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Abstract: We use the fractional Hirota bilinear method to derive analytical solutions for the hyperbolic generalized M-truncated space-

time Burgers model. By constructing double soliton waves for this fractional differential model, we demonstrate the efficacy of symbolic

computation tools like Maple. This approach highlights the Hirota bilinear method as a promising and straightforward technique for

tackling nonlinear differential equations of both integer and fractional orders. Our results confirm that this method is not only easy

to apply but also effective and versatile for various engineering and physics problems. We explore fundamental concepts related to

surfaces using M-truncated fractional analysis. This involves computing differential geometrical properties such as the M-truncated

fractional Gaussian curvature and the M-truncated fractional mean curvature , which offer new physical insights into the problem. The

ability to select arbitrary fractional orders allows us to create more complex structures. Variations in soliton behavior due to changes

in fractional order extend its applicability in applied sciences. The dynamic behavior of the solutions is depicted through 2D and 3D

graphical representations, highlighting variations across different fractional orders.
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1 Introduction

The concept of fractional derivatives can be traced back
to the notable correspondence between Leibniz and
L’Hospital in 1695. Over the past sixty years, fractional
calculus (FC) has made a substantial impact across
various fields, including physics, chemistry, electrical
engineering, biology, economics, image processing, and
aerodynamics [1,2,3]. Through the past decade, FC has
become an essential tool for modeling long-memory
processes, garnering interest from engineers, physicists,
and mathematicians alike. Gaining insight into solutions
of fractional differential equations is essential for
advancing our understanding of physical processes with
fractional orders, and it has significant implications for
practical applications and real-world impacts. Partial and
ordinary differential equations are extensively employed
in fields such as fluid dynamics [4], system identification
[5,6], control theory [7,8], and image processing [9],
among others, to model complex phenomena [10]-[24].

FC is a field of study that extends traditional calculus,
which is usually limited to integer-order derivatives, to
include fractional orders [1,2,3]. This extension gives rise
to various preparations of fractional derivatives, including
the Riemann-Liouville (RL) [18], Caputo [20], He’s [19],
conformable [21], and local fractional derivatives [22,23,
24]. The concepts of RL fractional derivative is a
fundamental approach based on integrals, while He’s
fractional explanation employs He’s polynomials for its
definition. The fractional derivative definition by Caputo
integrates integer order differentials with the RL
approach, making it particularly effective for analyzing
initial value systems. The more recent conformable
fractional derivative applies ordinary product rules and is
effective for functions with singularities. Every one of
these definitions offers distinct advantages and is utilized
across diverse fields, such as physics, engineering, and
signal processing, to tackle problems involving fractional
order models and natural phenomena.
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The truncated Mittag-Leffler function (MLF) can be
defined as [25]:

IEβ (εsα ) =
I

∑
j=0

(εsα ) j

Γ (β j+ 1)
, β > 0, s εC, (1)

Definition 1: Let Let ψ : [0,∞)→ℜ be a function, the local
truncated M-fractional differential (MFD) of with respect
to y is given [25]:

ID
α ,β
M,t ψ(s) = lim

δ→0

ψ(s IEβ (δ s−α))−ψ(s)

δ
,

∀ β , s > 0, 0 < α < 1, (2)

The MFD adheres to the following axioms:

ID
α ,β
M tm =

m

Γ (β +1)
tm−α , mε ℜ, ID

α ,β
M c = 0, ∀ ψ(t) = c,

(3)

ID
α ,β
M (Aψ +Bϕ) = AID

α ,β
M ψ +BID

α ,β
M ϕ , ∀ A, Bεℜ,

(4)

ID
α ,β
M (ϕψ) = ϕID

α ,β
M ψ +ψID

α ,β
M ϕ , (5)

ID
α ,β
M (

ϕ

ψ
) =

ψID
α ,β
M ϕ −ϕID

α ,β
M ψ

ψ2
, (6)

ID
α ,β
M ϕ(ψ) =

dϕ

dψ I

D
α ,β
M ψ , (7)

ID
α ,β
M ϕ(t) =

dϕ

dt

t1−α

Γ (β + 1)
, (8)

With ϕ ,ψ represents two α-differentiable functions of a
dependent variable, the above relations are proved in
reference [25].

