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Abstract: The fundamental purpose of this article is to propose a three-dimensional (3D) convolution quadrature boundary 
element method (CQBEM) model for precisely calculating thermal stress sensitivity in anisotropic materials. The volume 
integral is approximated in a discretized version of the problem, and the singularity along the boundary is handled using the 
convolution quadrature model. The three-dimensional and time-dependent heat equation is solved using a continuous 
convolution quadrature, while the temporal convolution integrals are discretized in space using the trapezoidal rule. 
Iterating through the CQBEM solutions for each point of the convolution quadrature rule provides for efficient 
convergence to the steady state solution. The model can be used to calculate thermal stress gradients in relation to the 
geometrical parameter in the parametric design of heterogeneous anisotropic materials.  

Keywords: Convolution quadrature method, Boundary element method; Thermal stress sensitivities; Anisotropic 
materials. 
 
Nomenclature 

∗ Time convolution 
∇ Spatial gradient 
∇ ⋅ Spatial divergence 
𝛼% Thermal expansion coefficient 
𝛽!" Stress-temperature coefficients 
𝜌 Density 
Φ#
$ ∈ 𝑆%$(C)  piecewise constant trial function 

Ψ#& ∈ 𝑆%&(C)  Linear continuous trial functions 
C C' ∪ C( ∪ C) Boundary 
C' Dirichlet boundary 
C( Neumann boundary 
C) Robin boundary 
𝐶*"+, Constant elastic moduli 
𝑐* Specific heat constant 
𝐸(𝑒) Complete elliptic integral of first kind 
𝐈  Identity matrix 

𝐽!6𝜎*8 Jacobi elliptic functions 
𝜅 Thermal conductivity coefficients 
𝑚 Runge-Kutta stages 
𝑁- Number of integration points  
𝐧 Outward normal 
𝑝 Runge-Kutta order 
ℚ Flux	fundamental	solution 
𝑞 Runge-Kutta stage order 	

𝕢(𝐱, τ) Conductive heat fluxes 
R  Domain  
𝑇 Temperature 
T Temperature fundamental solution 

𝐓H Traction	fundamental	solution 
T. Coupling term 

𝑇/(𝐱) Ambient temperature 
𝕥(𝐱, τ) Traction vector 
𝐔 Displacement fundamental solution 
𝐮 Displacement 

1. Introduction  

The standard method for solving boundary value problems 
in structural mechanics is to employ partial differential 
equations using elastic, thermal, electrical, magnetic, and 
other material properties as parameters, beginning with 
variational principles. Many elasticity problems can be 
simplified by expressing the displacement fields as 
polynomial precise solutions with constant coefficients. In 
engineering practice, interest in thermal stresses can stem 
from a variety of factors [1-3]. In the first case, it may be 
desirable to evaluate the distribution of temperatures within 
a solid body under specified surface loads. These 
temperatures are then utilized to determine the stress and 
general deformation distributions for the stated surface 
forces and moments. Thermal stress calculations are 
required in many engineering sectors, including the 
building, vehicle, and aircraft industries, nuclear reactor 
design, the microelectronics industry, and a variety of other 
manufacturing fields [4-6]. Thermal stresses occur in a 
variety of actual design challenges and can be easily used to 
build theories related to stability, nonlinear behaviour, 
fracture, contact phenomena, and so on. Depending on the 
type of solution required, the initial stress state supplied can 
be related with medium qualities that may or may not exist 
[7, 8]. In thermal stress analysis, thermal conductivity 
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causes temperature dispersion, which then defines a heat 
stress field by solving a purely elastic problem. Three-
dimensional thermal stress analysis can be used to forecast 
the behaviour of materials and structures in a variety of 
engineering and scientific fields under specific thermal 
conditions [9, 10]. 

Anisotropic materials are extensively used in the aircraft 
industry because of their high strength-to-weight ratio. 
However, the thermal stresses that result from applying 
thermal loads to such materials are poorly understood. The 
current study investigated the influence of several 
parameters on thermal stress generation in anisotropic 
materials. General formula for calculating thermal stress 
sensitivity in parameterized anisotropic materials have been 
devised. Extensive experimental data was used to assist the 
determination of required sensitivity values. It was 
discovered that anisotropic materials had a high strength-to-
weight ratio under thermal loads, as well as excellent 
phasing capabilities. The results also demonstrated that the 
thermal stress deviator effects depend largely on the 
individual attributes and, to a lesser extent, on the relevant 
material properties [11-13]. 

