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Abstract: We modify and generalize the basic theory of formal completion (I-adic completion) as in [3], [8] and [6] with using a

general Zariskian filtration FR and replacing quiotient filtration F
(

R
In

)
; n ∈Z . We establish the exactness, finitness and flatness of

formal completion. The formal microlocalization of R∧I-module M ∧I represents the solution of formal schemes studied on the filtered

level in [10], [9] and [11].
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1 Introduction and Preliminaries

For a local ring R, the ring R[[x]] in n unknowns appear
as completion of R of a non-singular point (or prime) on
a variety of dimension n. Similarly, K[[x]] the ring of
formal power series is the completion of R = K[x] ; K
field, associating with I = (x).
Formal filtered and graded ring theory is a useful tool in
non-commutative algebraic geometry since it forms the
algebraic model for the completion of schemes along a
closed subscheme on the filtered and graded levels. The
graded case is the foundation for projective algebraic
geometry. Therefore, they are of considerable geometric
importance.
Consider R to be a ring that has one. Considering a chain
FR, which is ascending: . . . ⊂ F−1R ⊂ F0R ⊂
F1R ⊂ . . . of R’s additive subgroups with 1R ∈F0R
in addition FnR FmR ⊂ Fn+mR for every n , m ∈Z ,
hence R is called a filtered ring and FR a filtration on
R. If M is a left R -module, it is called a filtered module
if there is a chain FM , that is ascending: . . . ⊂
F−1M ⊂ F0M ⊂ F1M ⊂ . . . of M ’s additive
subgroups with FmR FnM ⊂ Fn+mM for
every n , m ∈Z , FM is called a filtration on M . On
M , a filtration FM is said to be exhaustive if so

M =
⋃

n∈Z FnM . From now on, all filtrations considered
in this paper are exhaustive. On M , a filtration FM is
said to be separated if so

⋂
n∈Z FnM = 0.

Consider I an ideal of a ring R . By the I− adic filtration
on R we mean the filtration FR on R such that FnR =
R, n ≥ 0 and FnR = I−n , n < 0. If M is a filtered R
-module along with filtration FM , it is said to be I−
adically filtered if so FnM = M for n ≥ 0 and
FnM = I−nM for n < 0. Respect to the filtration

FR, G(R)=⊕n∈Z

(
FnR

Fn−1R

)
is the associated graded ring

and similarly the associated graded module G(M
)= ⊕n∈Z (Fn M /Fn−1M )∈ G(R)−gr to FM .

Another graded ring ⊕n∈ZFnR = R̃ might also be
associated to FR, this ring is known as Rees ring of R.

One could identify it to the subring ∑FnRX n in
R[X ,X −1] here over R, X is a central variable; that is
first-degree homogeneous. If M ∈ R − f ilt we may

correspond a graded R̃ −module M̃ = ∑n∈Z FnM X n

in M [X , X −1] , it is X −torsion free because
FnM →F n−1M are injective maps. As we say, FR
is a Zariskian filtration or R is a Zariski ring whenever

X ∈ I
g
(
R̃
)

in addition R̃ is Noetherian.

Throughout this paper, assuming that FR to be
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Zariskian filration in which case G(R) ∼= R̃/X R̃ is a
Noetherian domain that is commutative .
For full details on fundamental facts and basic definitions
concerning all notions and conventions for this subject,
one may refer to references. [3], [5], [8], [6], [2], [10],
[9], and [11].
Bassing through the Rees and the associated graded levels
allow the interesting interplay on which the results in this
paper depend.
The central focus of the paper encompasses two distinct
sections. In the first, we modify and generalize the basic
theory of I completion as in [3], [8], and [6] with a
general Zariskian filteration FR. We establish
exactness, finiteness, and flatness of the formal
completion. In part 2, we focus on microlocalization of
these formal objects It represents the solution to formal
schemes studied on several levels in [10], [9], [11], [1],
and [4].

2 Formal Filtered and Graded Modules

Consider I ⊂ R be a filtered ideal having good, induced
filtration F I (as filtered submodule).Hence, the chain
. . . ⊂ I2 ⊂ I ⊂R is in R -filt. of good filtered ideals in

R. If we consider the inverse system { R
In } of induced

(quotient) good filtered modules over R and strict filtered
morphisms so that we can define the formal filtered ring
R∧I , with regard to I, of R by putting:

R∧I = lim f

←−n

R

In
.

