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Abstract: The tumor-immune interaction model related to lung cancer by applying the fractional variable-order Brownian motion

and hybrid variable-order fractional piecewise derivatives are presented for the first time in this paper. The variable order fractional

derivative of the Caputo proportional constant is applied to extend the deterministic model, and the variable order fractional Brownian

motion is applied to extend the stochastic differential equations. A parameter ζ is presented to be consistent with the physical model

problem. The stability of the proposed model is discussed. New numerical algorithms are improved to study the proposed model. These

techniques are the modified nonstandard Euler Maruyama approach to study the stochastic model and the constant proportional Caputo

non-standard fifth step Adams-Bashfourth method to study numerically the deterministic model of variable order derivative. Several

numerical experiments verify the method’s efficiency and support the theoretical results.

Keywords: Tumor-Immune; lung Cancer; variable order constant proportional Caputo derivative; the fifth-step proportional Caputo
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1 Introduction

Cancer and cancer cells are the most widespread and deadliest diseases of our time. One type of disease is the lung cancer.
The multiplicity of lung cancer’s sub-types and the intricacy of the disease’s mechanism make early diagnosis particularly
challenging [1]. Lung cancer is the primary cause of cancer-related fatalities worldwide. As a result, the sickness is still
deadly and hasn’t been completely cured. Cancer cells, known to divide swiftly and expand uncontrollably, cause this
illness [2]. Additionally, cancerous tumor cells undergo changes and rapid development. Knowing how this mechanism
operates will make it simpler for us to defeat cancer from the start.

Mathematical models have proven to be invaluable in understanding the dynamics of disease spread. These models
serve as powerful tools for capturing the laws, processes, and trends associated with the spread of diseases. Over the years,
significant progress has been made in both the theoretical foundations and practical applications of mathematical research
on disease dynamics [3, 4]. Only a few research have been done on mathematical modelling of fractional order lung
cancer, for instance [5]. The paper [7] summarizes the most promising new directions addressed and improved during the
scientific debate at the conference ICMMAS’19, as well as noteworthy complementary fresh works. Advanced theoretical,
experimental, and numerical simulations yielded novel insights in all aspects of cancer and HIV/AIDS dynamic systems.
Over the recent years, fields like physics [6] , quantum [8], chemistry [9], finance [10], medicine [11] and several others
have all noticed an increase in their use of fractional calculus. Fractional differential equations are the most effective at
describing biological phenomena [12].

Fractional-order differential equations (FODE) models have advantages over integer-order mathematical models and
are more accurate and realistic. Fractional-order models are better able to explain these complicated events than
integer-order models since most biological systems continue to function utilizing memory, after-effects, and hereditary
features compared with Integer-order differential equation models. Because biological phenomena usually face abrupt
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changes, they cannot be included when modelling evolutionary processes that depend on short memory. The
aforementioned characteristic has been thoroughly investigated using the concept of a piecewise derivative of fractional
order. The authors come to the conclusion that the aforementioned fractional calculus property may be used as a
powerful tool to describe a range of dynamic behaviours observed in real life.

The effects of a time-dependent system’s extensive variable memory can be described using variable-order fractional
derivatives (VOFDs). This unusual extension of the classical fraction computation was proposed by the reference [13]. As
a result, the variable-order fractional derivatives used to define the derivative models are advantageous and suitable for the
epidemic models. Fractional order and integer order results can be derived from mathematical models with variable-order
fractional derivatives.

To more accurately reflect complicated behaviors encountered in some real-world problems, piecewise calculus has
been developed in recent years. In many real-world phenomena, such as infectious illness, heat transfer, fluid flow, and
several complex advection problems, crossover behaviors take place [14–17]. Recent studies have demonstrated that
differential equations with piecewise equations, as opposed to equations with standard fractional or integer orders, are
more appropriate for representing the previously indicated process. It should be mentioned that this concept of the
derivative of piecewise is similar to the short memory concept in fractional calculus. Recent works in this field have been
published as [18, 19].

This study’s piecewise mathematical model representation of cancer revealed a feature that had never been studied or
observed in previous studies that used mathematical models based on classical or other fractional derivatives. This
approach of piecewise mathematical model representation of many real-world dynamic systems is eye-opening for
scholars, as it has the ability to unearth hidden aspects in a system’s dynamics [16]. The reference [17] incorporates a
hybrid fractional operator. This novel operator outperforms Caputo’s fractional derivative operator in terms of flexibility.
As a particular case, we can derive a hybrid fractional derivative operator to get Caputo’s fractional derivative operator,
where the fractional derivative of Caputo and the Riemann-Liouville integral are combined linearly in the hybrid
fractional operator.