Anisotropic effects can have a significant impact on 
temperature response and stress distribution in particular 
materials, calling into question the utility of using isotropic 
material models to approximate many real-world 
engineering problems. However, there are few papers 
available that describe the sensitivity analysis of thermal 
stresses in anisotropic materials and provide accurate 
results. The few extant publications each use their own 
assumptions and approximations, resulting in limited 
numerical results. The current boundary sensitivity 
technique for approximating engineering problems, 
particularly dynamically large-scale engineering issues, is 
impracticable for assisting in the identification of 
anisotropic material properties. Therefore, thermal stress 
sensitivity to boundary parameters in anisotropic materials 
are being developed [14,15]. 

When problems are represented in terms of partial 
differential equations, boundary element techniques 
(BEMs) can be used instead of finite element and finite 
difference methods [16, 17]. This is the case when 
problems are ill-posed, meaning it is unclear which class of 
functions a solution is properly defined for, or when 
singularities must be considered. BEMs are extensively 
used because they allow you to handle the problem on a 
curve rather than a full domain [18-20]. The researchers 
propose a numerical method based on the concept of 
convolution quadrature in the spatial variables and 
quadrature rules in the time variable, which permits the 
BEM to be combined with the proposed described general 
three-dimensional thermo-elastic model for the evaluation 
of thermal stresses [21-23]. Lubich's initial proposal for 
convolution quadrature method (CQM) [24, 25] is limited 
to a fixed time step size. Lopez-Fernandez and Sauter [26] 
have extended the generalization to a variable step size; the 

algorithmic realization can be found in [27]. In [28], it is 
proposed to extend the Runge-Kutta method for underlying 
time stepping. 

In this paper, we present a numerical approach for 
computing thermal stress sensitivity that combines 
convolution quadrature (CQ) with the volume-surface 
variational formulation of the BEM. The volume integral is 
approximated in a discretized version of the problem, and 
the singularity near the boundary is addressed using the 
convolution quadrature method. These sensitivity analysis 
concerns are tackled using the three-dimensional 
convolution quadrature boundary element method 
(CQBEM), which supports non-uniform time increments. 
The numerical results demonstrate that the recommended 
technique works. The convergence behavior is determined, 
as expected, by either the time stepping method or spatial 
discretization, based on whether rate is lower. Furthermore, 
it is demonstrated that the proposed CQBEM technique is 
preferable in certain situations. 

2. Formulation of the problem 

The governing equations can be written as follows [29] 

𝐶!"#$∇%𝐮(𝐱, τ) + 𝐶!"#$∇∇ ⋅ 𝐮(𝐱, τ) − 𝛽!"𝛼∇𝑇(𝐱, τ) = 0    (1) 

𝜅∇%𝑇(𝐱, τ) − 𝜌𝑐&�̇�(𝐱, τ) = 0				         (2) 

The Dirichlet, Neumann, and Robin boundary conditions 
are given by 

𝒖(𝐱, τ) = b'(𝐱, τ)∀	𝐱 ∈ C' × (0, 𝑡)						         (3) 

𝑇(𝐱, τ) = b='(𝐱, τ)∀	𝐱 ∈ C' × (0, 𝑡)	        (4) 

𝕥(𝐱, τ) = 𝑇(𝑢(𝐱, τ) − 𝛽!" 	𝛼𝑇(𝐱, τ)𝐧			 = b)(𝐱, τ)∀	𝐱 ∈
C) × (0, 𝑡)		            (5) 

𝕢(𝐱, τ) = b=)(𝐱, τ)∀	𝐱 ∈ C) × (0, 𝑡)			        (6) 

𝕢(𝐱, τ) + 𝜅(𝐱)𝑇(𝐱, τ) 	= b=*(𝐱)∀	𝐱 ∈ C* × (0, 𝑡)				       (7) 

Where 

𝕢(𝐱, τ) = −𝜅(𝐱)B𝑇(𝐱, τ) − 𝑇+(𝐱)C			         (8) 

And 

b=*(𝐱) = 𝜅(𝐱)𝑇+(𝐱)								          (9) 

3. Numerical BEM implementation 

According to [6, 7], Eq. (1) with the weighted residual 
formula can be written as follows 

∫  ,- ∫  . 𝐆
/(𝐱 − 𝐲, τ − �̅�)(ℬ𝐮0)(𝐲, 𝜏)dΩ = ∫  . 𝐆

/(𝐱 − 𝐲, τ) ∗
(ℬ𝐮0)(𝐲, τ)dΩ = 0.	         (10) 

where ℬ, ℬ∗, and 𝐮0 = [𝐮2𝑇]2 are defined there. 

