
J. Stat. Appl. Pro. 14, No. 1, 85-98 (2025) 85

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/140107

Cost-Effective Management of Bulk Arrival Queuing

Systems with Vacation and Setup Periods: A Case Study

on Engine Piston Production

B. E. Farahat1,∗, G. S. Mokaddis1, Sahar Mohamed Ali Abou Bakr1, and Haidy A. Newer2

1 Department of Mathematics, Faculty of Sciences, Ain Shams University, Cairo 11511, Egypt
2 Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11511, Egypt

Received: 7 Sep. 2024, Revised: 21 Nov. 2024, Accepted: 23 Dec. 2024

Published online: 1 Jan. 2025

Abstract: In this paper, we explore a single-server queuing system where arrivals follow a compound Poisson process, while service

times have a general distribution. We introduce a concept of a threshold for idle times, assuming that when the server has been idle for

a certain duration, it needs a random setup time before starting to serve again. We derive steady-state distributions for both system size

and waiting time, and we also calculate the expected cycle time for each model. Additionally, we show that the system size and waiting

time distributions can be broken down into three distinct, meaningful parts. For the threshold model, we present a method to determine

the optimal threshold that minimizes the total expected operating cost. A numerical example, focusing on the cost model?s relevance

to engine piston production, further demonstrates the model?s practical application.
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1 Introduction

Queuing models with vacationing servers are widely used in fields such as manufacturing, telecommunications, and
various service industries. In these models, after serving a set number of customers or packets?either randomly or at
fixed intervals?or after a specific busy period, the server may take a ?vacation.? These breaks can serve various purposes,
such as handling personal matters or completing other work-related tasks. Examples of work tasks might include
assisting colleagues or managing unresolved overhead left by previous clients. Many authors have extensively studied
queuing models with server vacations [6,7,11,12,13,14,4,1]. Survey studies, such as [6], also offer practical examples
of vacation queuing models, including cases where servers experience malfunctions and require repairs.
Server vacations are characterized by two phases: idle time and setup time. The idle period begins when the system is
completely empty, assuming an exhaustive service system. In threshold model, the idle period ends when the number of
customers in the queue first reaches or exceeds a specified threshold. At that point, the server resumes service. This study
outlines and focuses on how this model impacts system efficiency and server utilization.
After an idle period, the server undergoes an independent, uniformly distributed setup phase. During this time, any
customers who arrived while the server was idle, as well as those arriving during setup, are not served. Once setup is
complete, the server starts serving customers immediately in a first-come, first-served (FCFS) order, initiating a busy
period that continues until the queue is empty. To analyze these models, we use the supplementary variable approach to
derive the steady-state distributions of the system size for each model. We then demonstrate that these distributions can
be split into two components: one part representing the number of customers who arrived during the idle (vacation)
period, and the other part corresponding to the system size distribution in a standard MX/G/1 model without an idle
phase.
Additionally, we calculate the waiting time distributions and provide each model with a unique decomposition property.
We demonstrate that the expected cycle durations for each model are determined based on the time a customer spends
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waiting during the remaining vacation period. Finally, we propose a method to minimize the total expected operating
cost per unit time, allowing us to determine the optimal threshold value for the threshold model.
The M/G/1 system with generalized vacation policies has been widely studied, with key insights documented in
numerous research articles. Doshi?s survey [6] offers an in-depth overview of queuing systems featuring vacation
policies. Chae et al. [1] introduced the arrival time approach, a powerful method for analyzing various M/G/1 systems
with generalized vacations. Their findings show that the steady-state queue size distribution for MX/G/1 systems with
multiple vacations can be divided into two parts: the number of customers present during the vacation period and the
distribution for a standard MX/G/1 queue. Fuhrmann and Cooper [7] extended the vacation model to include threshold
mechanisms, server setup times, single and multiple vacations, and their combinations. Lee and Srinivasan [11] studied a
control policy for MX/G/1 queues with multiple vacations, where MX represents a compound Poisson process. Lee et al.
further analyzed the MX/G/1 model under configurations such as N-policy with multiple vacations [12], in addition to
isolated studies on N-policy alone [13] and single vacation models with N-policy [14]. Choudhury [4] applied
Fuhrmann?s decomposition property to the context of group arrivals, demonstrating that the queue size distribution at
departure points can be represented as the convolution of three independent random variables.
The authors in [15] explored equilibrium methods for an M/M/1 queue experiencing working breakdowns. In [10], a
queuing model was analyzed that accounts for operational failures and disasters. A limited capacity queue with Bernoulli
feedback and working breakdowns was investigated by the authors in [9]. The study in [16] focused on a
working-breakdown-reneging queuing system that has limited capacity and retains impatient customers. Ye and Liu [17]
later examined a Markovian arrival process (MAP) that includes functional breakdowns and repair mechanisms. In [5],
the steady-state characteristics of a breakdown queue during vacation periods were identified. Furthermore, recent
queuing models have begun to incorporate elements such as crowdsourcing, optional services, phase-type (PH)
distribution services during vacations, and MAP arrivals (see, e.g., [2,3]).
In this paper, we examine an exhaustive queuing system, where an idle period begins as soon as the system empties. We
specifically look at a threshold model, which pauses operation once the queue reaches or exceeds a set number of
customers. After an idle period, a setup phase begins, with its duration following a general distribution and remaining
independent of other time intervals. During both the idle and setup phases, arriving customers are not served until the
setup is complete. Once ready, the server resumes service in a FCFS manner, marking the start of a busy period that
continues until the queue is again empty. We calculate the expected cycle lengths for this threshold model and propose a
method for finding the optimal threshold value that minimizes the expected operating cost per unit time. To identify the
best threshold level (or minimum batch size) for this system, we develop a cost model. A major contribution of our study
is the analysis of a cost model that has practical relevance, illustrating how the results can support effective cost
optimization in real-world applications.
The structure of the paper is as follows: Section 2 introduces the threshold model. In Section 3, we derive the
steady-state system size distribution for the MX/G/1 threshold model. Section 4 focuses on deriving the joint Laplace
transformations of the waiting time for a randomly selected (tagged) customer, covering cases where the customer
arrives during the idle, setup, or busy period. Here, we assume a FCFS principle and calculate the expected waiting time
and the expected cycle length, which includes an idle period, setup period, and busy period. Section 5 examines a cost
model using real data, discussing how the findings can be applied to optimize costs. The paper concludes with Section 6,
which offers recommendations for future research directions.