The lung cancer and tumor-immune system interaction model [20] will be developed into a piecewise hybrid
fractional variable-order and stochastic fractional variable order Brownian motion (VFBM) model in this study. This
work will be the first to present this mathematical model. We shall talk about the existence of a stochastic model and the
stability of the suggested model. To solve the suggested model, new numerical methods will be developed by us. The
fractional variable-order hybrid derivative deterministic model is solved using the fifth-step proportional Caputo constant
nonstandard Adams-Bashfourth method (PCC-NAB5SM), while the stochastic model is solved using the nonstandard
modified Euler Maruyama methodology. The theoretical results will be supported by a number of numerical experiments.

The following is the paper’s basic structure: Multiple definitions of the variable-order fractional-order derivative
(VFOD) and background information on the Modified Euler-Maruyama approach are given in Section 2. A steady-state
analysis of the hybrid variable-order fractional piecewise and variable-order stochastic Brownian motion models is
explored. in 4, Section. Furthermore, this paper’s Section 5 explores the stability analysis of the proposed approach and
offers novel numerical techniques for analyzing the model. Numerical simulations are described in Section 6. A
summary of the study’s main conclusions and contributions is given in section 7.

2 Fundamental Definitions

In the next section, we present a number of significant definitions of the variable-order fractional that will be used
throughout the text.

Definition 1.The variable order fractional of the Riemann-Liouville integral’s left and right (L-R) sides, where f (t) is a

continuous function are defined, respectively, as follows [21]:

aI
α(t)

t F(t) =

[

∫ t

a
(−s+ t)−1+α(t)

F(s)ds

]

(Γ (α(t)))−1, t > a, (1)

t I
α(t)

b F(t) =

[

∫ b

t
(−s+ t)−1+α(t)

F(s)ds

]

(Γ (α(t)))−1. t < b. (2)

Definition 2.Here are the definitions of the left side Caputo derivatives of variable order fractional for a function F(t) of

order α(t), F ∈ ACn[a,b] [21]:

(CD
α(t)
a+ F)(t) = (Ca D

α(t)
t F)(t) =

1

Γ (−α(t)+ n)

(

∫ t

a

F
(n)(s)

(t − s)1−n+α(t)
ds

)

, t > a. (3)
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Definition 3.According to ( [22], [23]), the Caputo proportional constant variable order fractional operator (CPC) is

defined as follows:

CPC
0 D

α(t)
t F(t) =

(

∫ t

0
(t − s)−α(t)

F
′(s)( f (s)K1(α(t))+K0(α(t)))ds

)

(Γ (−α(t)+ 1))−1

= K1(α(t))RL
0 I

1−α(t)
t F(t)+K0(α(t))C0 D

α(t)
t F(t), (4)

where the constant Q and the values of kernels K0 and K1 as in [22].

2.1 Euler-Maruyama approach with modification

Let H be the Hurst index, which is provided by the differential equations for stochastic (SDE) controlled by FBM

dys =ϒs(ys, t)dBH
η (t)+Λs(ys, t)dt, 0 < t ≤ Tf , (5)

ys(t0) = ys,0, η ,s = 1, ...,κ ,

where, Λs(ys, t) and ϒs(ys, t) are continuous real functions, with ys,0 representing a deterministic initial value. Also,

Λs(ys, t) represents the mean rate of change of the system state yκ at time t, and ϒϑ (y1,y2, ...,yκ , t)dBH
η(t) represents the

random perturbation. The word Λϑ (ys, t) represents the average or predictable component of the issue, and ϒs(ys, t),
represents the intensity of the random part.

The Euler-Maruyama method (EMM) is a prominent solution for Eq. (5) in the case of classical Brownian motion, i.e.
when H = 0.5:

yn+1
s =ϒs(y

n
s , t

n)∆Bn
η +Λs(y

n
s , t

n)∆ t + yn
s , 0 < t ≤ t f , η ,s = 1, ...,κ , (6)

Using the Modified Euler-Maruyama Method (MEMM), equation (5) is resolved as follows:

yn+1
s =yn

s +Λs(y
n
s , t

n)∆ t +ϒs(y
n
s , t

n)∆Bn
η

+ 0.5ϒs(y
n
s , t

n)ϒ
′

s (y
n
s , t

n)∆ t2H , s,η = 1, ...,κ , 0 < t ≤ Tf , H > 0.5. (7)

For more details about this method see [24–26].