Based on the fundamental solutions of [30], the 
representation formula (∀𝐱 ∈ R ) 
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𝐮(𝑥, 𝜏) = −S  
3

-
S 
4
(ℬ∗𝐆)/(𝐱 − 𝐱=, 𝜏 − �̅�)𝐮0(𝐱=, 𝜏̅)dRd𝜏 

+S 
5
B𝐔(𝐱 − 𝐱=)𝕥(𝐱=, 𝜏) − T6(𝐱 − 𝐱=, 𝜏) ∗ 𝕢(𝐱=, 𝜏)C𝑑C 

−∫  5 B𝐓X(𝐱 − 𝐱=)𝐮(𝐱=, 𝜏) + ℚ6(𝐱 − 𝐱=, 𝜏) ∗ 𝑇(𝐱=, 𝜏)C𝑑C.				 (11) 

𝑇(𝑥, 𝜏) = −S  
3

-
S 
4
(ℬ∗𝐆)/(𝐱 − 𝐱=, 𝜏 − 𝜏̅)𝐮0(𝐱=, �̅�)dRd𝜏 

−∫  5 ZBT(𝐱 − 𝐱=, 𝜏) ∗ 𝕢(𝐱=, 𝜏)C + BℚX(𝐱 − 𝐱=, 𝜏) ∗

𝑇(𝐱=, 𝜏)C[ 𝑑C.	         (12) 

Based on the spatial discretization [30], we have C = 𝑈!
7!𝜏! 

Hence, we get 

𝐮8(𝐱, 𝜏) = ∑  ℕ"
:;< Ψ:<(𝐱)𝐮:(𝜏),			       (13) 

𝕥8(𝐱, 𝜏) = ∑  ℕ#
:;< Φ:

-(𝐱)𝕥:(𝜏)			         (14) 

𝑇8(𝐱, 𝜏) = ∑  ℕ"
:;< Ψ:<(𝐱)𝑇:(𝜏)        (15) 

𝕢8(𝐱, 𝜏) = ∑  ℕ#
:;< Φ:

-(𝐱)𝕢:(𝜏)	        (16) 

The spatially discretized operators are 

𝕍[)>] = ∫  @ABB	DE$% F
 𝐔(𝐱) − 𝐱=)	Φ>

- (𝐱=)dΓ𝐱H,				     (17) 

𝕍[)>]I = ∫  @ABB	DE$% F
 T(𝐱) − 𝐱=, 𝜏)	Φ>

- (𝐱=)dΓ𝐱H ,			     (18) 

𝕍[)>]J = ∫  @ABB	DE$% F
 T6(𝐱) − 𝐱=, 𝜏)	Φ>

- (𝐱=)dΓ𝐱H,	     (19) 

𝕂[)>] = ∫  @ABB	DK$
& F  TX(𝐱) − 𝐱=)Ψ>

< (𝐱=)dΓ𝐱H ,				      (20) 

 𝕂[)>]
L = ∫  @ABB	DK$

& F  ℚ(𝐱) − 𝐱=, 𝜏)Ψ>
< (𝐱=)dΓ𝐱H ,			     (21) 

𝕂[)>]
J = ∫  @ABBDK$

& F  ℚ6(𝐱) − 𝐱=, 𝜏)Ψ>< (𝐱=)dΓ𝐱H        (22) 

where 

ℂu(𝜏) = 𝕍	𝕥(𝜏) − 𝕂	u(𝜏) + 𝕍5(𝜏) ∗ 𝕢(𝜏) − 𝕂5(𝜏) ∗
𝑇(𝜏)			          (23) 

ℂ2𝑇(𝜏) = 𝕍2(𝜏) ∗ 𝕢(𝜏) − 𝕂2(𝜏) ∗ 𝑇(𝜏)					      (24) 

Based on [30] and [36], we have 

𝑦(𝜏) = 𝑓(𝜏) ∗ 𝑔(𝜏) = ∫  3- 𝑓(𝜏 − 𝜏̅)𝑔(�̅�)d𝜏̅ =
<
%MN ∫  J 𝑓(𝕤) ∫  ,- e

𝕤(3Q3H)𝑔(𝜏̅)d�̅�d𝕤	,	        (25) 

where for the Laplace variable holds 𝕤 ∈ ℂ, s.t. ℜ𝕤 > 0. 
Equation (25) is only valid if the Laplace transform �̂�(𝕤) 
and its inverse exist. 

