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Abstract: This paper aims to examine the limitations of an N-bipolar soft mapping and analyze how the N-bipolar soft separation

axioms are affected by N-bipolar soft continuous, N-bipolar open, and N-bipolar closed mappings. Ultimately, we propose a

mathematical system that utilizes N-bipolar soft mappings to diagnose symptoms of OMICRON disease.
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Nomenclature

Abbreviations

NBS-set N-bipolar soft set

NBS-sets N-bipolar soft sets

NBS-subsets N-bipolar soft subsets

NBS-mapping N-bipolar soft mapping

NBS-bijection N-bipolar soft bijection

NBS-continuous mappings N-bipolar soft continuous

NBS-open N-bipolar soft open

NBS-closed N-bipolar soft closed

NBS-separation axioms N-bipolar soft separation axioms

NBS-homeomorphisms N-bipolar soft homeomorphisms

NBSTSs N-bipolar soft topological spaces

NBSTS N-bipolar soft topological space

NBS-relative topology N-bipolar soft relative topology

NBS-sub-topology N-bipolar soft sub-topology

NBS-interior N-bipolar soft interior

NBS-image N-bipolar soft image

NBS-inverse image N-bipolar soft inverse image

NBSTi-space N-bipolar soft Ti -space, i=0,1,2,3,4

1 Introduction

N-bipolar soft sets (NBS-sets) provide an enhanced
framework for bipolar soft set theory, empowering
decision-makers to articulate their uncertainties,
inconsistencies, and imprecisions throughout the
decision-making process. In NBS-set theory, elements in

the soft set are assigned to several categories or decision
classes based on their positive, negative, or neutral
characteristics. This enables the decision-makers to
model more complex decision-making situations and take
into account the different perspectives and preferences of
the stakeholders involved in the decision-making process.
NBS-sets find extensive application in diverse domains
including but not limited to medical diagnosis,
engineering, business administration, and other areas.
Fatia Fatimah et al. [1] were the first to propose the
concept of the N-soft set while Heba Mustafa [2] is
credited for originating the ideas behind the NBS-set. An
idea of the N-soft mappings and some of their properties
with examples and counterexamples are investigated in
[3]. They also described a mathematical system design for
diagnosing the purpose of the COVID-19 disease. But our
work aims to study new properties of NBS-continuous
mappings and we unveiled an innovative OMICRON
diagnostic approach within the framework of
NBS-mappings. The paper is organized as follows: In
Section 1, we review the history of the point, its
importance, and related paper. In Section 2, we mention a
few key antecedent concepts that are important in this
study. Section 3 presents the idea of N-bipolar soft
continuous mappings notions and describes them in
relation to significant theorems and specific features. In
Section 4, we analyze the impact of certain
NBS-separation axioms when applied to NBS-continuous,
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NBS-open and NBS-closed mappings. In Section 5, this
part of medical diagnosis, we showcase the practical
implementation of NBS-mappings. Finally, we conclude
our results in Section 6.

2 Preliminaries

The NBS-sets, and N-bipolar soft topological space
(NBSTS) concepts will be delved into more depth in this
section. Throughout this work, 2℧ is the power set of an
initial universe ℧. Additionally, S (which is not equal to
φ ) stands for the collection of parameters that are being
considered, and φ 6= ϒ , Ď are subsets of S. We repeat the
following definitions, but in more detail, we refer to [4],
[5], [6], [1], [7] and [2] respectively.

Definition 2.1. [2] It can be stated that (℘,Ω ,ϒ ,N) is an
N-bipolar soft set (NBS-set) if certain conditions are
satisfied. These conditions involve two functions, ℘ :
ϒ → 2℧×R and Ω : ¬ϒ → 2℧×R. Additionally, for each
a ∈ ϒ and µ ∈ ℧, there must exist unique pairs (µ , t

a),(µ , t¬a) ∈ ℧ × R such that (µ , ta) ∈ ℘(a);(µ , t

¬a) ∈ Ω(¬a), ta 6= t¬a and 0 < ta + t¬a < N − 1, ta, t

¬a ∈ R. It will be represented as

(℘,Ω ,ϒ ,N) = {(ş,℘(ş),Ω(¬ş),N) : ş ∈ϒ ,¬ş ∈ ¬ϒ}.

The set of all NBS-sets on ℧ (briefly BSN(℧,ϒ )).
Definition 2.2. [2] A group of NBS-subsets of an NBS-set
(℘,Ω ,S,N) is called N-bipolar soft topology (NBST) on
(℘,Ω ,S,N) (briefly τN

S ). It is characterized by the
fulfillment of the conditions:

(i) φN
S ,℧N

S ∈ τN
S .

(ii) If (℘j,Ω j,S,N) ∈ τN
S , j ∈ I, then

∪
j∈I
(℘j,Ω j,S,N) ∈ τN

S .

(iii) If (℘j,Ω j,S,N) ∈ τN
S ,1 ≤ j ≤ n,n ∈ N, then

∩
1≤ j≤n

(℘j,Ω j,S,N) ∈ τN
S .

The NBSTS is denoted by ((℘,Ω ,S,N),τN
S ). Each

element in τN
S is referred to as an NBS-open set. In

addition, the NBS-closed set is the complement of
NBS-open set.

Definition 2.3. [2] Let ((℘,Ω ,S,N),τN
S ) be an NBSTS

and (℘,Ω)1 = (℘1,Ω1,S,N)⊆̃(℘,Ω ,S,N). Then the
collection
τ̃N
(℘,Ω)1

= {(℘,Ω)i ∩ (℘1,Ω1,S,N) : (℘,Ω)i ∈ τN
S } is

called NBS-relative topology or an NBS-sub-topology on
(℘1,Ω1,S,N). The pair ((℘1,Ω1,S,N), τ̃N

(℘,Ω)1
) is called

an NBS-sub-space of ((℘,Ω ,S,N),τN
S ).

Proposition 2.4. [2] For the two NBS-sets (℘1,Ω1,ϒ ,N)
and (℘2,Ω2,ϒ ,N) on ℧, we get

(1) ((℘1,Ω1,ϒ ,N) ∪ℑ (℘2,Ω2,ϒ ,N))c =
((℘1,Ω1,ϒ ,N))c ∩ℜ ((℘2,Ω2,ϒ ,N))c,

(2) ((℘1,Ω1,ϒ ,N) ∩ℜ (℘2,Ω2,ϒ ,N))c =
((℘1,Ω1,ϒ ,N))c ∪ℑ ((℘2,Ω2,ϒ ,N))c,

(3) (℘1,Ω1,ϒ ,N)∩ℜ ℧N
S = (℘1,Ω1,ϒ ,N).

Remark 2.5. For the two NBS-sets (℘1,Ω1,ϒ ,N) and
(℘2,Ω2,ϒ ,N) on ℧, we obtain
(℘1,Ω1,ϒ ,N)⊆̃(℘2,Ω2,ϒ ,N) iff
(℘2,Ω2,ϒ ,N)c⊆̃(℘1,Ω1,ϒ ,N)c.
Definition 2.6.[2] Suppose ((℘,Ω ,S,N),τN

S ) is an NBSTS

and (℘1,Ω1,S,N), (℘2,Ω2,S,N) are two NBS-subsets of
(℘,Ω ,S,N) such that (℘1,Ω1,S,N)⊆̃(℘2,Ω2,S,N). Let
(℘2,Ω2,S,N) be an NBS-neighborhood of(℘1,Ω1,S,N),
then (℘1,Ω1,S,N) is an NBS-interior of (℘2,Ω2,S,N) .
Furthermore, the union of all NBS-interior of
(℘2,Ω2,S,N) is referred to as the NBS-interior for
(℘2,Ω2,S,N), also symbolized as (℘2,Ω2,S,N)◦.

Definition 2.7. [2] Let ((℘,Ω ,S,N),τN
S ) be an NBSTS and

(℘1,Ω1,S,N)
⊆̃(℘,Ω ,S,N). The NBS-closure for (℘1,Ω1,S,N)

which is denoted by cl((℘1,Ω1,S,N)) or (℘1,Ω1,S,N) is
the intersection of all NBS-closed superset of
(℘1,Ω1,S,N).
Definition 2.8. [2] For an NBSTS ((℘,Ω ,S,N),τN

S ), we
have

(1) ℧N
S and φN

S are NBS-closed sets.

(2) The NBS-closed sets are preserved when taking the
finite unions of them

(3) The sets resulting from taking arbitrary
intersections of NBS-closed sets are also NBS-closed sets.

Definition 2.9. [8] Let (℘,Ω ,S,N) be an NBS-set over ℧
and µ ∈ ℧. When µ ∈℘(ş),µ ∈ Ω(¬ş) for all ş∈ S,¬ş∈
¬S, we state that µ ∈ (℘,Ω ,S,N).

Note that if µ /∈℘(ş),υ /∈ Ω(¬ş) for some ş∈ S,¬ş∈
¬S, then for every µ ∈ ℧, µ /∈ (℘,Ω ,S,N).
Definition 2.10. [8] Let ((℘,Ω ,S,N),τN

S ) be an NBSTS

over (℘,Ω ,S,N) and µ ,κ ∈ (℘,Ω ,S,N) such that µ 6= κ .

(1) If (℘1,Ω1,S,N) and (℘2,Ω2,S,N) are NBS-open
subsets of (℘,Ω ,S,N) such that µ ∈ (℘1,Ω1,S,N) and
κ /∈ (℘1,Ω1,S,N) or κ ∈ (℘2,Ω2,S,N) and
µ /∈ (℘2,Ω2,S,N), then ((℘,Ω ,S,N),τN

S ) is called an
NBST0-space.

(2) If (℘1,Ω1,S,N) and (℘2,Ω2,S,N) are NBS-open
subsets of (℘,Ω ,S,N) such that µ ∈ (℘1,Ω1,S,N) and
κ /∈ (℘1,Ω1,S,N) and κ ∈ (℘2,Ω2,S,N) and
µ /∈ (℘2,Ω2,S,N), then ((℘,Ω ,S,N),τN

S ) is called an
NBST1-space.

