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Abstract: Many years ago, A. Zygmund extensively studied the symmetric derivative [5, p.1001]. Over the last decade, significant

properties of the conformable fractional integral have emerged. This publication bridges these two concepts, presenting results that

extend the conformable fractional derivative to the symmetric derivative.
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1 Introduction

Centuries ago, various definitions of the fractional
derivative were introduced in mathematical literature by
several authors, including Riemann-Liouville and Caputo,
as discussed in [9]. More recently, R. Khalil introduce a
new definition of the fractional derivative known as the
conformable fractional derivative in [10].

In recent years, numerous results from classical
calculus have been extended to conformable fractional
calculus, with details available in [3], [4], [7], [10], [11],
[12], [17], [18], [19], [20] and [22]. During the last
century, the symmetric derivative was also extensively
studied, with further insights provided in [6], [13], [15].
C. Aull extended results analogous to those in classical
analysis to the symmetric derivative, as discussed in [1].

This publication is structured as follows: Section 2
presents the results related to the symmetric derivative,
Section 3 introduces the definitions and properties of the
conformable fractional derivative, Section 4 delves into
the definition and properties of the conformable fractional
symmetric derivative, and finally, Section 5, draws
conclusions based on the presented results and discusses
avenues for future research in this area.

2 Definitions and properties of the symmetric

derivative

Definition 1. Let p be a function on (a,b) and m∈ (a,b),
[1, p. 708], p is said to have a symmetric derivative at m

if limh→0
p(m+h)−p(m−h)

2h
, exists.

In this case, this limit is called the symmetric derivative
of p at m, denoted as ps, i.e.,

ps(m) = lim
h→0

p(m+ h)− p(m− h)

2h

In [15, p. 22], a definition of the first and second
symmetric derivatives is provided, along with the
relationship between the first symmetric derivative and
the usual derivative.

The observation made in [1, p. 708] states that while it
is evident that if the ordinary derivative exists at a point,
then the symmetric derivative also exists; the reverse is
not always true. The continuity of p and the existence of
ps do not guarantee the existence of an ordinary
derivative.

The author of [1, p. 708-710] also presents the
following results.

Lemma 1. Let p be continuous on [a,b] and suppose ps

exists in (a,b) for all m.
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a.If p(b) > p(a), then there exists c ∈ (a,b) such that

ps(c)≥ 0.

b.If p(b) < p(a), then there exists c ∈ (a,b) such that

ps(c)≤ 0.

Lemma 2. There exists an uncountable number of

points such that ps(m) ≥ 0 for p satisfying the conditions

of Lemma 1.

Lemma 3. [Quasi Rolle’s Theorem] Let p be

continuous on [a,b], if ps exists in (a,b) and if

p(a) = p(b) = 0. Then there exists m1 ∈ (a,b) such that

ps(m1)≥ 0 and m2 ∈ (a,b) such that ps(m2)≤ 0.

Theorem 1. [Quasi Mean Value Theorem] Let p be

continuous on [a,b], and suppose ps exists in (a,b). Then

there exist points m1,m2 ∈ (a,b), such that

ps(m2)≤
p(b)−p(a)

b−a
≤ ps(m1).

Theorem 2. Let p and ps be continuous on (a,b). Then

p is differentiable at m, and p′(m) = ps(m).

Recent developments include the introduction of a
definition of the symmetric fractional derivative in scale
time in [16, p. 54]. Additionally, in (4) of Theorem 3.3 in
[16, p. 55], the symmetric fractional derivative in scale
time is expressed as:

Tα(ps(m)) = lim
h→0

p(m+h)− p(m−h)

2h
m1−α

,m ∈ T,T⊂R,

Furthermore, Corollary 3.4 establishes the symmetric
fractional derivative in R, as Tα(ps)(m) = m1−α ps(m),
where ps denotes the classical symmetric derivative.

Finally, [16, p. 57] provides some calculus results for
the symmetric fractional derivative in Theorem 3.5.