2 Threshold model description

A cycle in this system starts when the queue is empty, causing the server to go idle. The server remains idle until the
number of waiting customers reaches N (where N ≥ 1). During this idle phase, customers arrive in groups according to
a compound Poisson process with a rate of µ . Let χ represent the random variable for group size, with its probability
generating function (PGF) denoted as κ(z). The probability that a batch of k customers arrives is represented by gk =
Pr(χ = k), for k = 1,2, . . . ,q. For service times, we denote the probability density function (pdf) as S(x) and its Laplace

transform (LT) as S̃(θ ). Similarly, for setup times, let U , u(x), and Ũ(θ ) represent the setup time variable, its pdf, and LT,
respectively. The remaining service time of a customer in service at time t is given by S+(t), and the remaining setup time
at time t by U+(t). The variable N(t) denotes the system size at time t. Additionally, we define ϕ(t) as the indicator of
the server?s state at any time t, with the following values:

ϕ(t) =





0, if the server is idle at time t,

1, if the server is in the setup phase at time t,

2, if the server is actively serving (busy) at time t.
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For steady-state probabilities, we use the following variables:
1. Idle State Probability:

ϑn = lim
t→∞

ϑn(t), ϑn(t) = Pr[N(t) = n,ϕ(t) = 0], n = 0,1,2, . . . ,N − 1.

2. Setup State Probability:

Un(x)dx = lim
t→∞

Un(x, t)dx, Un(x, t)dx = Pr[N(t) = n,ϕ(t) = 1,x <U+(t)≤ x+ dx],

Ũn(θ ) =

∫ ∞

0
e−θxUn(x)dx, n = N,N + 1, . . . .

3. Busy State Probability:

νn(x)dx = lim
t→∞

νn(x, t)dx, νn(x, t)dx = Pr[N(t) = n,ϕ(t) = 2,x < S+(t)≤ x+ dx],

ν̃n(θ ) =

∫ ∞

0
e−θxνn(x)dx, n = 1,2, . . . .