(3) If (℘1,Ω1,S,N) and (℘2,Ω2,S,N) are NBS-open
subsets of (℘,Ω ,S,N) such that µ ∈ (℘1,Ω1,S,N),
κ ∈ (℘2,Ω2,S,N) and (℘1,Ω1,S,N)∩ (℘2,Ω2,S,N) = φ
, then ((℘,Ω ,S,N),τN

S ) is called an NBST2-space.

3 N-bipolar soft continuous mappings

In this part, our first focus will be on examining the
properties of N-bipolar soft continuous mappings
between two NBSTSs. Additionally, some fresh insights
into the qualities of NBS-continuous, NBS-open, and
NBS-closed mappings are provided.

Definition 3.1. Let ßŞN(℧,S) and ßŞN(χ ,S′) with
characteristics from S and S′ be the families of all
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N-Bipolar soft sets on ℧ and χ respectively. If p : ℧→ χ
is an injective function, and η : S → S′,q : ¬S → ¬S′ are
two mappings, where q(¬ş) = ¬η(ş) for all ¬ş ∈ ¬S,
then an NBS-mapping ξpηq : ßŞN(℧,S) → ßŞN(χ ,S′) is

defined as: for any NBS-set (Θ ,Ω ,S,N) in ßŞN(℧,S) the
image of (Θ ,Ω ,S,N) under ξpηq, as follows

ξpηq(Θ ,Ω ,S,N) = {ξpηq(Θ(α)),ξpηq(Ω(¬α)),S′,N :

α ∈ S′,¬α ∈ ¬S′},

is an NBS-set in ßŞN(χ ,S′) given as, for all ş′ ∈ S′ and
¬ş′ ∈ ¬S′

ξpηq(Θ(α))(κ) =
{

(κ ,ξpηq(Θ(ş′)(κ))) : κ ∈ χ
}

,

and

ξpηq(Ω(¬α))(κ) =
{

(κ ,ξpηq(Ω(¬ş′)(κ))) : κ ∈ χ
}

,

where

ξpηq(Θ(ş′)(κ)) =























max{Θ(ş)(µ) : ş ∈ η−1(ş′),
µ ∈ p−1(κ),
if η−1(ş′)∩S 6= φ ,
p−1(κ) 6= φ ;
0, otherwise,

ξpηq(Ω(¬ş′)(κ)) =























min{Ω(¬ş)(µ) : ¬ş ∈ q−1(¬ş′),
µ ∈ p−1(κ),
if q−1(¬ş′)∩¬S 6= φ ,
p−1(κ) 6= φ ;
0, otherwise.

ξpηq(Θ ,Ω ,S,N) is called an NBS-image of (Θ ,Ω ,S,N)
under ξpηq.
Definition 3.2. Let p : ℧ → χ be an injective function,
and η : S → S′,q : ¬S → ¬S′ be two mappings, where
q(¬ş) = ¬η(ş) for all ¬ş ∈ ¬S. We defined a mapping

ξpηq : ßŞN(℧,S)→ ßŞN(χ ,S′) as follows: if (ψ ,ω ,S′,N)
is an NBS-set in ßŞN(χ ,S′), the inverse image of
(ψ ,ω ,S′,N) under ξ−1

pηq, written as

ξ−1
pηq(ψ ,ω ,S′,N) = {ξ−1

pηq(ψ(α)),ξ−1
pηq(ω(¬α)),S,N :

α ∈ S,¬α ∈ ¬S},

is an NBS-set in ßŞN(℧,S) given as, for all ş∈ S and ¬ş ∈
¬S

ξ−1
pηq(ψ(α))(ş) =

{

(µ ,ξ−1
pηq(ψ(ş)(µ))) : µ ∈ ℧

}

,

and

ξ−1
pηq(ω(¬α))(¬ş) =

{

(µ ,ξ−1
pηq(ω(¬ş)(µ))) : µ ∈℧

}

,

where
ξ−1

pηq(ψ(ş)(µ)) = ψ p(µ)η(ş),

ξ−1
pηq(ω(¬ş)(µ)) = ω p(µ)q(¬ş).

ξ−1
pηq(ψ ,ω ,S′,N) is said to be an NBS-inverse image of

(ψ ,ω ,S′,N).

Example 3.3. Let ℧ = {µ1,µ2,µ3},χ = {κ1,κ2,κ3},S =
{ş1, ş2, ş3},¬S = {¬ş1,¬ş2,¬ş3},S

′ = {ş′1, ş
′
2} and ¬S′ =

{¬ş′1,¬ş′2}. Define the mapping p : ℧→ χ ,η : S → S′ and
q : ¬S →¬S by

p(µ1) = κ1 p(µ2) = κ2 p(µ3) = κ2

η(ş1) = ş′1 η(ş2) = ş′1 η(ş3) = ş′2

q(¬ş1) = ¬ş′1 q(¬ş2) = ¬ş′2 q(¬ş3) = ¬ş′2.

Take two 5BS-sets on ℧ and χ with parameters from S to
S′, respectively, as

(Θ ,Ω ,S,5) = {(〈ş1,{(µ1,4),(µ2,2),(µ3,0)}〉 ,

〈¬ş1,{(µ1,0),(µ2,1),(µ3,2)}〉),

(〈ş2,{(µ1,0),(µ2,1),(µ3,2)}〉 ,

〈¬ş2,{(µ1,3),(µ2,2),(µ3,0)}〉),

(〈ş3,{(µ1,3),(µ2,1),(µ3,0)}〉 ,

〈¬ş3,{(µ1,1),(µ2,3),(µ3,4)}〉)},

and

(ψ ,ω ,S′,5) = {(
〈

ş′1,{(κ1,3),(κ2,1),(κ3,2)}
〉

,
〈

¬ş′1,{(κ1,1),(κ2,2),(κ3,1)}
〉

),

(
〈

ş′2,{(κ1,0),(κ2,2),(κ3,4)}
〉

,
〈

¬ş′2,{(κ1,3),(κ2,2),(κ3,0)}
〉

)}.

So, the 5BS-image of (Θ ,Ω ,S,5) under the 5BS-mapping

ξpηq : ßŞ5(℧,S)→ ßŞ5(χ ,S′) is obtained as the following:

Table 1 The tabular form of ξpηq(Θ ,Ω ,S,5)
ξpηq(Θ ,Ω ,S,5) (ş′1,¬ş′1) (ş′2,¬ş′2)
κ1 (4,0) (3,1)
κ2 (2,1) (2,0)
κ3 (0,0) (0,0)

Therefore, we can write a 5BS-image of (Θ ,Ω ,S,5) under
ξpηq as

ξpηq(Θ ,Ω ,S,5) = (ξpηq(Θ(α)),ξpηq(Ω(¬α)),S′,5)

= {(
〈

ş′1,{(κ1,4),(κ2,2),(κ3,0)}
〉

,
〈

¬ş′1,{(κ1,0),(κ2,1),(κ3,0)}
〉

),

(
〈

ş′2,{(κ1,3),(κ2,2),(κ3,0)}
〉

,
〈

¬ş′2,{(κ1,1),(κ2,0),(κ3,0)}
〉

)}.

Now, let us compute the 5BS-inverse image of (ψ ,ω ,S′,5)
over χ :

Table 2 The tabular form of ξ−1
pηq(Θ ,Ω ,S′,5)

ξ−1
pηq(ψ ,ω ,S′,5) (ş1,¬ş1) (ş2,¬ş2) (ş3,¬ş3)

µ1 (3,1) (3,3) (0,3)
µ2 (1,2) (1,2) (2,2)
µ3 (1,2) (1,2) (2,2)
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Therefore, the 5BS-inverse image of (ψ ,ω ,S′,5) is

ξ−1
pηq(ψ , t,S′,5) = (ξ−1

pηq(ψ(α)),ξ−1
pηq(ω(¬α)),S,5)

= {(〈ş1,{(µ1,3),(µ2,1),(µ3,1)}〉 ,

〈¬ş1,{(µ1,1),(µ2,2),(µ3,2)}〉),

(〈ş2,{(µ1,3),(µ2,1),(µ3,1)}〉 ,

〈¬ş2,{(µ1,3),(µ2,2),(µ3,2)}〉),

(〈ş3,{(µ1,0),(µ2,2),(µ3,2)}〉 ,

〈¬ş3,{(µ1,3),(µ2,2),(µ3,2)}〉)}.

Definition 3.4. An NBS-mapping
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) for an

NBSTSs ((Θ ,Ω ,S,N),τN
S ) and ((ψ ,ω ,S′,N),υN

S′
) is

called

(1) NBS-open if ξpηq(Θ1,Ω1,S,N) ∈ υN
S′

for each

(Θ1,Ω1,S,N)⊆ (Θ ,Ω ,S,N) ∈ τN
S .

(2) NBS-closed if ξpηq(Θ1,Ω1,S,N) ∈ υ ′N
S′

for each

(Θ1,Ω1,S,N)⊆ (Θ ,Ω ,S,N) ∈ τ ′NS .

Theorem 3.5. Let ((Θ1,Ω1,S,N), τ̃N
(Θ ,Ω)1

) be an

NBS-subspace of an NBSTS ((Θ ,Ω ,S,N),τN
S ) and

(Θ1,Ω1,S,N) be an NBS-open set in W . If W N
S ∈ τN

S , then

(Θ1,Ω1,S,N) ∈ τN
S .

Proof. Let (Θ1,Ω1,S,N) be an NBS-open set in W.
Consequently there exists an NBS-open set
(ψ1,ω1,S,N) ⊆ (ψ ,ω ,S,N) in ℧ where
(Θ1,Ω1,S,N) = W N

S ∩ (ψ1,ω1,S,N). Using the third
axiom of the definition of an NBSTS,
W N

S ∩ (ψ1,ω1,S,N) ∈ τN
S if W N

S ∈ τN
S .Therefore,

(Θ1,Ω1,E,N) ∈ τN
S .