Choosing β = 1 and i = 1 on the two sides of Eq.(4),
we have

1D
α ,1
M,t ψ(s) = lim

δ→0

ψ(s 1E1(δ s−α))−ψ(s)

δ
,

∀ s > 0, 0 < α < 1,

But, it is know that

1E1(δ s−α ) =
1

∑
r=0

(δ sα )r

Γ (2)
= 1+ δ s−α ,

Thus, we conclude that

1D
α ,1
M,t ψ(s) = lim

δ→0

ψ(s+ δ s1−α)−ψ(s)

δ
= Dα

t ψ(s),

∀ s > 0, 0 < α < 1,

which is exactly the conformable fractional derivative.

Simply we write 1D
α ,β
M as D

α ,β
M . The MFD of some

functions [25]

D
α ,β
M,s ecs =

cs1−α

Γ (β + 1)
ecs,

D
α ,β
M,s sin (cs) =

cs1−α

Γ (β + 1)
cos(cs),

D
α ,β
M,s cos(cs) = −

cs1−α

Γ (β + 1)
sin(cs),

D
α ,β
M,s ecsα

=
cα

Γ (β + 1)
ecsα

,

D
α ,β
M,s sin(csα ) =

cα

Γ (β + 1)
cos(csα ),

D
α ,β
M,s cos(csα ) = −

cα

Γ (β + 1)
sin(csα ).

The MFD can be used for non-differentiable functions,
making it suitable for applications involving
discontinuous media. Currently, FC generalizes the
concepts of integer-order integration and differentiation to
include fractional orders. Recently, nonlinear fractional
models have become a prominent area of research,
drawing interest from physicists, mathematicians,
astronomers, and engineers. These models have numerous
applications across various scientific fields, including
plasma physics, condensed matter physics,
biomathematics, chemistry, biology, communication, and
astronomy. Fractional calculus plays a crucial role in
engineering and physics, with applications in areas such
as fractal wave propagation, particle physics, electrical
systems, and wave mechanics.

The fractional Burgers equation, a simplified form of
the fractional model, effectively describes the interplay
between dissipative effects and nonlinear propagation.
This model finds applications in a range of fields,
including hydrodynamics, fluid dynamics, wave
propagation in thermoelastic media, acoustic
transmission, plasma physics, traffic flow,
magnetohydrodynamics, shock waves, supersonic flow
around airfoils, diffusion-affected waves, liquid
dynamics, and information sciences. In this manuscript,
we will explore the double soliton and solitary wave
solutions and examine their interactions.

Additionally, we introduce a detailed characterization
of wavefront interactions for the hyperbolic generalized
fractional Burgers model (GFBM). This mathematical
model can be viewed as a fractional Navier-Stokes system
with a hyperbolic modification. Recent research on the
generalized fractional Burgers model (GBM) has
primarily focused on numerical methods. Our work aims
to provide an explicit characterization of the double
soliton solution for this equation.

This manuscript is rearranged as follows: Section 2
introduced the fundamental formulas for the hyperbolic
GFBM and explores its solutions using Hirota’s
technique. Sections 3 and 4, delve into the double soliton
solution, applying both classical and modified Hirota
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procedures. Section 5 discusses the spatial fractional
geometric demonstration. The manuscript concludes with
a summary of findings, prospects, and a discussion.

2 Explanation of the model and solution

methodology

We introduce the following hyperbolic GFBM in the form

τD
αα ,β
M,t u+D

α ,β
M,t u+ uD

α ,β
M,xu−κD

αα ,β
M,x u =

3

∑
n=0

anun. (9)

with u = u(tα ,xα ) real function of time and space since
τ,κ are arbitrary positive constants, an are random

constants and D
αα ,β
M,x = D

α ,β
M,x(D

α ,β
M,x ) is the twice fractional

differentiation regarding x. When α = β = 1 equation (9)
become the well-known hyperbolic GBM studied in [26]
as

τutt + ut + uux−κuxx =
3

∑
n=0

anun.

Given that the polynomial on the equation (9) has real
roots, it can be rewritten in the equivalent form:

τD
αα ,β
M,t u+D

α ,β
M,t u+ uD

α ,β
M,xu+BD

α ,β
M,xu−

κD
αα ,β
M,x = λ (s− u)(q− u). (10)

with s,q,B,λ are arbitrary constants. In the next, using
equation (10) to express hyperbolic GFBM.