According to [7], we can write 
S
S3
𝑥(𝜏, 𝕤) = 𝑠𝑥(𝜏, 𝕤) + g(𝜏)	 with 	𝑥(𝜏 = 0, 𝕤) = 0	.		     (26) 

Assume that we have (𝜏)));-7  time steps 

0 = 𝜏- < 𝜏< < ⋯ < 𝜏7 = 𝑡, Δ𝜏) = 𝜏) − 𝜏)Q<		      (27) 

To solve (18), we use the implicit Euler method with the 
following approximation 

𝑥) =
T#'&
<Q𝕤U3#

+ U3#
<Q𝕤U3#

g)	,				       (28) 

By using the following discrete values 𝑥) = 𝑥(𝜏)) in (17), 
we obtain 

𝑦(𝜏)) = 𝑓 Z <
U3#
[ g) +

<
%MN∫  J  𝑓(𝕤)

T#'&
<Q𝕤U3#

 d𝕤.		      (29) 

Thus, the ultimate quadrature rule for the convolution 
integral is 

𝑦(𝜏)) = �̂� Z <
U3#
[ g) +∑  7(

&;< 𝕨&
V̂D𝕤)F

<Q𝕤)U3#
𝑥)Q<B𝕤&C	.	      (30) 

According to Runge-Kutta methods [27, 28], we obtain 

𝕤& = 𝜆B𝜎&C, ℕX = ℕ log%(ℕ) ,𝕨& =
4𝐸(𝑒%)
1𝜋𝑖 𝜆YB𝜎&C, 	𝐸(𝑒)

= S  
<

-

𝑑𝑥
�(1 − 𝑥%)(1 − 𝑒%𝑥%)

	 , 𝐸Y(𝑒) = 𝐸(1 − 𝑒),

𝑒 =
𝑞= − �2𝑞= − 1
𝑞= + �2𝑞= − 1

, 𝑞= =
Δ𝜏Z[\5max!  |𝛾!( A)|

Δ𝜏ZN]min!  |𝛾!( A)|
	 ,

𝜆B𝜎&C =
1

Δ𝜏>!)(𝑞= − 1)
��2𝑞= − 1

𝑒Q< + 𝐽<B𝜎&C
𝑒Q< − 𝐽<B𝜎&C

− 1� ,

𝜆YB𝜎&C =
�2𝑞= − 1

Δ𝜏>!)(𝑞= − 1)
2	𝐽%B𝜎&C	𝐽 B𝜎&C

𝑘 Z𝑒Q< − 𝐽<B𝜎&C[
% 

and 𝜎& = −𝐸(𝑒%) + Z𝑝 − <
%
[ _`D:

*F
7(

+ !
%
𝐸Y(𝑒%)	. 

According to [37], Runge-Kutta method with its Butcher 
tableau a∣c

d+
, ℛ(∞) = 0, and invertible matrix 𝔸 ∈

ℝ>×>, b, c ∈ ℝ>, is 𝔸-stable with 𝑝 ⩾ 1 and 𝑞 ⩽ 𝑝 if the 
stability function ℛ(𝑧) = 1 + 𝑧𝐭(𝐼 − 𝑧 𝔸)Q<𝟙, 	𝟙: =
(1,1, … ,1)/ of size 𝑚 satisfies |ℛ(𝑧)| ⩽ 1, 	 for ℜ𝑧 ⩽ 0, 
|ℛ(i𝑦)| < 1 for 𝑦 ≠ 0, and 𝐼 −
𝑧𝔸 is non-singular for ℜ𝑧 ⩽ 0. 

Using the vector 𝕘) the algorithm at the time step 𝑛 is 

• For 𝑛 = 1 

𝑦(𝜏<) = 𝑓((Δ𝜏< 𝔸)Q<)𝕘<				       (31) 

• For 𝑛 = 2,… ,𝑁, The algorithm consists of the 
following two steps: 

1. Modify the vector of solution 𝑥)Q< at every integration 
point 𝕤& for 𝑝 = 1,… ,𝑁X 

𝑥)Q<B𝕤&C = B1 − Δ𝜏)Q<𝕤&𝔸C
Q< £Z𝕓2𝔸Q< ⋅ 𝑥)Q%B𝕤&C[ 	𝟙 +

Δ𝜏)Q<𝔸𝕘)Q<¥	         (32) 

2. Solve the integral at 𝜏) 

y(𝜏)) = �̂�((Δ𝜏) A)Q<)𝕘) +∑  7,
&;< 𝕨&	𝑓B𝕤&C Z𝕓/𝔸Q< ⋅
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x)Q<B𝕤&C[ BI − Δ𝜏)𝕤&𝔸C
Q<𝟙							        (33) 

Discretization of the heat load in f2(𝜏) leads to 

		f2(𝜏)) = 𝕍©J((Δ𝜏)𝔸)Q<)𝕢) −𝕂©J((Δ𝜏)𝔸)Q<)𝑇) +
∑  7(
&;< 𝕨& ª𝕍©JB𝕤&C Z𝕓2𝔸Q< ⋅ 𝑥)Q<𝕍- B𝕤&C[ −