Theorem 3.6. Let ((Θ1,Ω1,S,N), τ̃N
(Θ ,Ω)1

) be an

NBS-subspace of an NBSTS ((Θ ,Ω ,S,N),τN
S ) and

(Θ1,Ω1,S,N) be an NBS-closed set in W . If W N
S ∈ τ ′NS ,

then (Θ1,Ω1,S,N) ∈ τ ′NS .

Proof. It can be proved directly.

Definition 3.7. An NBS-mapping
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous iff
ξ−1

pηq(ψ1,ω1,S
′,N) ⊆ (ψ ,ω ,S,N) ∈ τN

S for every

(ψ1,ω1,S
′,N) ∈ υN

S′
.

Example 3.8. Let
℧ = {µ1,µ2,µ3},χ = {κ1,κ2,κ3},S = {ş1,ş2,ş3},¬S =
{¬ş1,¬ş2,¬ş3},S

′ = {ş′1,ş
′
2},¬S′ = {¬ş′1,¬ş′2},

τ6
S = {φ6

S ,℧
6
S,(Θ1,Ω1,S,6)}, where (Θ1,Ω1,S,6) is a

6BS-set on ℧, defined as follows:

(Θ1,Ω1,S,6) = {(〈ş1,{(µ1,5),(µ2,3),(µ3,1)}〉 ,

〈¬ş1,{(µ1,0),(µ2,2),(µ3,2)}〉),

(〈ş2,{(µ1,0),(µ2,2),(µ3,3)}〉 ,

〈¬ş2,{(µ1,4),(µ2,3),(µ3,1)}〉),

(〈ş3,{(µ1,4),(µ2,2),(µ3,0)}〉 ,

〈¬ş3,{(µ1,2),(µ2,4),(µ3,5)}〉)},

υ6
S′
= {φ6

S′
,χ6

S′
,(ψ1,ω1,S

′,6)}, where (ψ1,ω1,S
′,5) is a

6BS-set on χ , defined as follows:

(ψ ,ω ,S′,6) = {(
〈

ş′1,{(κ1,4),(κ2,2),(κ3,3)}
〉

,
〈

¬ş′1,{(κ1,2),(κ2,3),(κ3,2)}
〉

),

(
〈

ş′2,{(κ1,0),(κ2,3),(κ3,5)}
〉

,
〈

¬ş′2,{(κ1,4),(κ2,2),(κ3,0)}
〉

)},

and let ((Θ ,Ω ,S,6),τ6
S ) and ((ψ ,ω ,S′,6),υ6

S′
) be a

6BSTSs.
Define the mapping p :℧→ χ ,η : S→ S′ and q : ¬S →

¬S by

p(µ1) = κ1 p(µ2) = κ2 p(µ3) = κ1

η(ş1) = ş′1 η(ş2) = ş′1 η(ş3) = ş′2

q(¬ş1) = ¬ş′1 q(¬ş2) = ¬ş′2 q(¬ş3) = ¬ş′2.

Let ξpηq : ((Θ ,Ω ,S,6),τ6
S )→ ((ψ ,ω ,S′,6),υ6

S′
) be a 6BS-

mapping. Then (ψ1,ω1,S
′,6)⊆ (ψ ,ω ,S′,6) is a 6BS-open

in χ and ξ−1
pηq(ψ1,ω1,S

′,6) = (Θ1,Ω1,S,6)⊆ (Θ ,Ω ,S,6)

is a 6BS-open in ℧. Therefore, ξpηq is a 6BS-continuous

mapping from ((Θ ,Ω ,S,6),τ6
S ) to ((ψ ,ω ,S′,6),υ6

S′
).

Definition 3.9. Let φ 6=W ⊆℧, then W N
S denotes the NBS-

set ßŞN(W,S) over℧ for which W (ş) =W and W (¬ş)=W

for all ş∈W and ¬ş∈ ¬W

Definition 3.10. Let (Θ ,Ω ,S,N) ∈ßŞN(℧,S) and

(ψ ,ω ,S′,N) ∈ßŞN(χ ,S′), then ξpηq : ßŞN(℧,S) →
ßŞN(χ ,S′) is an NBS-mapping and

(Θ1,Ω1,S,N)⊆̃(Θ ,Ω ,S,N) = (Θ ,Ω)1 ∈W ⊆℧.

An NBS-mapping of ξpηq|ßŞN(W,S) from ßŞN(℧,S) to

ßŞN(χ ,S′) is the restriction of ξpηq to ßŞN(W,S).
This is defined as η : Θ → S′,q : Ω → ¬S′ and p|W :

W → χ , where p|W is the restriction of p to W .

Proposition 3.11. If ξpηq : ßŞN(℧,S) → ßŞN(χ ,S′) is an
NBS-mapping and W ⊆ ℧, then

(ξpηq|ßŞN (W,S))
−1(ψ ,ω ,S′,N) = ξ−1

pηq(ψ ,ω ,S′,N)∩W N
S ,

for all (ψ ,ω ,S′,N) ∈ ßŞN(χ ,S′).

Proof. From the equality (p|W )−1(χ ′) = p−1(χ ′)∩W for
all χ ′ ⊆ χ , the proof is finished.
Theorem 3.12. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous, then ξpηq|ßŞN(W,S) :

((Θ1,Ω1,S,N), τ̃N
(Θ ,Ω)1

) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous for every (Θ ,Ω)1 ∈W ⊆ ℧.
Proof. Using Proposition 3.11. with the definition of

NBS-relative topology, the proof is finished.
Theorem 3.13. For any NBSTSs ((Θ ,Ω ,S,N),τN

S ) and

((ψ ,ω ,S′,N),υN
S′
), the following are satisfied

(1) Let {(W N
S ) j} j∈I be a family of subsets of ℧ with

(W N
S ) j ’s are NBS-open sets in ℧ and ℧N

S = ∪
j∈I
(W N

S ) j .

Then ξpηq : ((Θ ,Ω ,S,N),τN
S ) → ((ψ ,ω ,S′,N),υN

S′
) is

NBS-continuous iff ξpηq|ßŞN ((WN
E ) j ,S)

:
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((Θ j,Ω j,S,N), τ̃N
(Θ ,Ω) j

) → ((ψ ,ω ,S′,N),υN
S′
) is

N-bipolar soft continuous for every j ∈ I.
(2) Let (W N

S )1,(W
N
S )2, ...,(W

N
S )n are an NBS-closed

sets in ℧ and ℧N
S = ∪n

i∈I
(W N

S ) j, then the NBS-mapping

ξpηq : ((Θ ,Ω ,S,N),τN
S ) → ((ψ ,ω ,S′,N),υN

S′
) is

NBS-continuous iff ξpηq|ßŞN((WN
S ) j,S) :

((Θ j,Ω j,S,N), τ̃N
(Θ ,Ω) j

) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous for each j = 1,2, ...,n.
Proof. (1) (⇒) It is Theorem 3.12.
(⇐) For an NBS-open set

(ψ1,ω1,S
′,N) ⊆ (ψ ,ω ,S′,N) ∈ χ . If ξpηq|ßŞN ((WN

S ) j ,S)
is

NBS-continuous, then (ξpηq|ßŞN((W N
S ) j ,S)

)−1(ψ1,ω1,S
′,N)

is NBS-open set in (W N
S ) j for all j ∈ I. Using Theorem

3.5, if (W N
S ) j ∈ ℧ is NBS-open, then

(ξpηq|ßŞN ((WN
S ) j ,S)

)−1(ψ1,ω1,S
′,N) is NBS-open set in ℧.

Therefore,
ξ−1

pηq(ψ1,ω1,S
′,N) = ξ−1

pηq(ψ1,ω1,S
′,N) ∩ ℧N

S =

ξ−1
pηq(ψ1,ω1,S

′,N) ∩ (∪
j∈I
(W N

S )i) =

∪
j∈I
(ξ−1

pηq(ψ1,ω1,S
′,N)∩ (W N

S ) j) =

∪
i∈I
(ξpηq|ßŞN((WN

S ) j ,S)
)−1(ψ1,ω1,S

′,N) is NBS-open

in ℧. Now the proof is complete.
(2) It can be demonstrated similarly.

Lemma 3.14. [2] For an NBSTS ((Θ ,Ω ,S,N),τN
S ) with

(Θ1,Ω1,S,N),(Θ2,Ω2,S,N)
∈ßŞN(℧,S).
The following are satisfied
(1) (Θ1,Ω1,S,N) is NBS-closed set iff

(Θ1,Ω1,S,N) = (Θ1,Ω1,S,N).
(2) (Θ2,Ω2,S,N)⊆̃(Θ1,Ω1,S,N) =⇒

(Θ2,Ω2,S,N)⊆̃(Θ1,Ω1,S,N).
(3) (Θ1,Ω1,S,N) is an NBS-open set iff

(Θ1,Ω1,S,N)◦ = (Θ1,Ω1,S,N).
(4) If (Θ1,Ω1,S,N)⊆̃(Θ2,Ω2,S,N), then

(Θ1,Ω1,S,N)◦⊆̃(Θ2,Ω2,S,N)◦.
Remark 3.15. Let ((Θ ,Ω ,S,N),τN

S ) be an NBSTS and

(Θ1,Ω1,S,N) ∈ßŞN(℧,S). Then

(1) ((Θ1,Ω1,S,N)◦)c = ((Θ1,Ω1,S,N)c).