As discussed earlier, the primary goal of this
manuscript is to deliver a detailed clarification of single
and double soliton solutions using Hirota’s technique.
Employing this method leads to a complex and
challenging nonlinear algebraic system that cannot be
easily solved without additional information about the
model’s parameters. The technique for solving these
algebraic equations, arising from Hirota’s procedure,
becomes more manageable when we seek solutions with
certain known properties. Consequently, we will examine
how the double soliton approaches the corresponding
traveling wave as a parameter tends to a specific value. To
achieve this, we will begin with an analytical explanation
of traveling wave solutions, which are crucial for
understanding the asymptotic behavior. To get it, we put

u =
D

α ,β
M,x f

f
, (11)

we assume that

f = 1+ εϕ(xα , tα), (12)

with ϕ(xα , tα) is function will be calculated, ε is
parameter. Therefore, by inserting equation (11) into (10),
multiplying the results by ε3. We have a three order series
of ε . Putting each coefficient of ε by zero we can get

system of ordinary fractional differential in ϕ(xα , tα) for
example from the coefficient of ε we have

τD
αα ,β
M,t ϕ +D

α ,β
M,t (D

α ,β
M,x ϕ)+BD

αα ,β
M,x ϕ

κD
ααα ,β
M,x ϕ + qsλ D

α ,β
M,xϕ = 0,

(13)

assuming that the solution of equation (13) takes the form

ϕ = eΓ (β+1)(axα−vtα+c)/α , (14)

where a,v,c are constants will be computed. Using
equation (14) transformed the system of fractional
differential equations to algebraic system as

aB− v− a2κ + qsλ + v2τ = 0, (15)

−v+a2(1+κ)+2qsλ +a[B+(s−q)λ ]−v2τ = 0, (16)

λ (a+ q)(a− s(= 0. (17)

From equation (17), since λ 6= 0 so the parameter a is
either equal to s or q. Firstly, the case when we have

ϕ1 = eΓ (β+1)(sxα−v1tα+c1)/α , (18)

v1 =
s[s(λ + 1)+ 2B+ 2λ q]

2
, (19)

Using equations (19), (18), we have kink wave solution

u1 =
seΓ (β+1)(sxα−v1tα+c1)/α

1+ eΓ (β+1)(sxα−v1tα+c1)/α
,

v1 =
s[s(λ + 1)+ 2B+ 2λ q]

2
, (20)

with the condition k = k1 =
τ[λ (2q+s)+2B+s]2−2(λ+1)

4
.

secondly, the case when a−−q we have

ϕ1 = eΓ (β+1)(−qxα−v2tα+c1)/α , (21)

v2 =
−q[2B− q(λ + 1)− 2λ s]

2
, (22)

Using equations (21), (22), we have kink wave solution

u2 =
−qeΓ (β+1)(−qxα−v2tα+c2)/α

1+ eΓ (β+1)(−qxα−v2tα+c2)/α
,

v2 =
−q[2B− q(λ + 1)− 2λ s]

2
, (23)

with the condition k = k2 =
τ[λ (2q+s)+q−2B]2−2(λ+1)

4
.

The dynamical behavior of the one kink soliton
solution are introduced here via 2D and 3D graphics in
figures 1 and 2. The parameter selections for figure 1, we
have
α = 0.8,β = 1,s = 0.4,q = 0.5,B = 3,c1 = 10,λ = 2.
But for figure 2, we take α = 0.9,β = 1,s = −0.6,q =
−0.7,B = 3,c2 = 20,λ = 4.
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Fig. 1: 3-D plot, density plot, and 2-D plot of one kink soliton

solution given by u1 with the selection α = 0.9,β = 1,s =
0.4,q = 0.5,B = 3,c1 = 10,λ = 2.

3 Double soliton of the model

We seek for the solution as

u(xα , tα) = f (ξ1,ξ2),

ξ1 = Γ (β + 1)(sxα − v1tα + c1)/α,

ξ2 = Γ (β + 1)(−qxα − v2tα + c2)/α, (24)

equation (24) represented the interactions of many
travelling wave when the two travelling waves ξ1 and ξ2

do not have a proportional relationship.

In our attempts to investigate the double soliton wave
using Hirota’s procedure, we encounter an extremely
complex system of nonlinear algebraic relations. To make
this system solvable, we need to impose certain
hypotheses on the parameters. Given that the solution we
seek is asymptotically represented by one or two traveling
wave fronts, depending on the type of interaction, we
choose the parameters and according to formulas (19) and
(22). For a simpler and more straightforward investigation
of the double soliton wave, it is helpful to assume that the
function f is a combination of functions representing
traveling waves in the form

f = 1+ ε(eξ1 + eξ2)+Rε2eξ1+ξ2 , (25)

Substituting (25) with equation (11) into hyperbolic
GFBM (10), we obtain six order series in the parameter ε .