3 The Hybrid Picewise Variable-Order Fractional for Lung Cancer Model

In the next section, the mathematical model of the interaction between the tumor and immune system for lung
cancer [20] was expanded using a piecewise differential equation system. The VFBM is used to expand the stochastic
equation (SDE) in the range T1 < t ≤ Tf , and the CPC variable order operator is used to expand the deterministic model
in the range 0 < t ≤ T1. A new parameter ζ is introduced to be compatible with the physical model problem. Furthermore,
we avoid dimensional incompatibilities by modifying the variable order fractional model with an additional parameter ζ .
The system that is produced can be expressed as follows:






















ζ α(t)−1CPC
0 D

α(t)
t T (t) = r2T (t)(1−

T (t)
k2

)− µA(t)T(t)− δ1T (t)W (t),

ζ α(t)−1CPC
0 D

α(t)
t A(t) = β M(t)A(t)− d2A(t), 0 < t ≤ T1,

ζ α(t)−1CPC
0 D

α(t)
t M(t) = r1M(t)(1− M(t)

k1
)− µA(t)M(t)− d1M(t),

ζ α(t)−1CPC
0 D

α(t)
t W (t) = r3W (t)(1− W(t)

k3
)− δ2T (t)W (t),

(8)

with initial conditions

T (t0) = τ0 ≥ 0, A(t0) = a0 ≥ 0, M(t0) = m0 ≥ 0, W (t0) = w0 ≥ 0, (9)

The model can be expressed as follows in Tf ≥ t > T1,






















dT = (r2T (t)(1− T (t)
k2

)− µT (t)A(t)− δ1W (t)T (t))dt +σ1C(t)dB
H(t)
1 ,

dA = (β M(t)A(t)− d2A(t))dt +σ2C(t)dB
H(t)
2 , t1 < t ≤ t f ,

dM = (r1M(t)(1− M(t)
k1

)− µM(t)A(t)− d1M(t))dt +σ3C(t)dB
H(t)
3 ,

dW = (r3W (t)(1− W(t)
k3

)− δ2W (t)T (t))dt +σ4C(t)dB
H(t)
4 ,

(10)
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T (t1) = τ1 ≥ 0, A(t1) = a1 ≥ 0, W (t1) = w1 ≥ 0, M(t1) = m1 ≥ 0. (11)

Table 1: The variables in the system (8) [20].

The variable Description

T The cells of Tumor (TCs)

A Macrophages that are active

M The cells of Macrophages

W Cellular hosts or healthy tissue cells (NTCs)

Table 2: The model’s parameters and their values [20]

Parameters Description Value

k1 The macrophage’s carrying capacity 5.0785e+07

k2 The capability of TCs to carry 2.7785e+05

k3 The NTCs’ carrying capacity 5.4621e+06

d1 The number of macrophages that die 4.3884e−14

d2 The proportion of dying active macrophages 0.8809

δ1 The NTCs’ rate of competition with TCs 0.8809

δ2 The ratio of TCs to NTCs in terms of competition 0.7609

r1 The pace of cell proliferation in macrophages 0.9
r2 The TCs’ rate of expansion 0.5045

r3 How quickly NTCs are growing 0.6169

µ The frequency of TC degradation brought on by aggressive macrophage attack 0.014

β1 The proportion of inactive macrophages that become active 0.0937

β2 A result of active macrophages degrading macrophage cells 0.0122

3.1 Existence of stochastic solutions to differential equations

Assuming that L2(Ω ,F,P) = L2 is space of containing the random processes of second order, y : Ω −→ Ω ×R and
consider the equation (5). Integrate (5), then we have:

y(t) = y(0)+

∫ t

0
ϒs(ys(ς),ς)dB

H(t)
η (ς)+

∫ t

0
Λs(ys(ς),ς)dς . (12)

The following requirements must be met for functions ϒs(ys,ς) and Λs(ys,ς) to existence of a solution for (12) and satisfy
the following conditions [27]:

|−ϒs(ȳs, t)+ϒs(ys(t), t)| ≤ L∗|ys(t)− ȳs(t)|,

|Λs(ys(t), t)−Λs(ȳs(t), t)| ≤ L∗|ys − ȳs(t)|,

|ϒs(ys, t)| ≤ L(1−|ys(t)|),

L(1−|ys(t)|)≥ |Λs(ys(t), t)|,

(13)

where L,L∗ are constants.