(2) ((Θ1,Ω1,S,N))c = ((Θ1,Ω1,S,N)c)◦.
Proof. (1) =⇒ By Lemma 2.21

((Θ1,Ω1,S,N)◦)c = [∪{(Θ3,Ω3,S,N)

: (Θ3,Ω3,S,N) ∈ τN
S is NBS-open

and (Θ3,Ω3,S,N) ⊆̃ (Θ1,Ω1,S,N)}]c

= ∩[(Θ3,Ω3,S,N)c

: (Θ3,Ω3,S,N) ∈ τN
S is NBS-open

and (Θ3,Ω3,S,N) ⊆̃ (Θ1,Ω1,S,N)]

= ∩[(Θ3,Ω3,S,N)c

: (Θ3,Ω3,S,N)c ∈ τN
S is NBS-closed

and (Θ1,Ω1,S,N)c ⊆̃ (Θ3,Ω3,S,N)c]

= ((Θ1,Ω1,S,N)c).

(2) =⇒ Similar to that of (1).

As in [3] we have the following definition.
Definition 3.16.

(1) The NBS-mapping ξpηq is said to be injective if
p,η and q are injective mappings.

(2) The NBS-mapping ξpηq is said to be surjective if
p,η and q are surjective mappings.

(3) The NBS-mapping ξpηq is said to be bijective if
p,η and q are bijective mappings.
Definition 3.17. Let ξpηq : ßŞN(℧,S)→ ßŞN(χ ,S′) be an
NBS-mapping and (Θ1,Ω1,S,N), (Θ2,Ω2,S,N) be
NBS-sets in ßŞN(℧,S). For ş′ ∈ S′, NBS-intersection and
union of NBS-images of (Θ1,Ω1,S,N) and (Θ2,Ω2,S,N)
in ßŞN(℧,S) are defined as:

(ξpηq(Θ1,Ω1,S,N)∩ξpηq(Θ2,Ω2,S,N))(ş′)

= ξpηq(Θ1,Ω1,S,N)(ş′)∩ξpηq(Θ2,Ω2,S,N)(ş′),

(ξpηq(Θ1,Ω1,S,N)∪ξpηq(Θ2,Ω2,S,N))(ş′)

= ξpηq(Θ1,Ω1,S,N)(ş′)∪ξpηq(Θ2,Ω2,S,N)(ş′).

Definition 3.18. Let ξpηq : ßŞN(℧,S)→ ßŞN(χ ,S′) be an
NBS-mapping and (ψ1,ω1,S

′,N), (ψ2,ω2,S
′,N) NBS-sets

in ßŞN(χ ,S′). Then ş∈ S, NBS-intersection and union of
NBS-inverse images of (ψ1,ω1,S

′,N) and (ψ2,ω2,S
′,N)

in ßŞN(χ ,S′) are defined as:

(ξ−1
pηq(ψ1,ω1,S

′,N)∩ξ−1
pηq(ψ2,ω2,S

′,N))(ş)

= ξ−1
pηq(ψ1,ω1,S

′,N)(ş)∩ξ−1
pηq(ψ2,ω2,S

′,N)(ş),

(ξ−1
pηq(ψ1,ω1,S

′,N)∪ξ−1
pηq(ψ2,ω2,S

′,N))(ş)

= ξ−1
pηq(ψ1,ω1,S

′,N)(ş)∪ξ−1
pηq(ψ2,ω2,S

′,N)(ş).

Theorem 3.19. Let {(Θi,Ωi,S,N)}i∈I ⊆ßŞN(℧,S) and
{(ψi,ωi,S

′,N)}i∈I ⊆ßŞN(χ ,S′). Then for an

NBS-mapping ξpηq : ßŞN(℧,S) → ßŞN(χ ,S′), the
following are true.

(1) If (Θ1,Ω1,S,N)⊆̃(Θ2,Ω2,S,N), then
ξpηq(Θ1,Ω1,S,N)⊆̃ ξpηq(Θ2,Ω2,S,N).

(2) If (ψ1,ω1,S
′,N)⊆̃(ψ2,ω2,S

′,N), then
ξ−1

pηq(ψ1,ω1,S
′,N)⊆̃ ξ−1

pηq(ψ2,ω2,S
′,N).

(3) ξpηq((Θ1,Ω1,S,N) ∪ (Θ2,Ω2,S,N)) =
ξpηq(Θ1,Ω1,S,N)∪ξpηq(Θ2,Ω2,S,N).

In general,
ξpηq(∪i(Θi,Ωi,S,N)) = ∪iξpηq(Θi,Ωi,S,N).

(4) ξ−1
pηq((ψ1,ω1,S

′,N) ∩ (ψ2,ω2,S
′,N)) =

ξ−1
pηq(ψ1,ω1,S

′,N)∩ξ−1
pηq(ψ2,ω2,S

′,N).

(5) ξ−1
pηq((ψ1,ω1,S

′,N) ∪ (ψ2,ω2,S
′,N)) =

ξ−1
pηq(ψ1,ω1,S

′,N)∪ξ−1
pηq(ψ2,ω2,S

′,N).
Proof. Proving only (1)− (3), the other proofs adopt a

similar approach.
(1) For all ş′ ∈ S′ and ¬ş′ ∈ ¬S′

ξpηq(Θ1(ş
′)(κ)) =







max{Θ1(ş)(µ) : ş ∈ η−1(ş′),µ ∈ p−1(κ),
if η−1(ş′)∩S 6= φ , p−1(κ) 6= φ ;

0, otherwise

and

ξpηq(Ω1(¬ş′)(κ)) =







min{Ω1(¬ş)(µ) : ¬ş ∈ q−1(¬ş′),µ ∈ p−1(κ),
if q−1(¬ş′)∩¬S 6= φ , p−1(κ) 6= φ ;

0, otherwise

.
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We consider the case when η−1(ş′) ∩ S 6= φ and
q−1(¬ş′)∩¬S 6= φ as otherwise it is trivial. Then

ξpηq(Θ1(ş
′)(κ)) = maxΘ1(ş)(µ)⊆̃maxΘ2(ş)(µ)

= ξpηq(Θ2(ş
′)(κ)),

and

ξpηq(Ω1(¬ş′)(κ)) = minΩ1(¬ş)(µ)⊆̃minΩ2(¬ş)(µ)

= ξpηq(Ω2(¬ş′)(κ)).

This gives (1).
(2) For all ş∈ S and ¬ş∈ ¬S

ξ−1
pηq(ψ1(α))(ş) =

{

(µ ,ξ−1
pηq(ψ1(ş)(µ))) : µ ∈℧

}

,

and

ξ−1
pηq(ω1(¬α))(¬ş) =

{

(µ ,ξ−1
pηq(ω1(¬ş)(µ))) : µ ∈℧

}

,

where

ξ−1
pηq(ψ1(ş)(µ)) = ψ1 p(µ)η(ş)⊆̃ψ2 p(µ)η(ş)

= ξ−1
pηq(ψ2(ş)(µ),

and

ξ−1
pηq(ω1(¬ş)(µ)) = ω1 p(µ)q(¬ş)⊆̃ω2 p(µ)q(¬ş)

= ξ−1
pηq(ω2(¬ş)(µ)).

This gives (2).
(3) For all ş′ ∈ S′ and ¬ş′ ∈ ¬S′, we show that

ξpηq((Θ1,Ω1,S,N) ∪ (Θ2,Ω2,S,N)) =
ξpηq(Θ1,Ω1,S,N)∪ξpηq(Θ2,Ω2,S,N).

Consider ξpηq((Θ1,Ω1,S,N)∪ (Θ2,Ω2,S,N))
= ξpηq(h, l,S∪S,max(N1,N2)) =

ξpηq(h(ş
′)(κ)) =























max{h(ş)(µ) : ş ∈ η−1(ş′),
µ ∈ p−1(κ),
if η−1(ş′)∩ (S∪S) 6= φ
, p−1(κ) 6= φ ;
0, otherwise

and

ξpηq(l(¬ş′)(κ)) =























min{l(¬ş)(µ) : ¬ş ∈ q−1(¬ş′)
,µ ∈ p−1(κ),
if q−1(¬ş′)∩ (¬S∪¬S) 6= φ ,
p−1(κ) 6= φ ;
0, otherwise

,

where

h(ş)(µ) =















Θ1(ş) if ş ∈ϒ − Ď

Θ2(ş) if ş ∈ Ď−ϒ
(µ , tş) s.t. tş = max(t1ş , t

2
ş ),

where (µ , t1ş ) ∈Θ1(ş) and (µ , t2ş ) ∈Θ2(ş),

,

and

l(¬ş)(µ) =























Ω1(¬ş) if ¬ş ∈ (¬ϒ )− (¬Ď)
Ω2(¬ş) if ¬ş ∈ (¬Ď)− (¬ϒ )
(µ , t¬ş) s.t. t¬ş = min(t1¬ş, t

2
¬ş),

where (µ , t1¬ş) ∈ Ω1(¬ş)

and (µ , t2¬ş) ∈ Ω2(¬ş)

.