These definitions allow us to model the system’s behavior across idle, setup, and busy states, providing the basis for
deriving steady-state probabilities and other performance metrics.
By observing the state changes over the interval (t, t +∆ t) for any given t, we derive the following system of temporary
state equations:

ϑ0(t +∆ t) = ϑ0(t)(1−λ ∆ t)+ν1(0, t)∆ t, (2.1)

ϑn(t +∆ t) = ϑn(t)(1−λ ∆ t)+
n

∑
k=1

ϑn−k(t)λ gk∆ t, 1 ≤ n ≤ N − 1, (2.2)

UN(x−∆ t, t +∆ t) =UN(x, t)(1−λ ∆ t)+
N−1

∑
k=0

ϑk(t)λ gN−ku(x)∆ t, (2.3)

Un(x−∆ t, t +∆ t) =Un(x, t)(1−λ ∆ t)+
N−1

∑
k=0

ϑk(t)λ gn−ku(x)∆ t +
n−N

∑
k=1

Un−k(x, t)λ gk∆ t, n ≥ N + 1, (2.4)

ν1(x−∆ t, t +∆ t) = ν1(x, t)(1−λ ∆ t)+ν2(0, t)S(x)∆ t, (2.5)

νn(x−∆ t, t +∆ t) = νn(x, t)(1−λ ∆ t)+νn+1(0, t)S(x)∆ t +
n−1

∑
k=1

νn−k(x, t)λ gk∆ t, 2 ≤ n ≤ N − 1, (2.6)

νn(x−∆ t, t +∆ t) =νn(x, t)(1−λ ∆ t)+νn+1(0, t)S(x)∆ t

+Un(0, t)S(x)∆ t +
n−1

∑
k=1

νn−k(x, t)λ gk∆ t, n ≥ N.
(2.7)

To derive the steady-state balance equations, we divide both sides of equations (2.1) through (2.7) by ∆ t, then take the
limits as ∆ t → 0 and t → ∞:

0 =−λ ϑ0 +ν1(0), (2.8)

0 =−λ ϑn +λ
n

∑
k=1

ϑn−kgk, 1 ≤ n ≤ N − 1, (2.9)

−
d

dx
UN(x) =−λUN(x)+λ

N−1

∑
k=0

ϑkgN−ku(x), (2.10)

−
d

dx
Un(x) =−λUn(x)+λ

n−N

∑
k=1

Un−k(x)gk +λ
N−1

∑
k=0

ϑkgn−ku(x), n ≥ N + 1, (2.11)
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−
d

dx
ν1(x) =−λ ν1(x)+ν2(0)S(x), (2.12)

−
d

dx
νn(x) =−λ νn(x)+νn+1(0)S(x)+λ

n−1

∑
k=1

νn−k(x)gk, 2 ≤ n ≤ N − 1, (2.13)

−
d

dx
νn(x) =−λ νn(x)+νn+1(0)S(x)+Un(0)S(x)+λ

n−1

∑
k=1

νn−k(x)gk, n ≥ N. (2.14)

The solution to this system of equations holds under the condition ρ = λ E(χ)E(q)< 1. To proceed, we apply the Laplace
Transform (LT) to equations (2.10)-(2.14) to derive the following difference equations. If we multiply both sides of Eq.
(2.10) by e−θx and integrate from 0 to ∞, we obtain

∫ ∞

0
e−θx d

dx
UN(x)dx = λ

∫ ∞

0
e−θxUN(x)dx−λ

N−1

∑
k=0

ϑkgN−k

∫ ∞

0
e−θxu(x)dx,

where we define:

ŨN(θ ) =

∫ ∞

0
e−θxUN(x)dx,

Ũ(θ ) =

∫ ∞

0
e−θxu(x)dx.

So,

θŨN(θ )−UN(0) = λŨN(θ )−λ
N−1

∑
k=0

ϑkgN−kŨ(θ ), (2.15)

similarly,

θŨn(θ )−Un(0) = λŨn(θ )−λ
n−N

∑
k=1

gkŨn−k(θ )−λ
N−1

∑
k=0

ϑkgn−kŨ(θ ), n ≥ N + 1, (2.16)

θ ν̃1(θ )−ν1(0) = λ ν̃1(θ )−ν2(0)S̃(θ ), (2.17)

θ ν̃n(θ )−νn(0) = λ ν̃n(θ )−νn+1(0)S̃(θ )−λ
n−1

∑
k=1

gkν̃n−k(θ ), 2 ≤ n ≤ N − 1, (2.18)

θ ν̃n(θ )−νn(0) = λ ν̃n(θ )−νn+1(0)S̃(θ )−Un(0)S̃(θ )−λ
n−1

∑
k=1

gkν̃n−k(θ ), n ≥ N. (2.19)

We define the following generating functions (GF) for |Z| ≤ 1:

–ϑ(Z) =
N−1

∑
n=0

ϑnZn: the generating function for the number of customers in the system when the server is idle.