In fact, this defines a Noetherian-filtered ring such that all
maps in the commutative diagram; for every n

R −→
R

In

ց ր

R∧I

are strict-filtered morphisms. In a similar way, we define
the formal filtered module M ∧I of a good filtered module
M ∈R− filt. with respect to I by

M ∧I = lim f

←−n

M

In M

as good filtered R∧I– module with induced filtration

FM ∧I. For the corresponding formal Rees objects, we
have

((M ∧I )∼)∧g = limg

←−m
(M ∧I)

∼
/ X m(M ∧I)

∼

= limg
←−
m

(
(lim f

←−
n

(
M

InM
))∼ /X m(lim f

←−
n

(
M

InM
))∼
)

= limg
←−
m

limg
←−
n

(
M

InM
)∼/X m (

M

InM
)∼

= limg

←−n
limg

←−m
M̃ /X mM̃ = limg

←−n

(
M̃
)∧g

;

with M = M
In M . This leads to the following results:

Lemma 1.With assumptions and conventions as before:

i.For every n, we have that M
In M is filtered complete.

ii.The inverse limit of the inverse system { M
In M } is again

filtered complete.

Theorem 1.Under the same conventions as above

i.(R∧I)∼ ∼= R̃∧Ĩ as Noetherain graded rings,

additionally for each M ∈ R− filt. along with good

filtration FM we have for (R∧I)∼-module (M ∧I)∼

is finitely generated X −torsionfree

ii.FM ∧I is separated and exhaustive filtration.

Proof:

i. It will be easy to showing that (R∧I)∼ is a Noetherian

ring. As our assumptions give that FM = F (M
In );

for each n, is filtration that is good, then FM ∧I is a
good filtration and (M ∧I)∼is a finitely generated

module. Let X ã = 0; ã ∈
(

M
InM

)∼ ∼= M̃
( InM )∼ . This

means that X ã∈(InM )∼. Consequently,

ã ∈ (InM )∼ and ã = 0. On the other hand, LX of all

X − torsion-free R̃ −modules is a full subcategory

in R̃−gr. Therefore, (M ∧I)∼ is X − torsion free.
ii. Keep in mind that FM is exhaustive and separated

and that the chain
. . . ⊂I2M ⊂ IM ⊂ M in R− filt. is a chain of
induced good filtrations. Hence, for n we have

⋃
Fp

(
M

InM

)
=
⋃FpM + InM

InM
=

M

InM

As well as FM ∧I is exhaustive filtration. Similarly,
we can verify that

⋂
FpM

∧I = 0 and FM ∧I is
separated.

Theorem 2.Under the same conventions as above

i. G(M ∧I) = (G( M ))∧G(I)
for each M ∈ R− filt.

along with good filtration FM .

ii.
(
M ∧I

)∼
/ (1−X )

(
M ∧I

)∼ ∼= M ∧I for each M ∈
R− filt. along with good filtration

FM . Moreover, there are isomorphisms

Fp(M
∧I)∼=

((M ∧I)∼)p +(1−X )(M ∧I)∼

(1−X )(M ∧I)∼
, p ∈ Z

Proof:

i.Given the sequence, that is exact

0→ InM →M →
M

InM
→ 0.

Here, all morphisms are strict, and filtrations are good.
Hence, get the following exact sequence:
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0→G( InM )→G(M )→G(
M

InM
)→ 0

of finitely generated modules and

G(M ∧I) ∼= (M ∧I ))∼/X (M ∧I )
∼

= (lim f

←−n
(

M

In M
))∼/X (lim f

←−n
(

M

In M
))∼

∼= limg

←−n
(M̃ /X mM̃ ) = limg

←−n
G(

M

In M
)

∼= limg

←−n

G(M )

G(In M )
∼= limg

←−n

G(M )

(G(I))n
G(M )

= G(M )∧G(I)
;M =

M

In M
.

Clearly , M is an I− adic complete iff G(M ) is
G(I)−adic complete.

ii.In a similar way, we get
(
M ∧I

)∼
/(1−X )

(
M ∧I

)∼

= ( lim f

←−n
M )

∼
/(1−X )( lim f

←−n
M )

∼

∼= limg

←−n
(M̃ /(1−X )M̃ )

∼= lim f

←−n
M = M ∧I.

and if p ∈ Z then we have

FpM
∧I ∼= Fp

( (
M ∧I

)∼
/(1−X )

(
M ∧I

)∼ )

= lim
←
n

Fp

(
M̃ /(1−X )M̃

)

= lim
←
n

(
M̃ p +(1−X )M̃

(1−X )M̃

)

∼=

((
M ∧I

)∼ )
p
+(1−X )

(
M ∧I

)∼

(1−X )(M ∧I )
∼

; M =
M

In M
.

Remark.One may define and construct formal Rees-level
or formal associated-level using Ĩ or G(I), respectively,
depending on the approach we need. Here in this work,
the results (some of them) depending on the compatibility
of the I−adic filtration and FR. Also, as we’ve not
forgotten the connection between the Ress functor ∼ and
the associated functor G and the descent functor D from
R̃ − gr. to R−filt; see [2] and [6].