We consider the case when η−1(ş′) ∩ (S ∪ S) 6= φ and
q−1(¬ş′)∩ (¬S∪¬S) 6= φ as otherwise it is trivial. Then

ξpηq(h(ş
′)(κ))=max























Θ1(ş) if ş ∈ (ϒ − Ď)∩η−1(ş′)
Θ2(ş) if ş ∈ (Ď−ϒ )∩η−1(ş′)
(µ , tş) s.t. tş = max(t1ş , t

2
ş ),

where (µ , t1ş ) ∈Θ1(ş)

and (µ , t2ş ) ∈Θ2(ş),
(1)

and

ξpηq(l(¬ş′)(κ))

= min























Ω1(¬ş) if ¬ş ∈ ((¬ϒ )− (¬Ď))∩q−1(¬ş′)
Ω2(¬ş) if ¬ş ∈ ((¬Ď)− (¬ϒ ))∩q−1(¬ş′)
(µ , t¬ş) s.t. t¬ş = min(t1¬ş, t

2
¬ş),

where (µ , t1¬ş) ∈ Ω1(¬ş)

and (µ , t2¬ş) ∈ Ω2(¬ş)

(2)

Next, for the non-trivial case, using Definition 3.17 and for
ş′ ∈ S′ and ¬ş′ ∈ ¬S′, we have

(ξpηq((Θ1,Ω1,S,N)∪ (Θ2,Ω2,S,N)))

= ξpηq(Θ1,Ω1,S,N)∪ξpηq(Θ2,Ω2,S,N)

= ξpηq(Θ1(ş
′)(κ)) = maxΘ1(ş)(µ)∪maxΘ2(ş)(µ)

= ξpηq(Θ2(ş
′)(κ)),

and

ξpηq(Ω1(¬ş′)(κ)) = minΩ1(¬ş)(µ)∪minΩ2(¬ş)(µ)

= ξpηq(Ω2(¬ş′)(κ))

= ξpηq(h(ş
′)(κ))

= max















Theta1(ş) if ş ∈ (ϒ − Ď)∩η−1(ş′)
Θ2(ş) if ş ∈ (Ď−ϒ )∩η−1(ş′)

(µ , tş) s.t. tş = max(t1ş , t
2
ş ),

where (µ , t1ş ) ∈Θ1(ş) and (µ , t2ş ) ∈Θ2(ş),

(3)

and

= ξpηq(l(¬ş′)(κ))

= min















Ω1(¬ş) if ¬ş ∈ ((¬ϒ )− (¬Ď))∩q−1(¬ş′)
Ω2(¬ş) if ¬ş ∈ ((¬Ď)− (¬ϒ ))∩q−1(¬ş′)

(µ , t¬ş) s.t. t¬ş = min(t1¬ş, t
2
¬ş),

where (µ , t1¬ş) ∈ Ω1(¬ş) and (µ , t2¬ş) ∈ Ω2(¬ş)

(4)

From Equations (1− 4), we have (3).
Theorem 3.20. For an NBS-mapping ξpηq : ßŞN(℧,S)→

ßŞN(χ ,S′), the following are true.
(1) ξ−1

pηq((ψ1,ω1,S
′,N)c) = (ξ−1

pηq(ψ1,ω1,S
′,N))c for

every (ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′).

(2) ξpηq(ξ
−1
pηq(ψ1,ω1,S

′,N))⊆̃(ψ1,ω1,S
′,N) for

every (ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′). If ξpηq is surjective, the

equality is satisfied.
(3) (Θ1,Ω1,S,N)⊆̃ ξ−1

pηq(ξpηq(Θ1,Ω1,S,N)) for every

(Θ1,Ω1,S,N)∈ßŞN(℧,S). If ξpηq is injective, the equality
is satisfied.

Proof. We have proven (1). The remaining proofs
adhere to analogous approaches.
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(1) We will first prove ξ−1
pηq(ψ

c
1) = ξ−1

pηq((ψ1)
c)η−1(S′)

and ξ−1
pηq(ω

c
1) = ξ−1

pηq((ω1)
c)q−1(¬S′). For every ş∈ S and

¬ş∈ ¬S, we have

ξ−1
pηq((ψ1)

c)η−1(S′)(ş)(µ) =







℧− ξ−1
pηq(ψ1)(ş)(µ),

η(ş) ∈ S′,µ ∈ ℧,
℧,η(ş) /∈ S′

=

{

℧− (µ,ξ−1
pηq(ψ1(ş)(µ)))

= ℧−ψ1 p(µ)η(ş),η(ş) ∈ S′

℧,η(ş) /∈ S′,

and

ξ−1
pηq((ω1)

c)q−1(¬S′)(¬ş)(µ) =







℧− ξ−1
pηq(ω1)(¬ş)(µ),

q(¬ş) ∈ S′,µ ∈ ℧,
℧,q(¬ş) /∈ S′

=

{

℧− (µ,ξ−1
pηq(ω1(¬ş)(µ)))

= ℧−ω1 p(µ)q(¬ş),
q(¬ş) ∈ S′,
℧,q(¬ş) /∈ S′.

On the other side, for every ş∈ S and ¬ş ∈ ¬S,

ξ−1
pηq((ψ1)

c)(ş)(µ) =







ξ−1
pηq(χ − (ψ1)(ş)(µ)),

η(ş) ∈ S′,µ ∈℧,
℧,η(ş) /∈ S′

=







℧− (µ ,ξ−1
pηq(ψ1(ş)(µ)))

= ℧−ψ1p(µ)η(ş),η(ş) ∈ S′

℧,η(ş) /∈ S′
,

and

ξ−1
pηq((ω1)

c)(¬ş)(µ) =







ξ−1
pηq(χ − (ω1)(¬ş)(µ)),

q(¬ş) ∈ S′,µ ∈℧,
℧,q(¬ş) /∈ S′

=

{

℧− (µ,ξ−1
pηq(ω1(¬ş)(µ)))

= ℧−ω1 p(µ)q(¬ş),q(¬ş) ∈ S′,
℧,q(¬ş) /∈ S′.

Consequently,
ξ−1

pηq((ψ1)
c)(ş)(µ) = ξ−1

pηq((ψ1)
c)η−1(S′)(ş)(µ) and

ξ−1
pηq((ω1)

c)(¬ş)(µ) = ξ−1
pηq((ω1)

c)q−1(¬S′)(¬ş)(µ).

Hence, ξ−1
pηq((ψ1,ω1,S

′,N)c) = ξ−1
pηq((ψ

c
1 ,ω

c
1 ,S

′,N)) =

ξ−1
pηq(((ψ

c
1)η−1(S′),(ω

c
1)q−1(¬S′),S

′,N)) =

(ξ−1
pηq(ψ1,ω1,S

′,N))c.
The proof is complete.

Theorem 3.21. For an NBS-mapping
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
), the

following conditions are equal to each other
(1) ξpηq is NBS-continuous;

(2) ξ−1
pηq(ψ1,ω1,S

′,N) ∈ τ ′NS ,∀(ψ1,ω1,S
′,N) ∈ υ ′N

S′
;

(3) ξ−1
pηq(ψ1,ω1,S′,N)⊆̃ξ−1

pηq

(

(ψ1,ω1,S′,N)
)

,

∀(ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′);

(4) ξpηq

(

(Θ1,Ω1,S,N)
)

⊆̃ξpηq(Θ1,Ω1,S,N),

∀(Θ1,Ω1,S,N) ∈ßŞN(℧,S);
(5) ξ−1

pηq ((ψ1,ω1,S
′,N)◦) ⊆̃

(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
,

∀(ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′).

Proof. (1) ⇒ (2) Let (ψ1,ω1,S
′,N) ∈ υ ′N

S′
. We will

show that ξ−1
pηq(ψ1,ω1,S

′,N) ∈ τ ′NS . Since ξpηq is

NBS-continuous, there exits (Θ1,Ω1,S,N) ∈ τ ′NS such that
ξpηq(Θ1,Ω1,S,N) ⊆ (ψ1,ω1,S

′,N). Then

ξ−1
pηq(ψ1,ω1,S

′,N) ∈ τ ′NS .

(2) ⇒ (1) Let (ψ2,ω2,S
′,N) ∈ υ ′N

S′
. Then,

(ψ1,ω1,S
′,N) ∈ υ ′N

S′
is an NBS-open set such that

(ψ1,ω1,S
′,N)⊆̃(ψ2,ω2,S

′,N). By (2)
ξ−1

pηq(ψ1,ω1,S
′,N) ∈ τ ′NS and

ξ−1
pηq(ψ1,ω1,S

′,N)⊆̃ξ−1
pηq(ψ2,ω2,S

′,N). This shows that

ξ−1
pηq(ψ2,ω2,S

′,N) ∈ τ ′NS . Therefore, we have ξpηq is

NBS-continuous for every (ψ1,ω1,S
′,N) ∈ υN

S′
.

(2) ⇒ (3) Let (ψ1,ω1,S
′,N) be an NBS-set on

(ψ ,ω ,S′,N). Then (ψ1,ω1,S
′,N)

⊆̃(ψ1,ω1,S′,N). Therefore, we have

ξ−1
pηq(ψ1,ω1,S

′,N)⊆̃ξ−1
pηq

(

(ψ1,ω1,S′,N)
)

and so, by

using (2), we obtain that

ξ−1
pηq(ψ1,ω1,S′,N)⊆̃ξ−1

pηq

(

(ψ1,ω1,S′,N)
)

⊆̃ξ−1
pηq

(

(ψ1,ω1,S′,N)
)

.This shows

ξ−1
pηq(ψ1,ω1,S′,N)⊆̃ξ−1

pηq

(

(ψ1,ω1,S′,N)
)

.

(2) ⇒ (4) Let (Θ1,Ω1,S,N) be an NBS-set on
(Θ ,Ω ,S,N). Since (Θ1,Ω1,S,N)⊆̃

ξ−1
pηq (ξpηq(Θ1,Ω1,S,N)) ⊆̃ξ−1

pηq

(

ξpηq(Θ1,Ω1,S,N)
)

∈

τ ′NS , we have (ψ1,ω1,S′,N)⊆̃

ξ−1
pηq

(

ξpηq(Θ1,Ω1,S,N)
)

. By Theorem 3.19 and

Theorem 3.20, we get ξpηq

(

(Θ1,Ω1,S,N)
)

⊆̃ξpηq(Θ1,Ω1,S,N).
(4) ⇒ (5) If (ψ1,ω1,S

′,N) is an NBS-set over
(ψ ,ω ,S′,N), then ξ−1

pηq((ψ1,ω1,S
′,N)c) is an NBS-set on

(Θ ,Ω ,S,N). From (4), Theorem 3.19(2) and Theorem
3.14(6),

ξpηq(ξ
−1
pηq((ψ1,ω1,S′,N)c))⊆̃ξpηq(ξ

−1
pηq((ψ1,ω1,S′,N)c))

⊆̃(ψ1,ω1,S′,N) = ((ψ1,ω1,S
′,N)◦)c.

Therefore, we have

ξ−1
pηq((ψ1,ω1,S′,N)c)⊆̃ξ−1

pηq(((ψ1,ω1,S
′,N)◦)c) =

(ξ−1
pηq((ψ1,ω1,S

′,N)◦))c.