𝕂©JB𝕤&C Z𝕓2𝔸Q< ⋅ 𝑥)Q<𝕂- B𝕤&C[« B𝑙 − Δ𝜏)𝕤&𝔸C
Q<𝟙	      (34) 

Thus, we get 

�̂�<((Δ𝜏) 𝔸)Q<)[𝕢]) =
�̂�%((Δ𝜏) 𝔸)Q<)[𝕘'2])∑  7(

&;< 𝜔ℓ ª�̂�%B𝕤&C Z𝕓/𝔸Q< ⋅

x)Q<
𝕄* B𝕤&C[  

(−�̂�<B𝕤&C Z𝕓/𝔸Q< ⋅ x)Q<
𝕄& B𝕤&C[« B1 − Δ𝜏)𝕤&𝔸C

Q<𝟙				   (35) 

�̂�<((Δ𝜏) 𝔸)Q<)[𝑇]) =
�̂�%((Δ𝜏) 𝔸)Q<)[𝕘)2]) ∑  7(

&;< 𝜔ℓ ª�̂�%B𝕤&C Z𝕓/𝔸Q< ⋅

x)Q<
𝕄* B𝕤&C[  

(−�̂�<B𝕤&C Z𝕓/𝔸Q< ⋅ x)Q<
𝕄& B𝕤&C[« B1 − Δ𝜏)𝕤&𝔸C

Q<𝟙	      (36) 

where 

�̂�< = ¯
�̂�jjL −�̂�j7

L

�̂�7jL −Bℂ77L + �̂�77
L C

° 	�̂�% =

¯
ℂjjL + �̂�jj

L −�̂�j7L

�̂�7j
L −�̂�77L

°  

4. Numerical results and discussion 

BEM was developed using quadratic isoparametric 
elements, and the 8-point Gauss quadrature algorithm was 
employed with double precision for the numerical 
integrations. Alumina was considered in the calculations, 
with the elastic stiffness coefficients reported in [38]. 

 
Fig. 1: Thermal stress 𝜎<< sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 

 
Fig. 2: Thermal stress 𝜎<% sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 

 
Fig. 3: Thermal stress 𝜎%% sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 

 
Fig. 4: Thermal stress 𝜎<^ sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 
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Fig. 5: Thermal stress 𝜎%^ sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 

 
Fig. 6: Thermal stress 𝜎^^ sensitivity distribution at 𝜏 = 0 
and 𝜏 = 0.5 for I, TI, O and AI materials. 

Figures 1-6 depict the distributions of time-dependent 
(𝜏 = 0.5) and time-independent (𝜏 = 0) thermal stresses 
𝜎<<, 𝜎<%, 𝜎%%, 𝜎<^, 𝜎%^ and 𝜎^^ sensitivity along the x-axis for 
isotropic (I), transversely isotropic (TI), orthotropic (O), 
and anisotropic (AI) materials. These figures depict the 
distinctions between time-dependent and time-independent 
materials. Furthermore, these figures highlight the 
differences between the effects of isotropic (I), transversely 
isotropic (TI), orthotropic (O), and anisotropic (AI) 
materials. 

 
Fig. 7: Thermal stress 𝜎<< sensitivity distribution along 𝑥<-
axis  for CQBEM, FEM, and MFS methods. 

Figure 7 compares a special case of the present convolution 
quadrature boundary element method (CQBEM) thermal 
stress σ<<  sensitivity distribution along the 𝑥<-axis to the 
finite element method (FEM) results of Fang et al. [39] and 
the method of fundamental solutions (MFS) results of 
Hematiyan et al. [40]. The current CQBEM, FEM, and 
MFS all agree quite well. Thus, the proposed method's 
validity was proven. 

5. Conclusions 

In this research, we provide a numerical method for 
computing thermal stress sensitivity that combines 
convolution quadrature (CQ) and the volume-surface 
variational formulation of the BEM. The volume integral is 
approximated in a discretized version of the problem, while 
the convolution quadrature approach is used to handle the 
singularity near the boundary. These sensitivity analysis 
concerns are addressed utilizing the three-dimensional 
convolution quadrature boundary element method 
(CQBEM), which allows for non-uniform time increments. 
The numerical results show that the recommended 
technique works. The convergence behavior is determined, 
as expected, by either the time stepping approach or spatial 
discretization, depending on whether the rate is less. 
Furthermore, it is shown that the proposed CQBEM 
approach is superior in certain instances. 
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