–Ũ(Z,θ ) =
∞

∑
n=N

Ũn(θ )Z
n: the joint transform of the number of customers in the system during the setup period and the

remaining setup time.

–U(Z,0) =
∞

∑
n=N

Un(0)Z
n: the generating function for the number of customers in the system at the end of the setup

period.

–ν̃(Z,θ ) =
∞

∑
n=1

ν̃n(θ )Z
n: the joint transform of the number of customers in the system during the busy period and the

remaining service time of the customer currently being served.

–ν(Z,0) =
∞

∑
n=1

νn(0)Z
n: the generating function for the number of customers in the system at the time of departure.

With these definitions, we proceed to derive expressions for Ũ(Z,θ ) and ν̃(Z,θ ) as stated in the following theorem.
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Theorem 2.1.Theorem 2.1 establishes the following results for Ũ(Z,θ ) and ν̃(Z,θ ), given that

λ
∞

∑
n=N

(
N−1

∑
k=0

ϑkgn−k

)
Zn = λ [ϑ(Z)χ(Z)−ϑ(Z)+ϑ0].

Then, Ũ(Z,θ ) and ν̃(Z,θ ) are obtained as follows:

1. For Ũ(Z,θ ):

Ũ(Z,θ ) =
λ [Ũ(λ −λ χ(Z))−Ũ(θ )][ϑ0 −ϑ(Z)(1− χ(Z))]

θ −λ +λ χ(Z)
,

2. For ν̃(Z,θ ):

ν̃(Z,θ ) =
Z
[
S̃(λ −λ χ(Z))− S̃(θ )

]

S̃(λ −λ χ(Z))−Z
×

λ ϑ0

[
1−Ũ(λ −λ χ(Z))

]
−λŨ(λ −λ χ(Z))

[
χ(Z)ϑ(Z)−ϑ(Z)

]

θ −λ +λ χ(Z)
.

Proof.Let Ξn(Z) = λ
∞

∑
n=N

(
N−1

∑
k=0

ϑkgn−k

)
Zn. Using (2.9), then we have

Ξn(Z) = λ

{(
N−1

∑
k=0

ϑkgN−k

)
ZN +

(
N−1

∑
k=0

ϑkgN+1−k

)
ZN+1 +

(
N−1

∑
k=0

ϑkgN+2−k

)
ZN+2 + · · ·

}

= λ

{
N−1

∑
k=0

ϑkZk

[
gN−kZN−k + gN+1−kZN+1−k + gN+2−kZN+2−k + · · ·

]}
,

we can write
∞

∑
j=N−k

g jZ
j =

∞

∑
j=1

g jZ
j −

N−k−1

∑
j=1

g jZ
j,

so,

Ξn(Z) = λ

{
N−1

∑
k=0

ϑkZk

[
∞

∑
j=1

g jZ
j

]
−

N−1

∑
k=0

ϑkZk

[
N−k−1

∑
j=1

g jZ
j

]}

= λ

{
ϑ(Z)χ(Z)−ϑ0

[
g1Z + g2Z2 + · · ·+ gN−1ZN−1

]
−ϑ1Z

[
g1Z + g2Z2 + · · ·+ gN−2ZN−2

]

−·· ·−ϑN−1ZN−1[g1Z]

}
.

(*)

Also from (2.9), we have

λ
N−1

∑
n=1

(
n

∑
k=1

ϑn−kgk

)
Zn = λ

N−1

∑
n=1

ϑnZn = λ [ϑ(Z)−ϑ0],

so, we can get

λ

{
ϑ0g1Z+[ϑ1g1 +ϑ0g2]Z

2 +[ϑ2g1 +ϑ1g2 +ϑ0g3]Z
3

+ · · ·+[ϑN−2g1 +ϑN−3g2 + · · ·+ϑ0gN−1]Z
N−1

}
= λ [ϑ(Z)−ϑ0],

hence,

λ

{
ϑ0[g1Z + g2Z2 + · · ·+ gN−1ZN−1]+ϑ1Z[g1Z + g2Z2 + · · ·+ gN−2ZN−2]

+ · · ·+ϑN−2ZN−2[g1Z]

}
= λ [ϑ(Z)−ϑ0].