Since ξ−1
pηq((ψ1,ω1,S′,N)c) =

(ξ−1
pηq(ψ1,ω1,S′,N))c = ((ξ−1

pηq(ψ1,ω1,S
′,N))◦)c, by

Remark 2.18 we obtain that
ξ−1

pηq((ψ1,ω1,S
′,N)◦)⊆̃(ξ−1

pηq(ψ1,ω1,S
′,N))◦.

(5) ⇔ (3) This follows from Theorem 3.20(1) and
Theorem 3.14(6).
Theorem 3.22. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is an

NBS-mapping, then the following conditions are equal to
each other

(1) ξpηq is NBS-open;
(2) ξpηq ((Θ1,Ω1,S,N)◦) ⊆̃(ξpηq(Θ1,Ω1,S,N))◦,

∀(Θ1,Ω1,S,N) ∈ßŞN(℧,S);
(3)

(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
⊆̃ξ−1

pηq ((ψ1,ω1,S
′,N)◦) ,

∀(ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′).
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(4) ξ−1
pηq

(

(ψ1,ω1,S′,N)
)

⊆̃(ξ−1
pηq(ψ1,ω1,S′,N)),

∀(ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′).

Proof. (1) ⇒ (2) Let (Θ1,Ω1,S,N) be an NBS-set on
(Θ ,Ω ,S,N).

Then (Θ1,Ω1,S,N)◦⊆̃(Θ1,Ω1,S,N). By using (1), we
have ξpηq ((Θ1,Ω1,S,N)◦)⊆̃

(ξpηq(Θ1,Ω1,S,N))◦.
(2) ⇒ (3) Let (ψ1,ω1,S

′,N) be an NBS-set on
(ψ ,ω ,S′,N). Then ξ−1

pηq(ψ1,ω1,S
′,N) is an NBS-set on

(Θ ,Ω ,S,N). By (2),

ξpηq(
(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
)⊆̃(ξpηq

(

ξ−1
pηq(ψ1,ω1,S

′,N)
)

)◦

⊆̃(ψ1,ω1,S
′,N)◦. Therefore, we have

(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
⊆̃ξ−1

pηq((ψ1,ω1,S
′,N)◦).

(4) ⇔ (3) These follow from Theorem 3.20(1) and
Theorem 3.14(6).

(3) ⇒ (1) Let (Θ1,Ω1,S,N) be an NBS-open set in
(Θ ,Ω ,S,N).

Then for ξpηq(Θ1,Ω1,S,N) ∈ßŞN(χ ,S′), by (3)

(ξ−1
pηq(ξpηq(Θ1,Ω1,S,N)))◦⊆̃

ξ−1
pηq((ξpηq(Θ1,Ω1,S,N))◦). Also, since

(Θ1,Ω1,S,N) = (Θ1,Ω1,S,N)◦,
(Θ1,Ω1,E,N)⊆̃(ξ−1

pηq(ξpηq(Θ1,Ω1,S,N)))◦

⊆̃ξ−1
pηq((ξpηq(Θ1,Ω1,S,N))◦) and so

ξpηq(Θ1,Ω1,S,N)⊆̃(ξpηq(Θ1,Ω1,S,N))◦. This shows
that ξpηq is NBS-open.

Theorem 3.23. Let
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) be an

NBS-bijection. Then ξpηq is NBS-continuous iff
(ξpηq(Θ1,Ω1,S,N))◦⊆̃

ξpηq((Θ1,Ω1,S,N)◦) for every

(Θ1,Ω1,S,N) ∈ßŞN(Ü ,S).
Proof. (⇒) Let (Θ1,Ω1,S,N) ∈ßŞN(℧,S). Then for

ξpηq(Θ1,Ω1,S,N) ∈ßŞN(χ ,S′),
(ξpηq(Θ1,Ω1,S,N))◦⊆̃ξpηq(Θ1,Ω1,S,N) and so

ξ−1
pηq((ξpηq(Θ1,Ω1,S,N))◦)⊆̃

ξ−1
pηq(ξpηq(Θ1,Ω1,S,N)). Since ξpηq is injective and

NBS-continuous,

ξ−1
pηq((ξpηq(Θ1,Ω1,S,N))◦)⊆̃(Θ1,Ω1,S,N)◦. Again

since ξpηq is surjective,
(ξpηq(Θ1,Ω1,S,N))◦⊆̃ξpηq((Θ1,Ω1,S,N)◦) as claimed.

(⇐) Let (ψ1,ω1,S
′,N) be an NBS-open set in χ .

Then since ξpηq is surjective, (ψ1,ω1,S
′,N) =

(ψ1,ω1,S
′,N)◦ = (ξpηq

(

ξ−1
pηq(ψ1,ω1,S

′,N)
)

)◦. By using
the hypothesis,
(ψ1,ω1,S

′,N)⊆̃ξpηq(
(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
). Since ξpηq

is injective, ξ−1
pηq(ψ1,ω1,S

′,N)⊆̃
(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦
.

This shows that ξ−1
pηq(ψ1,ω1,S

′,N) is NBS-open set in ℧.

Theorem 3.24. An NBS-mapping
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-closed iff

ξpηq(Θ1,Ω1,S,N)⊆̃ξpηq

(

(Θ1,Ω1,S,N)
)

,

∀(Θ1,Ω1,S,N) ∈ßŞN(℧,S).
Proof. Obvious.

Theorem 3.25. Let
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) be an

NBS-bijection. Then ξpηq is NBS-closed iff

ξ−1
pηq

(

(ψ1,ω1,S′,N)
)

⊆̃

(ξ−1
pηq(ψ1,ω1,S′,N)),∀(ψ1,ω1,S

′,N) ∈ßŞN(χ ,S′).
Proof. It is similar to that of Theorem 3.23.

Definition 3.26. An NBS-mapping
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,E ′,N),υN
S′
) is called

NBS-homeomorphism if ξpηq is NBS-continuous,
NBS-open, surjective and injective.

The next theorem will be obtained.

Theorem 3.27. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is an

NBS-mapping, then the following conditions are equal to
each other

(1) ξpηq is NBS-homeomorphism;

(2) ξpηq ((Θ1,Ω1,S,N)◦) =

(ξpηq(Θ1,Ω1,S,N))◦,∀(Θ1,Ω1,S,N) ∈ßŞN(℧,S);

(3)
(

ξ−1
pηq(ψ1,ω1,S

′,N)
)◦

=

ξ−1
pηq ((ψ1,ω1,S

′,N)◦) ,∀(ψ1,ω1,S
′,N) ∈ßŞN(χ ,S′).

(4) ξ−1
pηq(ψ1,ω1,S′,N) =

ξ−1
pηq(ψ1,ω1,S′,N),∀(ψ1,ω1,S

′,N) ∈ßŞN(χ ,S′).

(5) ξpηq(Θ1,Ω1,S,N) =

ξpηq(Θ1,Ω1,S,N),∀(Θ1,Ω1,S,N) ∈ßŞN(℧,S).

4 N-bipolar soft mappings and separation

axioms

In this part, we delve into the examination of various
separation axioms that have been explored in [8] under
NBS-continuous, NBS-open, and NBS-closed mappings.
Furthermore, novel characterizations are provided for
them.

Theorem 4.1. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous injection and ((ψ ,ω ,S′,N),υN
S′
) is

NBST0, then ((Θ ,Ω ,S,N),τN
S ) is NBST0-space.

Proof. Suppose that ((ψ ,ω ,S′,N),υN
S′
) is NBST0. For

any distinct points µ1 and µ2 in (Θ ,Ω ,S,N), there exists
NBS-open sets (ψ1,ω1,S

′,N), (ψ2,ω2,S
′,N) in

(ψ ,ω ,S′,N) such that
p(µ1) ∈ (ψ1,ω1,S

′,N), p(µ2) /∈ (ψ1,ω1,S
′,N) or

p(µ1) /∈ (ψ2,ω2,S
′,N), p(µ2) ∈ (ψ2,ω2,S

′,N). Since
ξpηq is NBS-continuous, ξ−1

pηq(ψ1,ω1,S
′,N) and

ξ−1
pηq(ψ2,ω2,S

′,N) are NBS-open sets in (ψ ,ω ,S′,N).
Furthermore, it is apparent that

µ1 ∈ ξ−1
pηq(ψ1,ω1,S

′,N),µ2 /∈ (ψ1,ω1,S
′,N) or

µ1 /∈ ξ−1
pηq(ψ2,ω2,S

′,N),µ2 ∈ ξ−1
pηq(ψ2,ω2,S

′,N). This

shows that ((Θ ,Ω ,S,N),τN
S ) is NBST0.

Theorem 4.2. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

N−bipolar soft continuous injection and
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((ψ ,ω ,S′,N),υN
S′
) is NBST1, then ((Θ ,Ω ,S,N),τN

S ) is
NBST1-space.

Proof. Similar to Theorem 4.1.

Theorem 4.3. If
ξpηq : ((Θ ,Ω ,S,N),τN

S ) → ((ψ ,ω ,S′,N),υN
S′
) is

NBS-continuous injection and ((ψ ,ω ,S′,N),υN
S′
) is

NBST2, then ((Θ ,Ω ,S,N),τN
S ) is NBST2-space.

Proof. For µ1, µ2 ∈ (Θ ,Ω ,S,N) with µ1 6= µ2, there
exist disjoint NBS-open sets (ψ1,ω1,S

′,N) and
(ψ2,ω2,S

′,N) in (ψ ,ω ,S′,N) where
p(µ1) ∈ (ψ1,ω1,S

′,N), p(µ2) ∈ (ψ2,ω2,S
′,N). Since

ξpηq is NBS-continuous, ξ−1
pηq(ψ1,ω1,S

′,N) and

ξ−1
pηq(ψ2,ω2,S

′,N) are NBS-open in (Θ ,Ω ,S,N)
containing µ1 and µ2 respectively. Moreover, it is clear
that ξ−1

pηq(ψ1,ω1,S
′,N) ∩ ξ−1

pηq(ψ2,ω2,S
′,N) = φ . This

shows that ((Θ ,Ω ,S,N),τN
S ) is NBST2.