Fig. 2: 3-D plot, density plot, and 2-D plot of one kink soliton

solution given by u2 with the selection α = 0.8,β = 1,s =
−0.6,q =−0.7,B = 3,c1 = 20,λ = 4.

Equating each coefficient of ε by zero we have six
nonlinear algebraic equations (denoted by E1,E2, ...,E6)

in the determined constants and the products of emξ1 ,enξ2 .

In the next, we use the abbreviation Xm = emξ1 and
Y n = enξ2 . Therefore, the system of nonlinear algebraic
equations Ek expressed by the abbreviation Xm and Y n in
the form

k

∑
n=0

ak
nXnY k−n, k = 1,2, ...,6. (26)

with ak
n containing the determined constants τ,B,κ ,λ ,s,q

and R.

Since we will not take into account the case in which
the waves ξ1 and ξ2 are proportional, therefore we treat
the variables X and Y as independent and unrelated
variables. Thus system (20) have been satisfied iff ak

n = 0.
Based on the symbolic software ”Maple” or
”Mathematica”, we solve the algebraic system
ak

n = 0,0 ≤ n ≤ k ≤ 6. Note that we do not consider
solutions given by s = 0,q = 0,q =−s and λ =−1/3.

Now we begin to explain the procedure which enabling
us to obtain the double soliton-based ansatz (11). Firstly,
since a1

0 = a1
1 = 0, we have

2λ [2qsτ − 1+ s2τ + 2Bτ(2q+ s)]− 2

−4κ + 4B2τ + 4Bsτ +(2q+ s)2λ 2τ = 0,
(27)
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λ [2q2τ − 2+ 4qsτ− 4Bτ(2s+ q)]− 2

−4κ + 4B2τ − 4Bqτ+ q2τ +(q+ 2s)2λ 2τ = 0,
(28)

By subtracting (28) from (27), we have

τ[(s− q)(1−λ )+ 4B](1+ 3λ )(q+ s)= 0. (29)

According to what we agreed upon previously, we reject
the cases when q = −s and λ = −1/3 , so equation (29)
satisfied only when τ = 0 or the null value of expression
in the brackets. It is clear that the first choice cannot be
neglected in some steps, so we choose it from the very
beginning. Using this choice in expression (27), we get
this formula

κ =−
1+λ

2
, (30)

Secondly, we consider a6
3 = 0, so

(s− q)qsR3 = 0,

which gives either R = 0 or s = q. Obviously, we are
forced into the first selection, since when using the
second selection, we get R = 0 in the calculations. Cases
R = 0,τ = 0 and κ = −(1+λ )/2 verifies that the system
of algebraic equations E1,E2, ...,E6 take the zero value.
The direct analysis, which can be considered somewhat
extensive analysis of some other prospects investigate the
algebraic equations ak

n = 0 displays that the introduced
cases are being the generalized ones and many other
non-trivial double soliton solutions, which can be gained
from resolving the algebraic equations in different
techniques, that could be everything given from this one,
while non-trivial solutions of this kind correspond to
non-zero τ = 0 is not present.

Through this procedure, we can conclude that
obtaining a double-soliton solution that satisfies equation
(10) using the Hirota method is not feasible. The result is
as follows

u11 =
seΓ (β+1)(sxα −v1tα+c1)/α−qeΓ (β+1)(−qxα−v2tα+c2)/α

1+eΓ (β+1)(sxα −v1tα+c1)/α+eΓ (β+1)(−qxα−v2tα+c2)/α ,

v1 =
s[s(λ+1)+2B+2λ q]

2
,

v2 =
−q[2B−q(λ+1)−2λ s]

2
,

(31)

since the reminder of parameters are optional.
The dynamical behavior of the double-kink soliton

solution of is presented via 2D and 3D graphics in figures
3. The parameter selections are given by α = 0.9,β =
1,s = 9,q = 2,B = 0.3,c1 = 1,c2 = 5,λ = 0.25.