3 Conformable fractional derivative

In [10, p. 66], the conformable fractional derivative is
defined as follows:

Definition 2. Given a function p : [0,∞] → R, the

“conformable fractional derivative” of p of order α is

defined as follows:

Tα(p)(m) = limε→0
p(m+εm1−α )−p(m)

ε ,

for all m → 0,α ∈ (0,1)

If p is α-differentiable on some interval (0,a), where

a > 0 and limm→0+ p(α)(m) exists, then it is defined:

p(α)(0) = lim
m→0+

p(α)(m)

Several results concerning this α-derivative can be
found in [10, p. 66-67].

Theorem 3. If a function p : [0,∞) → R is

α-differentiable at m0 > 0 and α ∈ (0,1] then p is

continuous at m0.

Theorem 4. Let α ∈ (0,1], p and q be α-differentiable

functions at a point m > 0, then:

a.Tα(ap+ bq) = aTα(p)+ bTα(q), for all a,b ∈R.

b.Tα(m
x) = xmx−α .

c.Tα(λ ) = 0.

d.Tα(p ·q) = pTα(q)+ qTα(p)

e.Tα(
p
q
) = qTα (p)−pTα (q)

[q]2
,q 6= 0.

f.If, in addition, p is differentiable, then

Tα(p)(m) = m1−α d p(m)
dm

.

Also, in [10, p. 68], these results can be found.

Theorem 5. [Rolle’s Theorem for functions with

conformable fractional derivative] Let α > 0 and

p : [a,b] → R be a function continuos on [a,b] that

satisfies:

i.p is α-differentiable for some α ∈ (0,1).
ii.p(a) = p(b).

Then, there exits c ∈ (a,b) such that p(α)(c) = 0.

Theorem 6. [Mean Value Theorem for α-differentiable

functions] Let α > 0 and p : [a,b]→ R be a function that

satisfies:

i.p is continuous on [a,b].
ii.p is α-differentiable for some α ∈ (0,1).

Then, there exits c ∈ (a,b) such that p(α)(c) = p(b)−p(a)
1
α bα− 1

α aα
.

4 Conformable symmetric fractional

derivative

The definition presented in this publication considers the
definitions by R. Khalil [10, p. 66], C. Aull [1, p. 708],
and the results by Zhao Da-Fang [16, p. 56-57], for work
in R.

Definition 3. Let p : R → R be a function. The

conformable symmetric fractional derivative of order α is

defined as:

Tα ps(m) = limε→0
p(m+εm1−α )−p(m−εm1−α )

2ε ,

for all m ∈ R, α = 1
2l+1

, l ∈ Z
+.

If p has a conformable symmetric fractional derivative
in (0,a) and limm→0+ Tα ps(m) exists, then
Tα ps(0) = limm→0+ Tα ps(m). We will refer to this
derivative as the α-symmetric fractional derivative. The
relationship between the α-symmetric fractional
derivative and the classical derivative is presented in the
following theorem.
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Theorem 7. Let p be a differentiable function at m ∈ R,

and α = 1
2l+1

, where l ∈ Z
+. Then

Tα ps(m) = m1−α

2
[p′+(m) + p′−(m)], where p′+(m) and

p′−(m) are the right and left-hand side derivatives of p at

m.

Proof.Let m ∈R and α = 1
2l+1

, where l ∈ Z
+. If we take

limε→0+
p(m+εm1−α )−p(m−εm1−α)

2ε =

limε→0+
p(m+εm1−α )−p(m)−p(m−εm1−α)+p(m)

2ε =

1
2

[

limε→0+
p(m+εm1−α )−p(m)

ε + p(m+(−ε)m1−α )−p(m)
−ε

]

If we let h = εm1−α , then

Tα ps(m) =

m1−α

2

[

limh→0+
p(m+h)−p(m)

h
+ limh→0+

p(m+(−h))−p(m)
−h

]

= m1−α

2

[

p′+(m)+ p′−(m)
]

Corollary 1. Let p be an α-fractional derivative

function at m ∈ R and α = 1
2l+1

, l ∈ Z
+, then p has

α-symmetric fractional derivative, and also

Tα p(m) = Tα ps(m) for every m ∈R.

As a consequence of Definition 3 and the results of
Theorem 3.5 in [6, p. 57], we present the following
theorems without proof.