Theorem 4.4. If ξpηq is NBS-open function from an

NBST0-space ((Θ ,Ω ,S,N),τN
S ) onto an NBSTS

((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,S′,N),υN

S′
) is

NBST0-space.

Proof. Let κ1, κ2 ∈ (ψ ,ω ,S′,N) with κ1 6= κ2. Since
p is surjective, there exist µ1, µ2 ∈ (Θ ,Ω ,S,N) with
µ1 6= µ2 such that p(µ1) = κ1 and p(µ2) = κ2. Again
since ((Θ ,Ω ,S,N),τN

S ) is NBST0-space, there exists
NBS-open sets (Θ1,Ω1,S,N),(Θ2,Ω2,S,N) ∈ ℧ such that
µ1 ∈ (Θ1,Ω1,S,N), µ2 /∈ (Θ1,Ω1,S,N) or
µ1 /∈ (Θ2,Ω2,S,N),µ2 ∈ (Θ2,Ω2,S,N). Then ξpηq

(Θ1,Ω1,S,N) and ξpηq (Θ2,Ω2,S,N) are NBS-open sets
in (ψ ,ω ,S′,N). Because ξpηq is NBS-open.

Furthermore, it is clear that
κ1 ∈ ξpηq(Θ1,Ω1,S,N),κ2 /∈ ξpηq (Θ1,Ω1,S,N) or
κ1 /∈ ξpηq(Θ2,Ω2,S,N),κ2 ∈ ξpηq(Θ2,Ω2,S,N). This

shows that ((ψ ,ω ,S′,N),υN
S′
) is NBST0-space.

Theorem 4.5. If ξpηq is NBS-open function from an

NBST1-space ((Θ ,Ω ,S,N),τN
S ) onto an NBSTS

((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,S′,N),υN

S′
) is

NBST1-space.

Proof. Similar to Theorem 4.4.

Theorem 4.6. If an NBS-open function ξpηq from an

NBST2-space ((Θ ,Ω ,S,N),τN
S ) onto an NBSTS

((ψ ,ω ,S′,N),υN
S′
) is injective, then ((ψ ,ω ,S′,N),υN

S′
) is

NBST2-space.

Proof. The proof is clear and direct.

Definition 4.7. Let ((Θ ,Ω ,S,N),τN
S ) be an NBSTS over

(Θ ,Ω ,S,N), (Θ1,Ω1,S,N) be an NBS-closed set in
(Θ ,Ω ,S,N) and µ ∈ (Θ ,Ω ,S,N) such that
µ /∈ (Θ1,Ω1,S,N). If there exist NBS-open sets
(Θ2,Ω2,S,N) and (Θ3,Ω3,S,N) such that µ ∈
(Θ2,Ω2,S,N), (Θ1,Ω1,S,N)⊆̃ (Θ3,Ω3,S,N) and
(Θ2,Ω2,S,N) ∩ (Θ3,Ω3,S,N) = φ , then
((Θ ,Ω ,S,N),τN

S ) is called an NBS-regular space. If

((Θ ,Ω ,S,N),τN
S ) is NBS-regular and NBST1-space, then

it is NBST3-space.

Theorem 4.8. If ξpηq is NBS-continuous and NBS-open

bijection from an NBS-regular space ((Θ ,Ω ,S,N),τN
S ) to

an NBSTS− ((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,S′,N),υN

S′
) is

NBS-regular.
Proof. Let κ ∈ (ψ ,ω ,S′,N) and

κ /∈ (ψ ,ω ,S′,N) ∈ υ ′N
S′

. Since p is surjective, there exists

µ ∈ (Θ ,Ω ,S,N) with p(µ) = κ . Since ξpηq is

NBS-continuous, ξ−1
pηq(ψ1,ω1,S

′,N) ∈ τ ′NS and

µ /∈ ξ−1
pηq(ψ1,ω1,S

′,N). By NBS-regularity of

((Θ ,Ω ,S,N),τN
S ), there exist disjoint NBS-open sets

(Θ1,Ω1,S,N) and (Θ2,Ω2,S,N) such that µ ∈
(Θ1,Ω1,S,N), ξ−1

pηq(ψ1,ω1,S
′,N)⊆̃ (Θ2,Ω2,S,N). Thus,

we obtain disjoint NBS-open sets ξpηq(Θ1,Ω1,S,N) and
ξpηq(Θ2,Ω2,S,N) such that κ ∈ ξpηq (Θ1,Ω1,S,N) and
(ψ1,ω1,S

′,N)⊆̃ξpηq (Θ2,Ω2,S,N). Because ξpηq is

bijective and NBS-open. Thus, ((ψ ,ω ,S′,N),υN
S′
) is

NBS-regular.
Corollary 4.9. If ξpηq is NBS-continuous and NBS-open

bijection from an NBST3-space ((Θ ,Ω ,S,N),τN
S ) to an

NBSTS ((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,S′,N),υN

S′
) is

NBST3-space.
Definition 4.10. Let ((Θ ,Ω ,S,N),τN

S ) be an NBSTS over
(Θ ,Ω ,S,N). (Θ1,Ω1,S,N), (Θ2,Ω2,S,N) ∈ (Θ ,Ω ,S,N)
are NBS-closed sets where
(Θ1,Ω1,S,N) ∩ (Θ2,Ω2,S,N) = φ . If there exist
NBS-open sets (Θ3,Ω3,S,N) and (Θ4,Ω4,S,N) such that
(Θ1,Ω1,S,N)⊆̃(Θ3,Ω3,S,N),
(Θ2,Ω2,S,N)⊆̃(Θ4,Ω4,S,N) and
(Θ3,Ω3,S,N)∩ (Θ4,Ω4,S,N) = φ , then

((Θ ,Ω ,S,N),τN
S ) is called an NBS-normal space. If

((Θ ,Ω ,S,N),τN
S ) is NBS-normal and NBST1-space, then

it is an NBST4-space.
Theorem 4.11. If ξpηq is NBS-continuous and NBS-open

bijection from an NBS-normal space ((Θ ,Ω ,S,N),τN
S ) to

an NBSTS ((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,S′,N),υN

S′
) is

NBS-normal.
Proof. Similar to that of Theorem 4.8.

Corollary 4.12. If ξpηq is NBS-continuous and NBS-open

bijection from an NBST4-space ((Θ ,Ω ,S,N),τN
S ) to an

NBSTS ((ψ ,ω ,S′,N),υN
S′
), then ((ψ ,ω ,E ′,N),υN

S′
) is

NBST4-space.
Theorem 4.13. ((Θ ,Ω ,S,N),τN

S ) is NBS-regular space
iff for every µ ∈ (Θ ,Ω ,S,N) and every NBS-open set
(Θ1,Ω1,S,N) with µ ∈ (Θ1,Ω1,S,N), there exists an
NBS-open set (ϖ ,σ ,S,N) such that µ ∈ (ϖ ,σ ,S,N)⊆̃

(ϖ ,σ ,S,N)
⊆̃(Θ1,Ω1,S,N).
Proof. Let ((Θ ,Ω ,S,N),τN

S ) is NBS-regular,
(Θ1,Ω1,S,N) is NBS-open in (Θ ,Ω ,S,N) and µ ∈
(Θ1,Ω1,S,N). Then µ /∈ (Θ1,Ω1,S,N)c and
(Θ1,Ω1,S,N)c is an NBS-closed set. Therefore,
NBS-open disjoint sets (ϖ ,σ ,S,N) and (Θ2,Ω2,S,N) can
be found with µ ∈ (ϖ ,σ ,S,N) and
(Θ1,Ω1,S,N)c⊆̃(Θ2,Ω2,E,N). Then (Θ2,Ω2,S,N)c is
NBS-closed set containing (ϖ ,σ ,S,N) and contained in
(Θ1,Ω1,S,N). It means that µ ∈ (ϖ ,σ ,S,N)⊆̃

(ϖ ,σ ,E,N)⊆̃(Θ1,Ω1,S,N). To prove the opposite
direction, let µ /∈ (Θ2,Ω2,S,N) which is the NBS-closed
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set. Suppose there is an NBS-open set (ϖ ,σ ,S,N) such

that µ ∈ (ϖ ,σ ,S,N)⊆̃ (ϖ ,σ ,S,N)⊆̃(Θ2,Ω2,S,N)c. The
NBS-open sets (ϖ ,σ ,S,N) and (ϖ ,σ ,S,N)c are disjoint
NBS-open sets that contain µ and (Θ2,Ω2,S,N),
respectively.
Theorem 4.14. ((Θ ,Ω ,S,N),τN

S ) is NBS-normal space
iff for every NBS-closed set (Θ2,Ω2,S,N) and every
NBS-open set (Θ1,Ω1,S,N) with (Θ2,Ω2,S,N)⊆̃
(Θ1,Ω1,S,N), there exists an NBS-open set (ϖ ,σ ,S,N)
such that (Θ2,Ω2,S,N)⊆̃

(ϖ ,σ ,S,N)⊆̃ (ϖ ,σ ,S,N)⊆̃ (Θ1,Ω1,S,N).
Proof. The argument presented in this proof remains

consistent but with one key modification. Replacing the
point µ by an NBS-set (Θ2,Ω2,S,N) in its place.

5 N-bipolar soft mappings in medical

diagnosis

The new approach we propose involves utilizing
NBS-mappings to establish a relationship between
diseases and their symptoms. By employing this
methodology, we aim to improve disease diagnosis. In
this approach, diseases are characterized by a set of
symptoms. These symptoms vary in their intensity and
can be graded on an N-bipolar scale, indicating both
positive and negative evaluations. By mapping the
relationship between diseases and symptoms on this
scale, we can represent the complex nature of disease
symptoms more accurately.