Theorem 3.With notations as in the previous: The formal

functor ( )∧ on the filtered scale (on the Ress-scale, on the

associated graded scale) is exact on modules with good

filtrations (on finitely generated Ress-modules, on finitely

generated associated graded modules). Moreover,

R∧I/(I∧I )
n ∼= R/In , R̃∧Ĩ/

(
Ĩ∧Ĩ

)∼
∼= R̃/Ĩn

and

(G(R))∧G(I)/
(
(G(I))∧G(I)

)n
∼=

G(R)

(G(I))n

Proof: Similar proofs can be written as in [4] and [5].
Since we have good filtration and strict morphisms. Given
the following sequence of good filtered modules, which is
strict and exact:

o→ InR→R→
R

InR
→ o

leading to a sequence of good R∧I -modules, which is
exact:

0→ ( In)∧I →R∧I→ (R/In )∧I → 0

Then it is enough to note that( R
In )
∧I ∼= R

In . Based on
Remark 2, we may derive the other isomorphisms.

It is also possible to continue the formal theory and
establish modified results of these in [8] and [6]. This has
some interest because we can apply these results to formal,
filtered, and graded schemes.

Theorem 4.With notations as above:

i.For every M ∈ R−filt. along with filtration FM ,

which is good we have R∧I
⊗

RM ∼= M ∧I

ii.R∧I is a flat R− module.

Proof:

i.Since FM is good filtration on M ∈R− filt. Hence,
there is a sequence:
0→ K→ T→M → 0 in R− filt. which is strict and
exact with T is filt-free. So we get the commutative and
exact diagram

R∧I
⊗

R
K→R∧I

⊗
R

T→R∧I
⊗

R
M → 0

↓ γ ↓ β ↓ α

0 → K∧I → T∧I →M ∧I→ 0

Since the finite direct sums of good filtrations
commute with the completion functor. Then β is an
isomorphism, hence α is surjective. It follows that α
is injective and α is an isomorphism.

ii.Obviously, (i)⇒ (ii).

Theorem 5.For moment, let R be I− adic (not necessarily

commutative) Zariski filtered ring along with the I− adic

filtration FIR. Then the following assertions are true:

i.R is a subring of R∧I = R∧FI as filtered rings such

that R∧FI is Zariski filtered ring.

ii.In addition, if R is strongly filtered, then R∧I = R∧FI

is also strongly filtered.

Proof: The statements are easily verified by using [8] and
[6].
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3 Algebraic Formal Microlocalization

Consider a subset S ⊂ R of R, which is
multiplicatively closed, then σ (S ), η(S ) = S ∧I and

S̃ are subsets of G(R), R̃ and R∧I, consequently,
which are multiplicatively closed.

Given the diagram, that is a commutative

R

↓ η
(
R∧I

)∼
/(1−X )

(
R∧I

)∼ ∼= R∧I

Dր ց G
(
R∧I

)∼ π1−→
(
R∧I

)∼
/X

(
R∧I

)∼
∼=G(R∧I )

πnց ր ϕn
(
R∧I

)∼

X n(R∧I )
∼

Since

ker( ϕn) =
{

r̃+ X n
(
R∧̃ I

)∼
: r̃ ∈X

(
R∧̃ I

)∼}
is

nilpotent, it follows that πn((S ∧I)∼) is an Ore set as soon

as σ (S ∧I ) = σ (η(S )) = ϕn πn((S ∧I)∼) is an Ore set.
Hence for every n, we may construct:

(
πn((S

∧I)∼)
)−1

(
R∧I

)∼

X n
(
R∧I

)∼ = Q
g

(S ∧I)∼(n)

(
R∧I

)∼

X n
(
R∧I

)∼

the ring of quotients of (R∧I)∼/ X n(R∧I)∼ with respect
to (S ∧I)

∼
(n). In general, for graded quotient rings, we

refer to several references, like [7] and [8].
There is an inverse system in (R∧I)∼− gr., as we take the
canonical homomorphism.