Theorem 8. Let p and q be functions with α-symmetric

fractional derivative for m ∈ I, I ⊂R,λ ∈R and α = 1
2l+1

for l ∈ Z
+. Then:

a.p±q has α-symmetric fractional derivatives for m∈ I,

and Tα(p± q)s(m) = Tα ps(m)+Tαqs(m).
b.λ p has α-symmetric fractional derivatives for m ∈ I,

and Tα(λ p)s(m) = λ Tα ps(m).

The product rule does not hold for functions with
α-symmetric fractional derivatives.

However, if we add the condition that the functions
are continuous at every point, we obtain the following
theorem.

Theorem 9. Let p and q be continuous functions with

α-symmetric fractional derivatives for m ∈ I, I ⊂ R, and

α = 1
2l+1

for l ∈ Z
+. Then:

a.pq has α-symmetric fractional derivatives for

m > 0,m ∈ I, and

Tα(pq)s(m) = [Tα ps(m)]q(m)+ p(m)[Tαqs(m)].
b.

p
q

has α-symmetric fractional derivative for

m > 0,m ∈ I, and

Tα(
p
q
)s(m) = [Tα ps(m)]q(m)−p(m)[Tα qs(m)]

[q(m)]2
, provided

q(m) 6= 0.

Theorem 10. If p is differentiable for m ∈ I, I ⊂ R,λ ∈
R, and α = 1

2l+1
for l ∈ Z

+. Then:

a.Tα(λ )
s = 0, where λ is a constant.

b.Tα ps(mx) = xmx−α .

c.Tα ps(m) = m1−α ps(m).

The Mean Value Theorem does not hold for
α-symmetric fractional derivatives.

An analogous result to the Mean Value Theorem is
presented for functions with α-symmetric fractional
derivatives.

Hereafter, we present results that allow us to prove this
theorem.

Theorem 11. Let p be continuous on [a,b] and have a

α-symmetric fractional derivative on [a,b].

a.If p(a)< p(b), then there exists a point m, a ≤ m ≤ b

such that Tα ps(m)≥ 0.

b.If p(a)> p(b), then there exists a point m, a ≤ m ≤ b

such that Tα ps(m)≤ 0.

Proof.To prove a), we consider m such that
p(a) < κ < p(b), allowing us to define the set
M = {n : p(n) > κ ,a < n < b}. Since M is bounded
below by a, it is not-empty and contains a point m distinct
from a and b due to the continuity of p on [a,b].

For each neighborhood of m, there exist points n2 > m

implying p(n2) > κ . Specifically, if we chosen
n2 = m+ εm1−α then p(m+ εm1−α)> κ . Similarly, for n

values such that a ≤ n1 ≤ m, we have p(n1) ≤ κ , and if
n1 = m− εm1−α , then p(m− εm1−α)≤ κ .

Therefore,

p(m+ εm1−α)− p(m− εm1−α)≥ 0,

which implies,

Tα ps(m) = lim
ε→0

p(m+ εm1−α)− p(m− εm1−α)

2ε
≥ 0.

The proof for b) follows a similar argument.

Theorem 12. [Quasi Rolle’s Theorem] If p is

continuous on [a,b], has a α-symmetric fractional

derivative on (a,b), and p(a) = p(b), then there exists a

point m1, a < m1 < b, such that Tα ps(m1)≥ 0 and a point

m2, a < m2 < b, such that Tα ps(m2)≤ 0.

Proof.If p(n) = 0, the result is obvious. When p(n) 6= 0,
there exist points c such that p(c) > 0 or d such that
p(d)< 0, or both.