4 The Equilibrium Points

To determine the system’s equilibrium points (8), we write

D
α(t)
t A(t) = D

α(t)
t T (t) = D

α(t)
t M(t) = D

α(t)
t W (t) = 0,
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Therefore, we have the following equilibrium points:

E0 =(0,0,0,0),

E1 =(
k2r3(k3δ1 − r2)

k3k2δ2δ1 − r3r2

,0,
(r1 − d1)k1

r1

,
r2k3(−δ2k2 + r2)

−r3r2 + k3k2δ2δ1

),

E2 =(0,0,
(r1 − d1)k1

r1

,0),

E3 =(0,−
d2r1 + k1β1(d1 − r1)

β2β1k1
,

d2

β1
,k3),

E4 =(
k2r3(k3δ1 − r2)

k3k2δ2δ1 − r3r2

,0,0,
(r1 − d1)k1

r1

,
r2k3(−δ2k2 + r2)

−r3r2 + k3k2δ2δ1

),

E5 =(0,−
d2r1 + k1β1(d1 − r1)

β2β1k1

,
d2

β1

,k3),
d2

β1

,0),

E6 =(0,0,
(r1 − d1)k1

r1

,k3),

E7 =(k2,0,
(r1 − d1)k1

r1

,k3,0),

E8 =(k2,0,0,0),

E9 =(0,0,0,k3),

E10 =(k2 +
µk2(β1(d1 − r1)+ r1d2)

β2β1r2k1

,−
d2r1 + k1β1(d1 − r1)

β2β1k1

,
d2

β 1
,0),

E11 =(T̃ , Ã,M̃,W̃ ), (14)

T̃ =
k2r3µ(r1d2 −β1k1(−d1 + r1))− r3k2k1β2β1(−r2 + δ1k3)

β1k1
β2(r3r2 − δ1k3k2δ2),

Ã =−
β1k1(−r1 + d1)+ r1d2

β1k1β2

,

M̃ =
d2

β1

,

W̃ =
δ2µk3k2(k1β1(−d1 + r1)− d2r1)+ k1r2β2β1k3(−δ2k2 + r3)

β2k1β1(r3r2 − δ2δ1k3k2)
.

We only consider the stability of equilibrium E11 because our aim is to study the circumstances in which the patient can
survive.

4.1 Local endemic equilibrium stability

The Jacobian matrix of model calculated equilibrium point E11, is given by:

J =ζ 1−α(t)









−
2T̃ r2

k2
− r2 −W̃ δ1 − Ãµ −µT̃ 0 −T̃ δ1

0 d2 + M̃β1 Ãβ1 0

0 −M̃β2 −
2M̃r1

k1
+ r1 −d1 − Ãβ2 0

−W̃ δ2 0 0 −
2W̃r3

k3
− T̃ δ2









, (15)

We get the characteristic equation as follows:

P(λ ) = (λ 2 + ε1λ + ε2)(λ
2 + ε3 + ε4),

where,

ε1 =−ζ 1−α(t)(r2 + r3 −A−
2T̃ r2

k2

−
2W̃r3

k3

− T̃δ3),

ε2 = ζ 1−α(t)((−
2T̃ r2

k2

+ r2 − Ãµ −W̃δ1)(−
2W̃r3

k3

+ r3 − T̃δ2)− δ2δ1T̃W̃ ),
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ε3 =−ζ 1−α(t)(−
2M̃r1

k1

+ r1 − Ãβ2 − d1 − d2 + M̃β1),

ε4 = ζ 1−α(t)((−
2M̃r1

k1

− d1 + r1 − Ãβ2)(−d2 + M̃)+β2β2M̃Ã).

It is necessary to employ numerical methods because stationary state solutions cannot be described analytically.
Consequently, long-running numerical simulations ameliorate the system for a given set of initial conditions and
parameters. The parameter range is selected so that the dynamics of the non-spatial system can either occur within this
range or towards its limit, where the desired dynamics difference occurs.