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


90 B. E. Farahat et al.: Cost-Effective Management of Bulk Arrival...

Substituting in (*), then

λ
∞

∑
n=N

(
N−1

∑
k=0

ϑkgn−k

)
Zn = λ [ϑ(Z)χ(Z)−ϑ(Z)+ϑ0]. (2.20)

By multiplying Eqs. (2.15) and (2.16) by the appropriate powers of Z and then summing each term, we obtain:

θŨ(Z,θ )−U(Z,0) = λŨ(Z,θ )−λ
n−N

∑
k=1

gkZk
∞

∑
n−k=N−k+1

Ũn−k(θ )Z
n−k −λŨ(θ )

∞

∑
n=N

(
N−1

∑
k=0

ϑkgn−k

)
Zn,

which is equivalent to

θŨ(Z,θ )−U(Z,0) = λŨ(Z,θ )−λ χ1(Z)Ũ(Z,θ )−λŨ(θ )[ϑ(Z)χ(Z)−ϑ(Z)+ϑ0],

where χ1(Z) =
n−N

∑
k=1

gkZk, then,

[θ −λ +λ χ(Z)]Ũ(Z,θ ) =U(Z,0)−λŨ(θ )[ϑ(Z)χ(Z)−ϑ(Z)+ϑ0]. (2.21)

Letting θ = λ −λ χ(Z) in Eq. (2.21), we obtain

U(Z,0) = λŨ [λ −λ χ(Z)][χ(Z)ϑ(Z)−ϑ(Z)+ϑ0], (**)

Substitute from Eq. (**) in Eqn. (2.21), then

Ũ(Z,0) =
λ [Ũ(λ −λ χ(Z))−Ũ(θ )][ϑ0 −ϑ(Z)(1− χ(Z))]

θ −λ +λ χ(Z)
. (2.22)

Continuing with Eqs. (2.17)-(2.19), we can proceed as follows: Multiply Eq. (2.17) by Z, Eq. (2.18) by Zn for 2 ≤ n ≤
N −1, and Eq. (2.19) by Zn for n ≥ N. After performing these multiplications and adding all the terms together, we arrive
at the resulting expression:

[θ −λ +λ χ2(Z)]ν̃(Z,θ ) = ν(Z,0)−
S̃(θ )

Z
[ν(Z,0)−ν1(0)Z]− S̃(θ )U(Z,0), (2.23)

where χ2(Z) =
n−1

∑
k=1

gkZk.

We can derive ν(Z,0) from Eq. (2.23) as follows:

ν(Z,0) = S̃(λ −λ χ(Z))[U(Z,0)−ν1(0)]

[
Z

Z − S̃(λ −λ χ(Z))

]
.

Substituting this expression into Eq. (2.23), we obtain:

[θ −λ +λ χ(Z)]ν̃(Z,θ ) = [U(Z,0)−ν1(0)]




Z

[
S̃(λ −λ χ(Z))− S̃(θ )

]

Z − S̃(λ −λ χ(Z))


 ,

hence,

ν̃(Z,θ ) =

Z

[
S̃(λ −λ χ(Z))− S̃(θ )

]

Z − S̃(λ −λ χ(Z))

[U(Z,0)−ν1(0)]

θ −λ +λ χ(Z)
.

Using (**), we get

ν̃(Z,θ ) =

Z

[
S̃(λ −λ χ(Z))− S̃(θ )

]

Z− S̃(λ −λ χ(Z))

[
λŨ [λ −λ χ(Z)][χ(Z)ϑ(Z)−ϑ(Z)+ϑ0]−ν1(0)

]

θ −λ +λ χ(Z)
,

since ν1(0) = λ ϑ0, then we can write ν̃(Z,θ ) as

ν̃(Z,θ ) =

Z

[
S̃(λ −λ χ(Z))− S̃(θ )

]

S̃(λ −λ χ(Z))−Z

λ ϑ0

[
1−Ũ[λ −λ χ(Z)]

]
−λŨ

[
λ −λ χ(Z)

][
χ(Z)ϑ(Z)−ϑ(Z)

]

θ −λ +λ χ(Z)
. (2.24)
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Remark 1It has been shown that ϑ(Z) = ϑ0

N−1

∑
n=0

ξnZn, where ξn represents the probability that the system reaches state n

(the number of customers) during the idle period. This can be calculated using the relation ξn =
n

∑
k=1

gkξn−k. Consequently,

the expression
ξi

N−1

∑
n=0

ξn

represents the probability that there are i customers waiting in the system at any given time, assuming

the server is in an idle state.