4 The technique realized by using Hirota’s

modified procedure

We can succeed in obtaining the double-soliton solutions
of fractional model (10) by adding a simple modification
to relation (11). Assuming that

u =
g

f
, (32)

Fig. 3: 3-D plot, contour plot, and 2-D plot of double-soliton kink

soliton given by u11 with the selection α = 0.9,β = 1,s = 9,q =
2,B = 0.3,c1 = 1,c2 = 5,λ = 0.25.

that is we have

f = 1+ ε(eξ1 + eξ2)+Rε2eξ1+ξ2 , (33)

g = ε(r1eξ1 + r2eξ2)+Aε2eξ1+ξ2 , (34)

it is clear from the hypothesis of the two functions f and
g functions that we do not present a relationship between
these two functions from the beginning which is in contrast
to what followed in the procedure of Hirota’s.

By making direct substitution using the relations (32)-
(34) into hyperbolic GFBM (10), we obtain a series of
degree six in ε . Equating each coefficient of ε by zero we
have six nonlinear algebraic equations (denoted by
E1,E2, ...,E6 ) in the determined constants and the
products of emξ1 ,enξ2 . Using the same abbreviations
above we can obtain fifteen nonlinear algebraic equations
when ak

n = 0,0 ≤ n ≤ k ≤ 6. Based on the symbolic
software ”Maple” or ”Mathematica”, we can solve this
system ak

n = 0. As we presented in the above section, we
turn a blind eye to the cases of s = 0,q = 0,λ = −1/3
and q =−s. Moreover, we will not take into account such
cases r2 = 0,R = 1 and A = r1 because those choices lead
to solutions that describe single travelling waves.
Obviously, we can notice the transformations

r1 → r2,r2 → r1,q →−s,s →−q, (35)
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be an equivalence relationship in the group of double
soliton, so we have one investigation for every pair.

At first, we select the status when r1 6= 0,r2 6= 0 from
E1 6= 0 we have

B
(s− q)(λ − 1)

4
(36)

κ =
τ(1+ 3λ )2(q+ s)2 − 8(1+λ )

16
(37)

using (36) and (37) into a2
0 = a2

2 = a3
0 = a3

3 = 0, we obtain

r1(s− r1)[s+λ (s− q)] = 0,
r2(q− r2)[q+λ (q− s)] = 0,
r1λ (s− r1)(q+ r1) = 0,
r2λ (s− r2)(q+ r2) = 0,

(38)

When solving the previous set of algebraic equations, we
find that they are achieved if we give r1 = r2 = s and

λ =
q

s− q
, (39)

from a6
3 = 0, we have

A(A+ qR)(A− sR) = 0, (40)

that is achieved for example when A = −qR, using this
selection in a5

2 = 0, we get

R2(q+ s)3 = 0, (41)

therefore, we must take R = 0 in this equation. The
reminder equation a2

1 = 0, so we have

s2(q+ s)2[2(q− s)+ τq(2q+ s)2] = 0, (42)

that is gives

τ =−
2(q− s)

q(2q+ s)2
, (43)

Hence, the hyperbolic GFBM (10) have the double soliton
in the form

u22 =
s(eΓ (β+1)(sxα −v1tα+c1)/α+eΓ (β+1)(−qxα −v2tα+c2)/α )

1+eΓ (β+1)(sxα −v1tα+c1)/α+eΓ (β+1)(−qxα−v2tα+c2)/α ,

v1 =
s(2q2+3qs+s2)

4(s−q) ,

v2 =
q(2q2+3qs+s2)

4(s−q)
,

(44)

where τ =− 2(q−s)

q(2q+s)2 ,λ = q
s−q

,B =− s−2q
4

and λ = s−q
8q

.

Currently, we suggest that r1 6= 0 and r2 = 0, through
this hypothesis the constant continuous can still be
obtained from the expression a1

1 = 0. Also, we can get

from the expressions a2
2 = a3

3 = a6
3 = 0, that r1 = s and

A = Rs. From a3
2 = 0 we have

τsq(R−1)(1−3λ )(q+s)2[q(λ −1)+4B+2s(λ+1)] = 0,
(45)

Fig. 4: 3-D plot, contour plot, and 2-D plot of double-soliton

kink soliton given by u22 with the selection α = 0.9,β = 1,s =
−15,q = 20,c1 = 10,c2 =−5.

when R= 1, we do not have the double soliton solution but
we have one soliton solution. Therefore, we must have

B =
q(1−λ )− 2s(λ + 1)

4
(46)

using (46), we can write a3
1 = 0 as

sq(R− 1)[q+ s+λ (q+2s)] (47)

which gives

λ =−
q+ s

q+ 2s
, (48)

The reminder two equations a2
1 = 0 and a4

2 = 0 , having the
same factor

2q+ 4s+ τ(q+ s)(2q+ s)2,

that is compute the parameter τ as

τ =−
2(q+ 2s)