5 Numerical Techniques for Crossover Model

We provide numerical methods for solving (8-10) in this section. Our method for addressing the ensuing linear
cross-over ( stochastic and variable order deterministic) model is given as follows:

CPC
0 D

α(t)
t yl =Λl(ys, t), 1 ≥ α(t)> 0, 0 < t ≤ T1, s = 1,2,3...κ , l = 1,2,3, (16)

yl(t0) = yl,0,

dyl =ϒl(ys, t)dB
H(t)
η (t)+Λl(ys, t)dt, T ≥ t > T1, (17)

yl,1 = yl(t1).

Let,

0 < t ≤ t1 ≤ ...≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ...tn2 = T.

The relation (4) can be expressed as follows:

CPC
0 D

α(t)
t y(t) = (Γ (1−α(t)))−1

∫ t

0
(t − s)−α(t)(K0(α(t)y′(s))+ y(s)K1(α(t)))ds,

= K1(α(t))RL
0 I

1−α(t)
t y(t)+K0(α)C0 D

α(t)
t y(t),

= K1(α(t))RL
0 D

α(t)−1
t y(t)+K0(α(t))C0 D

α(t)
t y(t), (18)

On α(t) alone, K1(α(t)), K0(α(t)) are entirely dependent. According to Mickens in [28], the non-standard finite difference
approach (NSFDM) is more dependable and accurate than the finite difference technique. We can discretize (18) in the
following manner by using the discretization nonstandard finite difference Grünwald−Letnikov method:

CPC
0 D

α(t)
t y(t)|t=tn1 =

K1(α(t))

(Θ(∆ t))α(t)−1

(

yn1+1 +
1+n1

∑
i=1

yn1+1−iωi

)

+
K0(α(t))

(Θ(∆ t))α(t)

(

−
1+n1

∑
i=1

µiyn1+1−i+ yn1+1 − qn1+1y0

)

. (19)

Now, we introduce an approximation of PCC-NAB5SM to solve (16):

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

(

yn1+5 +
5+n1

∑
i=1

ωiyn1+5−i

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

yn1+5 −
5+n1

∑
i=1

µiyn1+5−i − qn1+5y0

)

=
1901

720
Λl(y

n1+4
1 ,yn1+4

2 , ...,yn1+4
κ )−

2774

720
Λl(y

n1+3
1 ,yn1+3

2 , ...,yn1+3
κ )

+
2616

720
Λl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )−

1274

720
Λl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )

+
521

720
Λl(y

n1
1 ,yn1

2 , ...,yn1
κ ). (20)
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The following is an expression for the explicit solution:

yn1+5 =

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

(

n1+5

∑
i=1

ωiyn1+5−i

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

n1+5

∑
i=1

µiyn1+5−i + qn1+5y0

)

−
1901

720
Λl(y

n1+4
1 ,yn1+4

2 , ...,yn1+4
κ )+

2774

720
Λl(y

n1+3
1 ,yn1+3

2 , ...,yn1+3
κ )

−
2616

720
Λl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )+

1274

720
Λl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )

−
521

720
Λl(y

n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

)

. (21)

Four points are needed to solve (21). These points can be obtained by using the discretization of the CPC operator in the
Adams-Bashfourth technique’s first, second, third, and fourth phases. The CPC-NAB1SM is available in the following
formats:

yn1+1 =

(

(Θ(∆ t))−α(tn1
)+1K1(α(tn1

))

(

1+n1

∑
i=1

yn1+1−iωi

)

+(Θ(∆ t))−α(t)K0(α(tn1
))

(

1+n1

∑
i=1

yn1+1−iµi + qn1+1y0

)

−Λl(y
n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

)

, (22)

In addition, CPC-NAB2SM is:

yn1+2 =

(

(Θ(∆ t))−α(tn1
)+1K1(α(tn1

)))

(

2+n1

∑
i=1

y2+n1−iωi

)

+K0(α(tn1
))(Θ(∆ t))−α(tn1

)

(

2+n1

∑
i=1

µiyn1+2−i + qn1+2y0

)

−
3

2
Λl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )−

1

2
Λl(y

n1
1 ,yn1

2 , ...,yn1
κ )

/

(

(Θ(∆ t))−α(tn1
)+1K1(α(tn1

))+ (Θ(∆ t))−α(tn1
)K0(α(tn1

))

)

. (23)

Also, CPC-NAB3SM is given as:

yn1+3 =

(

(Θ(∆ t))−α(tn1
)+1K1(α(tn1

))