By Theorem 11, there exists a m1, a<m1 < c such that
Tα ps(m1)≥ 0 and a m2, c < m2 < b such that Tα ps(m2)≤
0; but also, by the same theorem, there exists a m1, d ≤
m1 ≤ b such that Tα ps(m1)≥ 0 and a m2, a < m2 < d such
that Tα ps(m2)≤ 0.
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Example 1.Let p : R → R be defined as p(m) = |m| and

α = 1
3
. It follows that p is continuos on [−2,2], has α-

symmetric fractional derivative on (−2,2) and p(−2) =
p(2). Considering the symmetric derivative of p(m) = |m|
as the function

T s
1
3

|m|=

{

|m|
m

m1− 1
3 , if m 6= 0

0 , if m = 0

We have that,

m1 =−1, T s
1
3

|m1|=
|− 1|

−1
(−1)1− 1

3 =−1 ≤ 0

m2 = 1, T s
1
3

|m2|=
|1|

1
(1)1− 1

3 = 1 ≥ 0

Theorem 13. [Quasi Theorem of Mean Value Cauchy

for functions with α-symmetric fractional derivative] Let

p and q be continuous functions on [a,b] with

α-symmetric fractional derivative on [a,b]. If qs(m) 6= 0
for every m ∈ (a,b), then there exist points m1 and m2

between a and b, such that a < m1 < b and a < m2 < b,

satisfying:

Tα ps(m2)

Tα qs( 1
α mα

2 )
≤

p(b)− p(a)

q( 1
α bα)− q( 1

α aα)
≤

Tα ps(m1)

Tα qs( 1
α mα

1 )

Proof.Given r defined as:

r(m) =

p(m)

[

q

(

1

α
bα

)

− q

(

1

α
aα

)]

−q

(

1

α
mα

)

[p(b)− p(a)],

we have that r is continuous on [a,b] and has
α-symmetric fractional derivative on (a,b).

Furthermore,

r(a) = p(a)q

(

1

α
bα

)

− p(b)q

(

1

α
aα

)

,

and

r(b) =−p(b)q

(

1

α
aα

)

+ p(a)q

(

1

α
bα

)

.

We know that r satisfies the hypotheses of Theorem
12, thus there exist m1, a < m1 < b, and m2, a < m2 < b,
such that Tα rs(m2)≤ 0 and Tα rs(m1)≥ 0.

Since

Tα rs(m) =

Tα ps(m)

[

q

(

1

α
bα

)

−q

(

1

α
aα

)]

−Tα qs

(

1

α
mα

)

[p(b)− p(a)],

we have,

Tα ps(m2)

[

q

(

1

α
bα

)

−q

(

1

α
aα

)]

≤ Tα qs

(

1

α
mα

2

)

[p(b)− p(a)],

and

Tα ps(m1)

[

q

(

1

α
bα

)

−q

(

1

α
aα

)]

≤ Tα qs

(

1

α
mα

1

)

[p(b)− p(a)].

Hence,

Tα ps(m2)

Tα qs
(

1
α mα

2

) ≤
p(b)− p(a)

q
(

1
α bα

)

− q
(

1
α aα

) ≤
Tα ps(m1)

Tα qs
(

1
α mα

1

) .

Example 2. Given the functions p(m) = |m| and
q(m) = m2 +1, since both functions are continuous on the
interval [−1,2], they have an α-symmetric fractional
derivative on (−1,2) and q(m) 6= 0 for all m ∈ [−1,2].
Therefore, the functions satisfy the Quasi Theorem of
Mean Value Cauchy for functions with α-symmetric
fractional derivative, and we have:

p(2)−p(−1)

q

(

1
1
3

2
1
3

)

−q

(

1
1
3

(−1)
1
3

) = |2|−|−1|

(3·2
1
3 )2+1−(3(−1)

1
3 )2−1

= 1
5.286609

= 0.189157

Therefore, d =
T1

3
|c|s

T1
3

qs(3c
1
3 )

= 1

2(3c
1
3 )

= 0.189157.

Hence, c
1
3 = 0.88110, implying c = 0.684031.