3 Queue size distribution

In Equations (2.22) and (2.24), Ũ(Z,θ ) and ν̃(Z,θ ) represent the joint transforms during the setup and busy periods. The
PGF for the steady-state number of customers in the threshold model system is given by

νN(Z) = ϑ(Z)+Ũ(Z,θ )

∣∣∣∣
θ=0

+ ν̃(Z,θ )

∣∣∣∣
θ=0

, (3.1)

where ϑ(Z) = ϑ0

N−1

∑
n=0

ξnZn. The unknown variable ϑ0 in Equation (3.1) is determined by the boundary condition

νN(Z)

∣∣∣∣
Z=1

= 1. This gives us ϑ0 =
(1−ρ)

(
N−1

∑
n=0

ξn+λ E(U))

, with ρ = λ E(χ)E(S). Finally, we present the PGF for the system size,

as stated in the following theorem.

Theorem 3.1.Let νN(Z) denote the PGF of the steady-state system size for the MX |G|1 threshold model that includes

setup time. Then, we have:

νN(Z) =

(1−ρ)(1−Z)S̃(λ −λ χ(Z))(1−Ũ(λ −λ χ(Z)))[1− (1− χ(Z))
N−1

∑
n=0

ξnZn]

[S̃(λ −λ χ(Z))−Z][1− χ(Z)][
N−1

∑
n=0

ξn +λ E(U)]

. (3.2)

Proof.Using equations (2.22) and (2.24), we can derive:

Ũ(Z,θ )

∣∣∣∣
θ=0

=
λ [Ũ(λ −λ χ(Z))−Ũ(0)][ϑ0 −ϑ(Z)(1− χ(Z))]

−λ +λ χ(Z)
. (3**)

ν̃(Z,θ )

∣∣∣∣
θ=0

= [
Z[S̃(λ −λ χ(Z))− S̃(0)]

S̃(λ −λ χ(Z))−Z
][

λ ϑ0[1−Ũ[λ −λ χ(Z)]]−λŨ[λ −λ χ(Z)][χ(Z)ϑ(Z)−ϑ(Z)]

−λ +λ χ(Z)
]. (3***)

Additionally, from (3**), and (3***) in (3.1), we have:

νN(Z) =

(1−ρ)
N−1

∑
n=0

ξnZn

N−1

∑
n=0

ξn +λ E(U)

−
[Ũ(λ −λ χ(Z))− 1][ϑ0 −ϑ(Z)(1− χ(Z))]

[1− χ(Z)]
−

[
Z[S̃(λ −λ χ(Z))− 1]

S̃(λ −λ χ(Z))−Z
][

ϑ0[1−Ũ(λ −λ χ(Z))]−Ũ(λ −λ χ(Z))ϑ(Z)(χ(Z)− 1)

1− χ(Z)
].

Then,

νN(Z) =

{
N−1

∑
n=0

ξnZn(1−ρ)[S̃(λ −λ χ(Z))−Z][1− χ(Z)]

− [Ũ(λ −λ χ(Z))− 1][1−ϑ(Z)(1− χ(Z))][S̃(λ −λ χ(Z))−Z][
N−1

∑
n=0

ξn +λ E(U)]

− [Z[S̃(λ −λ χ(Z))− 1]][(1−Ũ(λ −λ χ(Z)))+Ũ(λ −λ χ(Z))ϑ(Z)(1− χ(Z))]×

[
N−1

∑
n=0

ξn +λ E(U)]

}{
[S̃(λ −λ χ(Z))−Z][1− χ(Z)][

N−1

∑
n=0

ξn +λ E(U)]

}−1

,
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after simple simplification, we can get

νN(Z) =

(1−ρ)(1−Z)S̃(λ −λ χ(Z))(1−Ũ(λ −λ χ(Z)))[1− (1− χ(Z))
N−1

∑
n=0

ξnZn]

[S̃(λ −λ χ(Z))−Z][1− χ(Z)][
N−1

∑
n=0

ξn +λ E(U)]

. (3.3)

Remark 2We define the probabilities of the system being in the idle state, denoted as ν(I), and in the setup state, denoted

as ν(S). By setting Z = 1 in ϑ(Z), we obtain:

ϑ(Z)

∣∣∣∣
Z=1

= ν(I) =

(1−ρ)
N−1

∑
n=0

ξn

N−1

∑
n=0

ξn +λ E(U)

.