(

3+n1

∑
i=1

yn1−i+3ωi

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

n1+3

∑
i=1

µiyn1+3−i + qn1+3y0

)

−
23

12
Λl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )+

16

12
Λl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )

−
5

12
Λl(y

n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

)

. (24)
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The CPC-NAB4SM is displayed as:

yn1+4 =

(

(Θ(∆ t))−α(t)+1K1(α(tn1
))

(

4+n1

∑
i=1

yn1+4−iωi

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

n1+4

∑
i=1

µiyn1+4−i + qn1+4y0

)

−
55

24
Λl(y

n1+3
1 ,yn1+3

2 , ...,yn1+3
κ )+

59

24
Λl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )

−
37

24
Λl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )+

9

24
Λl(y

n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K0(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K1(α(tn1

))

(Θ(∆ t))α(tn1
)

)

. (25)

Now, by using (22), (23), (24), and (25), We’re going to get y(4),y(3),y(2), and y(1) points. We solve (16) using these
points and (21). where, ωi = ωi−1(1−αi−1), ω0 = 1, n1(Θ(∆ t)) = tn1 , T1N−1

n = ∆ t, Nn is a natural number,

α(1) = µ1, µi = (−1)i−1
(

α(t)
i

)

, qi = (Γ (1−α(tn1
)))−1iα(t), i = 1,2, ...,n1 + 1. Let [29]:

(Γ (1−α(tn1
))−1 = q1.

Remark.If K0(α(t) = 1 and K1(α(t) = 0 in (21), we obtain the discretization of the fifth step nonstandard
Adams-Bashfourth technique with the discretization of the Caputo operator (C-NAB5M).

We extended NMEMM in this work as follows [24] in order to solve the differential stochastic equations driven by VFBM
(17):

yn2+1
l =yn2

l +Λl(y
n2
1 ,yn2

2 , ...,yn2
κ , tn2)Θ(∆ t)+ϒl(y

n2
1 ,yn2

2 , ...,yn2
κ , tn2)∆Bn2

η

+ 0.5ϒl(y
n2
1 ,yn2

2 , ...,yn2
κ , tn2)ϒ

′

l (y
n2
1 ,yn2

2 , ...,yn2
κ , tn2)Θ(∆ t)2H(tn2), T ≥ t > T1, l = n1, ...,κ . (26)

5.1 The PCC-NAB5SM’s stability

Consider the most general form of a hybrid fractional system:
CPC
0 Dα

t yl(t) = Φl(y1,y2, ...,yκ), yl(t0) = yl,0, l = 1, ...,κ ,

(27)

Φl denotes continuous functions on R
κ .

Theorem 1.The CPC-NAB5S technique is stable.

Proof.We have the following by approximating (8 ) with CPC-NAB5SM:

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

(

yn1+5 +
n1+5

∑
i=1

ωiyn1+5−i

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

yn1+5 −
n1+5

∑
i=1

µiyn1+5−i − qn1+5y0

)

=
1901

720
Φl(y

n1+4
1 ,yn1+4

2 , ...,yn1+4
κ )−

2774

720
Φl(y

n1+3
1 ,yn1+3

2 , ...,yn1+3
κ )

+
2616

720
Φl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )−

1274

720
Φl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )

+
521

720
Φl(y

n1
1 ,yn1

2 , ...,yn1
κ ). (28)
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Then, CPC-NAB5SM is given as:

yn1+5 =

(

K1(α(tn1
))(Θ(∆ t))−α(tn1

)+1

(

5+n1

∑
i=1

yn1−i+5ωi

)

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

(

n1+5

∑
i=1

µiyn1+5−i + qn1+5y0

)

−
1901

720
Φl(y

n1+4
1 ,yn1+4

2 , ...,yn1+4
κ )+

2774

720
Φl(y

n1+3
1 ,yn1+3

2 , ...,yn1+3
κ )

−
2616

720
Φl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )−

1274

720
Φl(y

n1+1
1 ,yn1+1

2 , ...,yn1+1
κ )

−
521

720
Φl(y

n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

)

, (29)

yn1+5 ≤

(

K1(α(tn1
))(Θ(∆ t))−α(tn1

)a+1

(

5+n1

∑
i=1

yn1−i+5ωi

)

+K0(α(tn1
))(Θ(∆ t))−α(tn1

)