(q+ s)(2q+ s)2
, (49)

c© 2025 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 3, 531-540 (2025) / www.naturalspublishing.com/Journals.asp 537

Thus, the hyperbolic GFBM (10) have the double soliton
in the form

u = seΓ (β+1)(sxα −v1tα+c1)/α (1+ReΓ (β+1)(−qxα −v2tα+c2)/α )

1+eΓ (β+1)(sxα −v1tα+c1)/α+eΓ (β+1)(−qxα −v2tα+c2)/α+Θ1

,

Θ1 = ReΓ (β+1)(sxα−v1tα+c1)/α+Γ (β+1)(−qxα−v2tα+c2)/α

v1 =− qs(s+2q)
4(2s+q)

,

v2 =− q(s+2q)
4

(50)
with B = (2q − s)/4,λ = −(s + q)/(2s + q),τ =
−2(2s+ q)/q+ s)(2q+ s)2,κ = −(2s+ q)/8(s+ q) and
s,q,R,c1,c2 are constants. According to the conditions, in
application of the physical meaning of the constants τ,κ
as well as the parameters s,q in above must investigate
the following inequality (s+ q)(2s+ q) < 0 . We should
note that for the random selection of the parameter R

involves that the solution (50) designates both regular and
singular solutions when R ≥ 0 and R < 0 respectively.
When α = β = 1 all the results of Vladimirov and
Maczka in 2007 are recovered [26].

5 Spatial geometric demonstration

In exploring the geometric interpretations of the solutions
to the hyperbolic GFBM described by equation (10), we
express the solutions in terms of U = U(xα , tα), which
represents 2-dimensional space in a fractional surface
defined by the non-integer variables xα and tα . This
approach enables us to derive the M-truncated fractional
Monge (FM) space, expelling the measurement of key
M-truncated fractional differential geometry amounts,
such as the fractional Gaussian (FG) curvature Kα and the
fractional mean (FM) curvature Hα .

The FM space is a concept that generalizes Monge
space by incorporating FC into its framework. Monge
space typically deals with the study of surfaces and their
properties in terms of Monge’s equations, which describe
surfaces in a simplified form. In FM space, fractional
derivatives are used instead of traditional integer-order
derivatives. This approach allows for the analysis of
surfaces with more complex geometrical and topological
features that are not well-described by classical methods.
It is useful in studying surfaces and shapes in
fractional-dimensional spaces and can provide deeper
insights into phenomena where traditional calculus might
be inadequate.

The FG curvature extends the concept of Gaussian
curvature to fractional calculus. It measures curvature in
spaces where traditional integer-order derivatives are
replaced with fractional ones, providing insights into the
geometric properties of surfaces in a more generalized
framework. FG curvature has several applications across
various fields. Examples include, in complex geometry
which provides a way to analyze surfaces and shapes in
geometries that are not easily described by traditional
integer-order calculus. This can be particularly useful in
studying complex surfaces in higher-dimensional spaces.

In the study of materials with intricate microstructures,
FG curvature can help describe and predict the behavior
of these materials under various conditions, such as stress
or deformation. In areas such as general relativity and
quantum field theory, FG curvature can offer new
perspectives on the geometry of spacetime and the nature
of gravitational fields. It can be applied to model and
understand the complex shapes of biological structures,
such as the surfaces of cell membranes or the forms of
certain proteins. In graphics and visualization, FG
curvature can assist in rendering and simulating complex
surfaces and textures, contributing to more realistic and
detailed visualizations. These applications leverage the
fractional approach to gain deeper insights into curvature
and geometry in various contexts where traditional
methods might fall short.

The FM curvature is a generalization of the classical
mean curvature, incorporating fractional calculus into its
definition. In classical differential geometry, mean
curvature is a measure of how a surface bends in space.
For a surface, it is defined as the average of the principal
curvatures at a given point. It provides insight into how
the surface locally curves and how it might behave under
deformations. FM curvature extends this concept by
replacing the traditional integer-order derivatives used in
calculating mean curvature with fractional-order
derivatives. This generalization allows for the analysis of
surfaces and shapes in fractional spaces, where the
traditional calculus may not apply or may be insufficient.
FM curvature has several applications across various
fields. Examples include, in complex geometry analysis
which helps in studying surfaces in
fractional-dimensional spaces or those exhibiting
complex, non-integer-dimensional features. In analyzing
and modeling materials with intricate microstructures or
surfaces with fractional properties. Provides new ways to
explore and model physical phenomena in fractional
space-time geometries. It assists in rendering and
simulating surfaces with fractional characteristics, leading
to more detailed and realistic visual representations.
Overall, FM curvature allows for a more nuanced
understanding of curvature and surface behavior in
contexts where traditional methods might not be
applicable.