Q
g

(S ∧I)∼(n)

(
R∧I

)∼

X n
(
R∧I

)∼ → Q
g

(S ∧I)∼(n−1)

(
R∧I

)∼

X n−1
(
R∧I

)∼

It’s inverse limite, in ( R∧I )
∼

-gr., is indicated by

Q̃
µ

(S ∧I )
∼(
(
R∧I

)∼
). The latter defines the

microlocalization of ( R∧I )
∼

with respect to (S ∧I)
∼

.
Similarly, we can define microlocalization
Q̃

µ

(S ∧I)
∼(
(
M ∧I

)∼
) of a graded ( R∧I )

∼
−module M ∧I∼

and obtain:

Q̃
µ

(S∧I )
∼

((
M ∧I

)∼)
= limg

←−n
Q

g

(S∧I )∼(n)
(

(
M ∧I

)∼

X n(M ∧I )∼
)

= limg

←−n
Q

g

(S∧I )∼(n)
[

(
lim f

←−m
(

M

ImM
)

)∼
/X n

(
lim f

←−m
(

M

ImM
)

)∼
]

= limg

←−
n

limg

←−
m

Q
g

S̃(n,m)

(
M̃ /X nM̃

)

= limg

←−m
limg

←−n
Q

g

S̃(n,m)

(
M̃ /X nM̃

)

= limg

←−m
Q

g

S̃(m)

(
M̃
)

Where M = M
Im M is a filtered R

Im −module along with

good filtration FM . It’s actually easy to verify that
Q̃

µ

(S ∧I)
∼(
(

M ∧I
)∼

) defines a graded X -torsion free

Q̃
µ

(S ∧I)
∼

( (
R∧I

)∼)
−module.

The graded ( R∧I )
∼
− homomorphisms:

(
M ∧I

)∼
→

( M ∧I )
∼

X n( M ∧I )∼
→ Q

g

(S ∧I )
∼
(n)

(

(
M ∧I

)∼

X n(M ∧I)∼
)

are compatible with the corresponding inverse system,
hence producing a unique morphism in
( R∧I )

∼
− gr. :

(
M ∧I

)∼
→ Q̃

µ

(S ∧I)
∼

(
( R∧I )

∼)
.

Now, describe

Q
µ

S ∧I

(
R∧I

)
=

Q̃
µ

(S ∧I)
∼(
(

R∧I
)∼

)

(1−X ) Q̃
µ

(S ∧I)
∼( ( R∧I)

∼
)

and

Q
µ

S ∧I

(
M ∧I

)
=

Q̃
µ

(S ∧I)
∼(
(

M ∧I
)∼

)

(1−X ) Q̃
µ

(S ∧I)
∼( ( M ∧I)∼)

i.e., by dehomogenization of the construction at the
Rees-module scale. Also, M ∧I → Q

µ

S ∧I (M
∧I) is a

unique filtered morphism. Q
µ

S ∧I (M
∧I) is said to be the

filtered microlocalization of the formal R∧I−module
M ∧I at S ∧I .

Lemma 2.With conventions as above:

i.Q
µ
f∧

(
M ∧I

)
∼=
(

Q
µ
f

(
M ∧I

))∧J
;J = Q

µ
f (I).

ii.Q̃
µ

( f∧)
∼(
(

M ∧I
)∼

) ∼=
(

Q̃
µ

f̃

(
M̃
)) ∧J̃

;J̃ =

(Q
µ
f (I) )

∼
.

Where, as in [2], we denote the multiplicative set

{1, f , f 2, ...}∼ by f̃ and its image by f̃∧.

Proof: The statement in (i) is easily verified by using the
definition. For the statement in (ii) we have

Q̃
µ

( f
∧)
∼(
(

M ∧I
)∼

) = Q̃
µ

( f
∧)
∼

(
(lim f

←−
n

M

In M
)∼
)

= Q̃
µ

( f
∧)
∼

(
lim
←−n

(
M

In M
)∼
)

= Q̃
µ

f̃∧

(
limg

←−n

M̃

( InM )∼

)

= limg

←−n
Q̃

µ

( f
∧)
∼ (

M̃

( InM )∼
)

= limg

←−n
Q̃

µ

f̃

(
M̃
)
/Q̃

µ

f̃
( (InM )∼ )

= limg

←−n
Q̃

µ

f̃

(
M̃
)
/( Q̃

µ

f̃
(Ĩ))

n
Q̃

µ

f̃

(
M̃
)

=
(

Q̃
µ

f̃

(
M̃
)) ∧J̃

;J̃ = Q̃
µ

f̃
(Ĩ) .
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Theorem 6.Let M be a good filtered R -module and

I ⊂ R good filtered ideal, then the microlocalization of

the filtered formal M ∧I that of M is the filtered formal of

microlocalization of M along with respect to J =Q
µ
f (I).

Therefore, they represent solutions to formal schemes at

the filtered level.

Proof: The statements will be clear by using lemma 2 and
refs [9] and [10].

Remark.From the viewpoint of the theorem 6, the author
observed that it is not necessary here to study the
algebraic properties and applications of these objects.
One may follow this geometrically in [2], [10], [9], [11]
and [4]. We hope to come back to another application for
them in the forthcoming work.
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