radius of a code C is

rd(C) = max
v∈Rn

{
min
c∈C

{d(v,c)}
}
,

where C is a code and rd(C) is a covering radius of the
code C.

In Fq = {0,1,β2, · · · ,βq−1} is a finite field. Let C be a
q-ary repetition code C over Fq. That is
C = {β̄ = (ββ · · ·β )|β ∈ Fq} and the repetition code C is
an [n,1,n] code. Therefore, the covering radius of the
code C is ⌊ n(q−1)

q ⌋ in [10].
Let C be a block repetition code of size n, the

parameter of C is an [n(q− 1),1,n(q− 1)] be a generated

by G = [

n︷ ︸︸ ︷
11 · · ·1

n︷ ︸︸ ︷
β2β2 · · ·β2 · · ·

n︷ ︸︸ ︷
βq−1βq−1 · · ·βq−1]. By

above, thus the covering radius of the code C is ⌊ n(q−1)2

q ⌋,
since it will be equivalent to a repetition code of length
(q−1)n.

A linear code C ⊆ R is said to be a Generator
matrix(G), if the basis elements in a row of matrix.

Consider the repetition code over R, there are two type
of repetition codes of length n viz.

1.Type I-(A Generator matrix(GI) with unit element in
R and its generated by the code CI )

2.Type II-(A Generator matrix(GII) with zero divisor
element in R and its generated by the code CII )
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Type Generator Matrix Parameters
Type I G.M.T I [n,1,n],di = n
Type II G.M.T II (n,3,3n),d j = 3n

here, G.M.T I = [

n︷ ︸︸ ︷
1 · · ·1], [

n︷ ︸︸ ︷
2 · · ·2], [

n︷ ︸︸ ︷
u1 · · ·u1], [

n︷ ︸︸ ︷
u2 · · ·u2],

[

n︷ ︸︸ ︷
u4 · · ·u4], [

n︷ ︸︸ ︷
u5 · · ·u5] and G.M.T II = [

n︷ ︸︸ ︷
uu · · ·u], [

n︷ ︸︸ ︷
u3u3 · · ·u3],

[

n︷ ︸︸ ︷
uu3 uu3 · · ·uu3][

n︷ ︸︸ ︷
u3u u3u · · ·u3u]

Theorem 1.Let GI(II) be a generator matrix with unit
element(zero divisor element) in R and it is generated by
the code CI(II), then

1.rB(CI) =
4n
3 ,

2. 3n
2 ≤ rB(CII) ≤ 2n, where rB(CI(II)) is a covering

radius of CI(II) with bachoc distance(weight).

Proof.Let x ∈ Rn with η0 times 0′s, η1 times 1′s, η2 times
2′s, η3 times u′s, η4 times u′1s, η5 times u′2s, η6 times u′3s,
η7 times u′4s, η8 times u′5s in x and ∑

i
ηi = n and the code

ci ∈ {β (CI)|β ∈ Rn}, where i = 0 to 8. Then

dB(x,c0) = wtB(x−00 · · ·0)
= 0η0 +1η1 +2η2 +uη3 +u1η4 +u2η5 +u3η6

+u4η7 +u5η8
= η1 +η2 +3η3 +η4 +η5 +3η6 +η7 +η8

dB(x,c0) = n−η0 +2η3 +2η6.

Similarly,
dB(x,c1) = n−η1+2η4+2η7, dB(x,c2) = n−η2+2η5+
2η8,
dB(x,c3) = n−η3+2η6+2η0, dB(x,c4) = n−η4+2η7+
2η1,
dB(x,c5) = n−η5+2η8+2η2, dB(x,c6) = n−η6+2η0+
2η3,
dB(x,c7) = n−η7+2η1+2η4, dB(x,c8) = n−η8+2η2+
2η5.

Therefore, dB(x,CI) = min{dB(x,ci)|i = 0 to 8} ≤ 4n
3 .

Thus, rB(CI)≤ 4n
3 .