The steps to calculate the M-truncated fractional
Gaussian and mean curvatures are as follows:

Kα =
ℓ11ℓ22 − ℓ2

12

G11G22 −G2
12

,

Hα = ℓ11G22+ℓ22G11−2ℓ12G12

2(G11G22−G2
12)

, G11G22 −G2
12 6= 0,

(51)

where

G11 = D
α ,β
M,xΦ.D

α ,β
M,x Φ , G22 = D

α ,β
M,t Φ.D

α ,β
M,t Φ ,

G12 = D
α ,β
M,xΦ.D

α ,β
M,t Φ , ℓ11 = D

αα ,β
M,x Φ.N,

ℓ22 = D
αα ,β
M,t Φ.N, ℓ12 = D

α ,β
M,x(D

α ,β
M,t Φ).N, and

N = (D
α ,β
M,x Φ ∧ D

α ,β
M,t Φ)/‖D

α ,β
M,xΦ ∧ D

α ,β
M,t Φ‖. Here
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G11 > 0,G22 > 0 represent the squares of the spatial
fractional velocities for the x and t parameter curves of Φ ,
while G12 measures the M-truncated fractional coordinate

angle between D
α ,β
M,xΦ and D

α ,β
M,t Φ (the tangent to the

fractional coordinate curves). The function Φ takes the
form Φ = Φ(xα , tα ,ϕ(xα , tα)). On the other hand, given
the M-truncated FG curvature Kα and M-truncated FM
curvature Hα , we can readily determine the principal
curvatures k1α and k2α , given by the solutions of the
following equation

k2
α −Hαkα +Kα = 0, (52)

this gives Hα ±
√

H2
α −Kα with k1α and k2α be the

M-truncated fractional principal curvatures of the
fractional space patch ϕ(u) so the FG curvature Kα and
FM curvature VHα of ϕ are

Kα = k1α k2α , Hα =
1

2
(k1α + k2α ). (53)

Additionally, we can calculate the M-truncated FG
curvature Kα and M-truncated FM curvature Hα from the
first and second forms of the M-truncated fractional
space,

Eα du2
α + 2Fαduαdvα +Gαdv2

α , (54)

and
Lα du2

α + 2Mαduα dvα +Nαdv2
α , (55)

Thus, we use the following two matrices:

F1 =

(

Eα Fα

Fα Gα

)

, F2 =

(

Lα Mα

Mα Nα

)

, (56)

The eigenvalues of F−1
1 F2 represent the M-truncated

fractional principal curvatures, and k1α k2α denotes the
matrix determinant, therefore:

Kα = det(F−1
1 F2) = det(F−1

1 )det(F2) =
Lα Nα −M2

α

Eα Gα −F2
α

.

(57)
The trace of a matrix is equal to the sum of its
eigenvalues, which equals double the M-truncated FM
curvature. Therefore, we obtain

Hα =
1

2
trace(F−1

1 F2) =
1

2

Lα Gα − 2MαFα +NαEα

Eα Gα −F2
α

.

(58)
Another method to get Kα and Hα involves using the fact
that the principal curvatures are similarly the roots of the
equation

(Eα Gα −F2
α )k

2
α − (LαGα − 2MαFα +Nα Eα)kα

+(Lα Nα −M2
α) = 0.

(59)

The creation Kα and the amount 2Hα of the two roots can
be directly computed from the coefficients. These
outcomes are consistent with those obtained previously.

When α = 1, the expressions simplify to the standard
forms used in differential geometry.