(

5+n1

∑
i=1

µiyn1+5−i + qn1+5y0

)

−
1901

720
Φl(y

n1+4
1 ,yn1+4

2 , ...,yn1+4
κ )−

2616

720
Φl(y

n1+2
1 ,yn1+2

2 , ...,yn1+2
κ )

−
521

720
Φl(y

n1
1 ,yn1

2 , ...,yn1
κ )

)

/

(

K1(α(tn1
))

(Θ(∆ t))α(tn1
)−1

+
K0(α(tn1

))

(Θ(∆ t))α(tn1
)

)

, (30)

because 1
(

K1(α(tn1
))

(Θ (∆t))
α(tn1

)−1
+

K0(α(tn1
))

(Θ (∆t))
α(tn1

)

) < 1, therefore

y5 ≤ y0,

yn1+5 ≤ yn1+4 ≤ ...≤ y5 ≤ y0.

The suggested CPC-NAB5SM is then stable.

6 Numerical Simulations

In the following, we focus on the model’s simulations (8-11), using the initial conditions T (0) = 5,A(0)= 22,M(0)=
20,W(0) = 50000. The parameters’ values of this model are given in Table 2 and the denominator function Θ(∆ t) =

1− e(−∆ t) and assume that T1 = 10, Tf = 100. The numerical results of (8-11) are represented graphically at various α(t)
and H(t) values. NMEMM (26) and CPC-NAB5SM (21) were used to run the simulation. The dynamical behavior of
the cells of Tumor, macrophages that are active, the cells of macrophages and healthy tissue cells in systems (8-11) are
depicted in figures 1-4. Figure 1 illustrates the behavior of the cells of Tumor, macrophages that are active, the cells of
macrophages and healthy tissue cells for (8-10) with α(t) = 0.95− 0.001t, σ1 = 0.05,σ2 = 0.05,σ3 = 0.05,σ4 = 0.05,
and different values of H(t). Figure 2 explains how solutions behave differently when the values of α(t) are different
and σ1 = 0.05,σ2 = 0.05,σ3 = 0.05,σ4 = 0.05. Figure 3 represents the system’s (8-10 ) dynamic behavior at H(t) =
0.70−0.1t, σ1 = σ2 = σ3 = σ4 = 0.05 and various values of α(t). From Figures 1-3, we noted the crossover behavior can
be clearly observed near the values of T1 = 10,Tf = 100. Before these points dynamics show multiplicity in its behavior.

To illustrate how parameter values σi, and H(t) affect on the result Figure 4 is presented, whereand T1 = 50,Tf =
100 and σ1 = 0.04,σ2 = 0.5,σ3 = 0.3,σ4 = 0.09. We observed that after Tf = 50, the crossover system’s behavior
changed. Additionally, we discovered that for solutions not covered in the reference [20], unexpected behavior arises and
all variables are impacted.

7 Conclusion

In conclusion, A novel crossover hybrid variable order deterministic-stochastic differential equations for the
interaction between the immune and tumor for lung cancer mode has been developed in this paper. In two time intervals,
two distinct models of variable-order fractional and variable-order stochastic derivatives are defined. The variable order
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operator CPC is used to enhance the deterministic model. By applying variable-order fractional Brownian motion, the
stochastic differential equations are extended. Adams-Bashfourth fifth step method with Caputo proportional constant
and non-standard modified Euler Maruyama approach are used to solve the proposed problem. For the approximation
CPC fractional operator, GLNSFDM is used. It has good stability characteristics for solving the suggested system, and
precise approximations are given. Moreover, it can reduce computation time when the finish time is quite long. Results
for the suggested models are displayed graphically. Some phase pictures in a stochastic context are provided. Piecewise
derivative concept leads us to analyze and predict the process from the beginning to the end of the tumor, as it offers the
possibility to observe many behaviors from crossover to stochastic processes. Generally, we found that this study
provides new insights into the interaction between the immune and tumor for lung cancer model under complex
real-world conditions. Consequently, researchers can successfully capture reality by applying this operator to real-world
problems.

Fig. 1: Simulation for (8-10), α(t) = 0.95−0.001t.
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Fig. 2: Simulation for (8-10), H(t) = 0.5− (cos(t/10))2 .
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Fig. 3: Simulation for (8-10), H(t) = 0.70−0.1t.
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Fig. 4: Simulation for (8-10), α(t) = 0.5−0.005(cos(t/10))2 .
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