Now, let us take y =

b︷ ︸︸ ︷
00 · · ·0

b︷ ︸︸ ︷
11 · · ·1

b︷ ︸︸ ︷
22 · · ·2

b︷ ︸︸ ︷
uu · · ·u

b︷ ︸︸ ︷
u1u1 · · ·u1

b︷ ︸︸ ︷
u2u2 · · ·u2

b︷ ︸︸ ︷
u3u3 · · ·u3

b︷ ︸︸ ︷
u4u4 · · ·u4

n−8b︷ ︸︸ ︷
u5u5 · · ·u5 ∈ Rn,

where b = ⌊ n
9⌋. So, dB(y,ci) = 12b, i = 0 to 8. Thus,

rB(CI) ≥ min{dB(y,ci)| i = 0 to 8} ≥ 4n
3 and hence,

rB(CI) =
4n
3 .

Let x =

n
2︷ ︸︸ ︷

uu · · ·u

n
2︷ ︸︸ ︷

000 · · ·0 ∈ Rn. The code
CII = {β (uu · · ·u) | β ∈ Rn}, that is
CII = {00 · · ·0,uu · · ·u,u3u3 · · ·u3} is generated by
Type-II. Thus, rB(CII)≥ 3n

2 .
If x ∈ Rn be any codeword and take x has η0 links 0′s,

η1 links 1′s, η2 links 2′s, η3 links u′s, η4 links u′1s, η5 links
u′2s, η6 links u′3s, η7 links u′4s η8 links u′5s, with ∑

i
ηi = n,

where i = 0 to 8. Then, rB(CII)≤ 2n.

Theorem 2.Prove that the following

1.rG(CI) =
4n
3 ,rG(CII) = n,

2.rL(CI) = 2n = rL(CII),
3.rCE(CI) =

20n
9 , 3n

2 ≤ rCE(CII)≤ 2n and
4.rH(CI) = 2n, 3n

2 ≤ rH(CII)≤ 2n.

Proof.The methods of proof is pursue Theorem 1, by using
the generator matrix is GI and GII with different weight,
such as wG(x),wL(x),wCE(x) and wH(x).

4 Block repetition code for the same size of
length(n)

Let G1 = [

n︷ ︸︸ ︷
11 · · ·1

n︷ ︸︸ ︷
uu · · ·u] be the generated matrix of two

block repetition codes of length is n and it is denoted
BRep2n code and its parameters of BRep2n code is an
[2n,1,3n,3n,3n,3n,3n].

Theorem 3.Prove the following

1.rB(BRep2n) = 8n
3 ,

2.rG(BRep2n) = 7n
3 ,

3.rL(BRep2n) = 4n,
4.rCE(BRep2n) = 38n

9 and
5. 7n

2 ≤ rH(BRep2n)≤ 4n.

Proof.A generator matrix G1 and [8] and use to theorem 1,
then

rB(BRep2n)≥ 8n
3
. (1)

Let y = (z1 | z2) ∈ R2n, where z1,z2 ∈ R2n. Let us take
in z1, η0 appears 0′s, η1 appears 1′s, η2 appears 2′s, η3
appears u′s, η4 appears u′1s, η5 appears u′2s, η6 appears
u′3s, η7 appears u′4s, η8 appears u′5s and z2, η0 appears 0′s,
η1 appears 1′s, η2 appears 2′s, η3 appears u′s η4 appears
u′1s, η5 appears u′2s, η6 appears u′3s, η7 appears u′4s, η8
appears u′5s, with ∑

j
r j = ∑

j
s j = n and c j ∈ {α(G1)|α ∈

R2n}, j = 0 to 8.
Then, dB(y,BRep2n)=min{dB(y,c j)| j = 0 to 8} is less

than or equal to
4n
3 + 4n

3 = 8n
3 . Thus, dB(y,BRep2n)≤ 8n

3 . Hence,

rB(BRep2n)≤ 8n
3

(2)

By (1) and (2), thus

rB(BRep2n) =
8n
3
.