By utilizing soft mappings, we can capture the
gradual transition of symptoms from positive to negative
values. This allows for a more nuanced understanding of
how symptoms may manifest in different diseases.
Additionally, the use of N-bipolar scales allows for the
incorporation of uncertainty and ambiguity in symptom
evaluation.

To apply this approach to disease diagnosis, we can
develop a database that stores the mappings between
diseases and their symptoms. This database can be
populated through expert knowledge or by analyzing
medical records. When a patient presents with a set of
symptoms, we can compare their symptom profile with
the established mappings to identify potential diseases.

By incorporating the concept of NBS-mappings, our
approach provides a more comprehensive representation
of the relationship between diseases and symptoms. This
can lead to more accurate and personalized disease
diagnoses, ultimately improving patient care and
outcomes.

To set up this mathematical system, we can define a
set of linguistic variables for each symptom and assign
numerical values that can be readily associated with
numerical representations, such that

No holds for ”0”,
Rare holds for ”1”,

Mild holds for ”2”,

Sometimes holds for ”3”,

Common holds for ”4”.

Also, in light of the symptoms given in Table 3, the
doctor’s opinion and the website’s information
https://www.who.int/news-room/fact-
sheets/detail/coronavirus-disease-(covid-19), we classify
the symptoms that the patient has as low significance,
middle significance, high significance and very high
significance. Therefore, we create a 5BS-mapping to
document the relationship between the disease and its
symptoms as follows

Table 3 Comparison of symptoms

Symptoms Cold Influenza Covid-19 Omicron

Fatigue Sometimes Common Common Common

Fever Common Common Common Common

Cough Common Common Common Common

Diarrhea Mild Mild Sometimes Common

Taste loss

or Smell
Rare Rare Sometimes Rare

Throat

ofSore
Common Sometimes Sometimes Common

Breath

Shortness
Rare Sometimes Common Common

Watery eyes

or Itchy
No No Rare Sometimes

Painsand

Bodyaches
Sometimes Common Sometimes Sometimes

Next, we can define an N−bipolar soft mapping that takes
these symptom values as inputs and computes a value
indicating the likelihood of the patient having
OMICRON. This mapping can be designed based on the
doctor’s expertise, statistical analysis, or machine
learning algorithms. The mapping can take into account
the symptoms and their severity levels to assign a
likelihood value.

To determine the patient’s status utilizing an
NBS-mappings-based algorithm.

Step 1 : Categorize the patient’s symptoms into
categories of very high significance, high significance,
middle significance, or low significance.

Step 2 : Construct a 5BS-set (℘,Ω ,S,5) based on the
patient’s symptoms.

Step 3 : Find the 5BS-image of (℘,Ω ,S,N) under the

5BS-mapping ξpηq : ßŞ5(℧,S) → ßŞ5(χ ,S′). This
involves applying a mapping function to the 5BS-set to
obtain a transformed set.

Step 4 : Calculate the score (℘,S,5).
Step 5 : Calculate the score (Ω ,¬S,5).
Step 6 : Calculate the bipolar score

(℘,Ω ,S,5) = (℘,S,5)− (Ω ,¬S,5) which could involve
evaluating the significance levels and conditions in the
5BS-set.

Step 7 : Decide the patient’s condition by utilizing the
information obtained from steps 1,2, and 3. This may
involve making a diagnosis based on the calculated scores
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and determining the severity or type of condition the
patient may have.

Let ℧ = χ = {F,FA,ß,Ç,ŢŞ,Pß,TH, Ď,Ŵ Ĩ},
S = {VH,H,M, ĹŎW} and S′ = {a} where

F = Fever, FA = Fatigue,ß = Breath shortness,

Ç = Cough, ŢŞ = Taste loss or Smell,

Pß = Pains and Body aches,TH = Throat of Sore,

Ď = Diarrhea,Ŵ Ĩ = Watery eyes or Itchy,

and

VH = Very high significance,H = High significance,

M = Middle significance, ĹŎW = Low significance,

a = Disease.

Thus, we define a 5BS-mapping ξpηq : ßŞ5(℧,S) →

ßŞ5(χ ,S′) by the mappings p : ℧ → χ ,η : S → S′ and
q : ¬S →¬S′ with

p(µ) = µ

η(VH) = a η(H) = a η(M) = a η(ĹŎW ) = a,

q(¬VH) = ¬a q(¬H) = ¬a q(¬M) = ¬a q(¬ĹŎW ) = ¬a,

for all µ ∈℧.
Now, depending on the patient’s symptoms, we create

5BS-sets (℘,Ω ,S,5) such that the patient has the
following symptoms:

- Symptom A: Very high significance
- Symptom B: High significance
- Symptom C: Middle significance
- Symptom D: Low significance.
According to the given grading system, we assign the

following grades:
- Symptom A: 4
- Symptom B: 3
- Symptom C: 2
- Symptom D: 1.
We then calculate the diagnostic score, which is

defined as

Score(℘,S,5) = ∑
α∈S,κ∈χ

ξpηq(℘(α))(a)(κ),

Score(Ω ,¬S,5) = ∑
¬α∈¬S,κ∈χ

ξpηq(Ω(¬α))(a)(κ),

Score(℘,Ω ,S,5) = (℘,S,5)− (Ω ,¬S,5)

= ∑
α∈S,κ∈χ

ξpηq(℘(α))(a)(κ)

− ∑
¬α∈¬S,κ∈χ

ξpηq(Ω(¬α))(a)(κ)

Based on the given deductions, we can conclude the
following:

- If the score (℘,Ω ,S,5) is less than or equal to 12, the
patient is suffering from a COLD.

- If the score (℘,Ω ,S,5) is greater than 12 and less
than or equal to 16, the patient is suffering from
INFLUENZA.

- If the score (℘,Ω ,S,5) is greater than 16 and less
than or equal to 22, the patient is suffering from COVID-
19.

- If the score (℘,Ω ,S,5) is greater than 22, the patient
is suffering from OMICRON.

Therefore, given the aforementioned analysis, we are
able to suggest an algorithm that relies on N-bipolar soft
mappings as previously explained. To exemplify how this
approach is employed, we will consider a case using the
symptoms presented in Table 3. In this case, we will
classify the patient’s symptoms in the following manner:

VH = {F,FA,ß,Pß, Ç},H = {TH, Ď},

M = {ŢŞ}, ĹŎW = {Ŵ Ĩ}.

Then we find a 5BS-set (℘,Ω ,S,5) such that

(℘,Ω ,S,5) =

{(〈

V H,{(F,4),(FA,4),(ß,4),(Ç,4),
(ŢŞ,0),(Pß,4),(TH,0),(Ď,0),(Ŵ Ĩ,0)}

〉

,

〈

¬V H,{(F,0),(FA,0),(ß,0),(Ç,0),
(ŢŞ,4),(Pß,0),(TH,4),(Ď,4),(Ŵ Ĩ,4)}

〉)

,

(〈

H,{(F,0),(FA,0),(ß,0),(Ç,0),
(ŢŞ,0),(Pß,0),(TH,3),(Ď,3),(Ŵ Ĩ,0)}

〉

,

〈

¬H,{(F,4),(FA,4),(ß,4),(Ç,1),
(ŢŞ,4),(Pß,4),(TH,1),(Ď,1),(Ŵ Ĩ,4)}

〉)

,

(〈

M,{(F,0),(FA,0),(ß,0),(Ç,0),
(ŢŞ,2),(Pß,0),(TH,0),(Ď,0),(Ŵ Ĩ,0)}

〉

,

〈

¬M,{(F,4),(FA,4),(ß,4),(Ç,4),
(ŢŞ,0),(Pß,4),(TH,4),(Ď,4),(Ŵ Ĩ,4)}

〉)

,

(〈

ĹŎW,{(F,0),(FA,0),(ß,0),(Ç,0),
(ŢŞ,0),(Pß,0),(TH,0),(Ď,0),(Ŵ Ĩ,1)}

〉

,

〈

¬ĹŎW,{(F,4),(FA,4),(ß,4),(Ç,4),
(ŢŞ,4),(Pß,4),(TH,4),(Ď,4),(Ŵ Ĩ,3)}

〉)}

,

and embed the 5−bipolar soft image of (℘,Ω ,S,N) under

the 5−bipolar soft mapping ξpηq : ßŞ5(℧,S)→ ßŞ5(χ ,S′)
is obtained as the following:

ξpηq(℘,Ω ,S,5) = (ξpηq(℘(α)),ξpηq(Ω(¬α)),S′,5)

=

{(〈

a,{(F,4),(FA,4),(ß,4),(Pß,4),(Ç,4),
(TH,3),(Ď,3),(ŢŞ,2),(Ŵ Ĩ,1)}

〉

,

,

〈

¬a,{(F,0),(FA,0),(ß,0),(Pß,0),(Ç,0),
(TH,1),(Ď,1),(ŢŞ,0),(Ŵ Ĩ,3)}

〉)}

.

Thus, from the fact that the score

Score(℘,Ω ,S,5) = (℘,S,5)− (Ω ,¬S,5)

= ∑
α∈S,κ∈χ

ξpηq(℘(α))(a)(κ)

− ∑
¬α∈¬S,κ∈χ

ξpηq(Ω(¬α))(a)(κ)

= 29− 5 = 24,

it follows that the patient is suffering from OMICRON.

6 Conclusion

In the present study, we carried out a comprehensive
examination of NBS-mappings and explored the distinct
characteristics of NBS-continuous, NBS-closed, and
NBS-open mappings within the realm of NBSTSs. Our
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analysis resulted in new characterizations for these
mappings and allowed us to investigate their preservation
capabilities. We expect that the discoveries made in this
study will lay the groundwork for future implementations
of NBS-mappings within the field of soft sets theory.
Additionally, we introduced a novel OMICRON

diagnostic model within the framework of
NBS-mappings.
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