For values m2 < c, for example m2 = 0.68402, we
have:

T1
3
|m2|

s

T1
3

qs

(

1
1
3

m
1
3
2

) = 1

6·(0.68402)
1
3

= 1
5.2865724

= 0.189158≥ d

And for values m1 > c, for example m1 = 0.68404, we
obtain:

T1
3
|m1|

s

T1
3

qs

(

1
1
3

m
1
3
1

) = 1

6·(0.68404)
1
3

= 1
5.2866239

= 0.189156≤ d

Theorem 14. [Quasi Theorem of Mean Value for

functions with α-symmetric fractional derivative] Let p

be continuous on [a,b] and have a α-symmetric fractional

derivative on (a,b). Then there exist m1 and m2 such that

a < m1 < b and a < m2 < b, satisfying

Tα ps(m2)≤
p(b)− p(a)
1
α bα − 1

α aα
≤ Tα ps(m1)

Proof.We define a function r that satisfies the hypotheses
of Theorem 12 as follows:

r(m) = p(m)− p(a)−
p(b)− p(a)
1
α bα − 1

α aα

[

1

α
mα −

1

α
aα

]
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Since p is continuous on [a,b] and has an α-symmetric
fractional derivative on (a,b), then r is also continuous.
Furthermore,

r(a) = p(a)− p(a)−
p(b)− p(a)
1
α bα − 1

α aα

[

1

α
aα −

1

α
aα

]

= 0,

and

r(b) = p(b)− p(a)−
p(b)− p(a)
1
α bα − 1

α aα

[

1

α
bα −

1

α
aα

]

= 0.

By Theorem 12, for r there exists m1, a < m1 < b, such
that

Tα rs(m1) =

Tα ps(m1)−
p(b)−p(a)
1
α bα− 1

α aα

[

Tα(
1
α mα

1 )−Tα(
1
α aα)

]

≥ 0.

This implies

Tα ps(m1)−
p(b)− p(a)
1
α bα − 1

α aα
≥ 0,

and there exists m2, a < m2 < b, such that

Tα rs(m2) = Tα ps(m2)−
p(b)− p(a)
1
α bα − 1

α aα
≤ 0.

Therefore,

Tα ps(m1)≥
p(b)− p(a)
1
α bα − 1

α aα
and Tα ps(m2)≤

p(b)− p(a)
1
α bα − 1

α aα
.

Example 3. Considering the function p(x) = |x| on the

interval [−2,3] and α = 1
3
, this function has an

α-symmetric fractional derivative.

T s
1
3

(m) =

{

|m|
m

m1−α , if m 6= 0

0 , if m = 0

We have that,

|3|− |− 2|
1
1
3

(3)
1
3 − 1

1
3

(−2)
1
3

=
1

8.10651195
= 0.12335762

Then, T1
3

ps(c) = c1− 1
3 = 0.12335762, wich implies

c = (0.12335762)
3
2 = 0.04332615.

For m1 < c, m1 = 0.04332, we have

T1
3

ps(m1) = (0.04332)
2
3 = 0.123346.

For m2 > c, m2 = 0.04333, we have

T1
3

ps(m2) = (0.04333)
2
3 = 0.123365.

Theorem 15. Let p and Tα ps be continuous on (a,b).
Then Tα p exists, and furthermore, Tα p = Tα ps.

Proof. For ε > 0 sufficiently small, there exists m such
that a < m < m + εm1−α < b. Since p and Tα ps are
continuous on (m,m + εm1−α), by Theorem 14, there
exist m1, m < m1 < m + εm1−α , and m2,
m < m2 < m+ εm1−α , such that

Tα ps(m2)≤
p(m+ εm1−α)− p(m)

ε
≤ Tα ps(m1)

Since Tα ps is continuous on (m,m + εm1−α), by the
Mean Value Theorem for continuous functions, there
exists at least one m3, m < m3 < m+ εm1−α , such that

Tα ps(m3) =
p(m+ εm1−α)− p(m)

ε

Thus,

lim
ε→0

Tα ps(m3) = lim
ε→0

p(m+ εm1−α)− p(m)

ε

and we obtain

Tα ps(m) = Tα p(m)

5 Conclusion

The possibility remains open to continue research in order
to find analogous definitions of the “conformable
symmetric second derivative” and other higher-order
derivatives. Furthermore, it would be interesting to
explore the existence of “conformable symmetric partial
derivatives” for functions of multiple variables.

These theoretical developments could further expand
the practical applications, providing more robust and
precise tools for the analysis of complex phenomena.

The exploration of these lines of research represents
a stimulating opportunity for future studies in the field of
applied mathematics.
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