The remaining Proof of the Theorem 3 is follows from
first part and so, done.
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Corollary 1.Let

GI = [

n︷ ︸︸ ︷
11 · · ·1

n︷ ︸︸ ︷
22 · · ·2

n︷ ︸︸ ︷
u1u1 · · ·u1

n︷ ︸︸ ︷
u2u2 · · ·u2

n︷ ︸︸ ︷
u4u4 · · ·u4

n︷ ︸︸ ︷
u5u5 · · ·u5]

(3)
is a generator matrix with unit element in R. Then

1.rB(BRep6n) = 8n,
2.rG(BRep6n) = 8n,
3.rL(BRep6n) = 12n,
4.rCE(BRep6n) = 40n

3 and
5.rH(BRep6n) = 12n.

Proof.In (3) and use to Theorem 1, 2 and 3.

Corollary 2.Let

GII = [

n︷ ︸︸ ︷
uu · · ·u

n︷ ︸︸ ︷
u3u3 · · ·u3] (4)

is a generator matrix with zero divisor element in R. Prove
the following

1.3n ≤ rB(BRep2n)≤ 4n,
2.rG(BRep2n) = 2n,
3.rL(BRep2n) = 4n,
4.3n ≤ rCE(BRep2n)≤ 4n and
5.3n ≤ rH(BRep2n)≤ 4n.

Proof.In (4) is apply to Theorem 1, 2 and 3.

5 Bolck repetition code with different size of
the length (l1, l2)

Let

G = [

l1︷ ︸︸ ︷
11 · · ·1

l2︷ ︸︸ ︷
uu · · ·u] (5)

be the generated matrix for the two different blocks of
size l1 and l2 length of the repetition code BRepl1+l2 and
its parameters of BRepl1+l2 code is an
[l1 + l2,1,min{3l1, l1 +3l2},min{l1, l1 + l2},min{3l1, l1 +
3l2},min{3l1, l1 +3l2},min{3l1,2l1 +3l2}]

Theorem 4.Show that

1.rB(BRepl1+l2) = 4(l1+l2)
3 ,

2.rG(BRepl1+l2) = 4(l1+l2)
3 ,

3.rL(BRepl1+l2) = 2(l1 + l2),
4.rCE(BRepl1+l2) = 20l1

9 +2l2 and
5.rH(BRepl1+l2) = 2(l1 + l2).

Proof.A generator matrix (5), use to Theorem 3 and apply
the two different size of length(l1, l2).

Corollary 3.Let

GII = [

l1︷ ︸︸ ︷
uu · · ·u

l2︷ ︸︸ ︷
u3u3 · · ·u3] (6)

is a generator matrix with zero divisor element and
different length in R. Find the following

1. 4(l1+l2)
3 ≤ rB(BRepl1+l2)≤ 2(l1 + l2),

2.rG(BRepl1+l2) = l1 + l2,
3.rL(BRepl1+l2) = 2(l1 + l2),
4. 3(l1+l2)

2 ≤ rCE(BRepl1+l2)≤ 2(l1 + l2) and

5. 3(l1+l2)
2 ≤ rH(BRepl1+l2)≤ 2(l1 + l2).

Proof.In (6) with different length is applied to Theorem 4.

Corollary 4.Let

GI = [

l1︷ ︸︸ ︷
11 · · ·1

l2︷ ︸︸ ︷
22 · · ·2

l3︷ ︸︸ ︷
u1u1 · · ·u1

l4︷ ︸︸ ︷
u2u2 · · ·u2

l5︷ ︸︸ ︷
u4u4 · · ·u4

l6︷ ︸︸ ︷
u5u5 · · ·u5].

(7)
be a generator matrix with unit element and different
length in R. Then

1.rB(BRep∑ li) = 4(∑ li)
3 ,

2.rG(BRep∑ li) = 4(∑ li)
3 ,

3.rL(BRep∑ li) = 2(∑ li),
4.rCE(BRep∑ li) = 20(∑ li)

9 and
5.rH(BRep∑ li) = 2(∑ li), where i = 1,2,3,4,5,6.

Proof.In (7) with different length is applied to Theorem 4.

6 Conclusion

This work is for finite ring with nine elements and
estimation of lower bound and upper bound for the
covering radius of repetition codes for specific classes of
codes with different weights and also discrete types of
repetition codes are determined, use this covering radius
reduce to the error in communication channel of all
electronic field, in particularly information theory, then
got to the petter message.
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