Example: For the M-truncated FM patch
ψ = ψ(xα ,yα), that is designated by
ϕ = (xα ,yα ,ψ(xα ,yα)). Initially, we calculate the single
and double M-truncated fractional differentials as

ϕ
α ,β
M,x ϕ = (α/Γ (β + 1),0,ψ

α ,β
M,x ),

ϕ
α ,β
M,y ϕ = (0,α/Γ (β + 1),ψ

α ,β
M,y ),

ϕ
αα ,β
M,x ϕ = (0,0,ψ

αα ,β
M,x ),

ϕ
αα ,β
M,xy ϕ = (0,0,ψ

αα ,β
M,xy ),

ϕ
αα ,β
M,y ϕ = (0,0,ψ

αα ,β
M,y ),

(60)

since D
α ,β
M,xϕ = ϕ

α ,β
M,x , D

α ,β
M,y ϕ = ϕ

α ,β
M,y , D

αα ,β
M,x ϕ = ϕ

αα ,β
M,x ,

D
αα ,β
M,y ϕ = ϕ

αα ,β
M,y , and D

α ,β
M,x(D

α ,β
M,yϕ) = ϕ

αα ,β
M,xy .

Therefore, the coefficients for the M-truncated
fractional first fundamental form are calculated as
follows:

Eα = ϕ
α ,β
M,x .ϕ

α ,β
M,x =

(

α
Γ (β+1)

)2

+(ψ
α ,β
M,x )

2,

Fα = ϕ
α ,β
M,x , ϕ

α ,β
M,y = ψ

α ,β
M,x .ψ

α ,β
M,y ,

Gα = ϕ
α ,β
M,y .ϕ

α ,β
M,y =

(

α
Γ (β+1)

)2

+(ψ
α ,β
M,y )

2.

(61)

Therefore, the M-truncated fractional unit normal to the
fractional patch is

N =
ϕ

α ,β
M,x ∧ϕ

α ,β
M,y

‖ϕ
α ,β
M,x ∧ϕ

α ,β
M,y ‖

=
(−ψ

α ,β
M,x ,−ψ

α ,β
M,y +α/Γ (β + 1))

√

(α/Γ (β + 1))2 +(ψ
α ,β
M,x )

2 +(ψ
α ,β
M,x )

2

, (62)

The coefficients of the M-truncated fractional second
fundamental form are calculated as follows:

Lα = ϕ
αα ,β
M,x , N =

αψ
αα,β
M,x /Γ (β+1)

√

(α/Γ (β+1))2+(ψ
α,β
M,x )

2+(ψ
α,β
M,x )

2
,

Mα = ϕ
αα ,β
M,xy , N =

αψ
αα,β
M,xy /Γ (β+1)

√

(α/Γ (β+1))2+(ψ
α,β
M,x )

2+(ψ
α,β
M,x )

2
,

Nα = ϕ
αα ,β
M,y , N =

αψ
αα,β
M,y /Γ (β+1)

√

(α/Γ (β+1))2+(ψ
α,β
M,x )

2+(ψ
α,β
M,x )

2
.

(63)

Therefore,

Kα =
ψ

αα ,β
M,x ψ

α ,β
M,y − (ψ

α ,β
M,xy)

2

((α/Γ (β + 1))2 +(ψ
α ,β
M,x )

2 +(ψ
α ,β
M,x )

2)2
, (64)

Hα =
1

√

((α/Γ (β + 1))2 +(ψ
α ,β
M,x )

2 +(ψ
α ,β
M,x )

2)3

×
{

((α/Γ (β + 1))2 +(ψ
α ,β
M,y )

2)ψ
αα ,β
M,x

+(α/Γ (β + 1))2 +(ψ
α ,β
M,x )

2)ψ
αα ,β
M,y

+ 2ψ
αα ,β
M,xy ψ

α ,β
M,y ψ

α ,β
M,x

}

(65)
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6 Concluding Remarks

In this manuscript, we apply the fractional Hirota bilinear
technique to derive analytical solutions for the hyperbolic
generalized space-time fractional Burgers model. We
develop both single and double soliton waves for the
fractional differential model under investigation. These
computations are conducted using symbolic computation
tools like Maple, which has become increasingly popular
among researchers, demonstrating that the Hirota bilinear
method is a promising and straightforward approach for
addressing nonlinear differential models of both integer
and fractional orders. Our results confirm that this method
is easy to apply, effective, and well-suited for a wide
range of engineering and physics problems. The ability to
select arbitrary fractional orders allows us to construct
more complex structures, and variations in the soliton
solutions based on fractional order provide broader
applications in the applied sciences. The geometric
analysis enables us to understand the properties of the
solutions, offering new physical insights into the problem.
For a fractional order of one, our results align with those
of Vladimirov and Maczka [26]. We suggest that this
method could be applied to further nonlinear fractional
systems. In upcoming research, we aim to investigate the
geometric properties of 3-dimensional surfaces in
M-truncated fractional space and apply this technique to
other nonlinear space-time fractional differential models.
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