Additionally, we have:

Ũ(Z,θ )

∣∣∣∣
Z=1,θ=0

= ν(S) =
(1−ρ)λ E(U)

N−1

∑
n=0

ξn +λ E(U)

.

Here, ϑ(Z)

∣∣∣∣
Z=1

and Ũ(Z,θ )

∣∣∣∣
Z=1,θ=0

represent the probabilities that the system is in the idle and setup states, respectively.

Consequently, the term 1−ρ indicates the probability that the system is in a vacation period, while ν(B) = ρ reflects the

probability that the server is busy. Next, we examine the PGF of the system size, νN(Z), to gain further insight.

νN(Z) =
(1−Z)(1−ρ)S̃(λ −λ χ(Z))

S̃(λ −λ χ(Z))−Z
δN(Z), (3.4)

where

δN(Z) =

1−Ũ(λ −λ χ(Z))

[
1− (1− χ(Z))

N−1

∑
n=0

ξnZn

]

[1− χ(Z)]

[
N−1

∑
n=0

ξn +λ E(U)

] .

This formulation allows us to interpret the dynamics of the system size in relation to various factors, including the idle

and busy states.

Remark 3To find the expected value LN of the number of customers in the system, we can use the derivative d
dZ

νN(Z)

∣∣∣∣∣
Z=1

along with L’Hopital’s rule. Thus, the expected value of the steady-state system size for the MX |G|1 threshold model,

which includes setup time, is given by:

LN =
λ E(S)E(χ(χ − 1))+λ 2E2(χ)E(S2)

2(1−ρ)
+ρ +

2

[
λ E(U)E(χ)

N−1

∑
n=0

ξn +
N−1

∑
n=0

nξn

]
+λ 2E(χ)E(U2)

2

(
N−1

∑
n=0

ξn +λ E(U)

) . (3.5)

4 Waiting-time distribution

Let?s define the following LT for the waiting time of an arbitrarily chosen customer, depending on the state of the system
upon arrival:

–W̃I(θ ) represents the LT of the waiting time for a customer who arrives when the system is idle.
–W̃U(θ ) is the LT of the waiting time for a customer who arrives while the system is in its setup phase.
–W̃B(θ ) stands for the LT of the waiting time when the customer arrives during a busy period.
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Following the FCFS approach, our goal is to calculate the overall LT of the waiting time, which we’ll call W̃q,N(θ ), for
any customer arriving in the system. So, putting it all together, the LT of the waiting time for this customer, regardless of
the system?s current state, is:

W̃q,N(θ ) = W̃I(θ )+W̃U(θ )+W̃B(θ ).

Next, we?ll look at each of these transforms individually, breaking down how the system’s idle, setup, and busy states
impact a customer?s wait.
Lee et al. [14] provide the LT for the waiting time distribution of a customer arriving during an idle period, without
considering a setup phase. In our model, the customer must also wait for an additional setup time, independent of the
idle period. Therefore, the LT of the waiting time W̃I(θ ) for a customer who arrives during an idle period is expressed as
follows:

W̃I(θ ) =

Ũ(θ )(1−ρ)
N−1

∑
n=0

ξn[S̃(θ )]
n

N−1

∑
n=0

ξn

(
N−n−1

∑
r=1

gr

(
1− [S̃(θ )]r

)

E(χ)
(
1− S̃(θ )

) [ĨN−n−1(θ )− 1]+
1− χ [S̃(θ )]

E(χ)
(
1− S̃(θ )

)
)
,

where the LT of the idle period, ĨN(θ ), with threshold N and conditioned on the size of the first arrival group, is defined
by:

ĨN(θ ) =
λ

λ +θ

(
1+

N−1

∑
k=1

gk

(
I k̃
N(θ )− 1

))
.

The LT of the waiting time for a customer who arrives while the system is in its setup phase, see Hur and Ahn [8]

W̃U(θ ) =
(1−ρ)λ E(U)

N−1

∑
n=0

ξn +λ E(U)

[
1−
(
1− χ(S̃(θ ))

)N−1

∑
n=0

ξn(S̃(θ ))
n

]

[
Ũ(λ −λ χ [S̃(θ )])−Ũ(θ )

E(U)[θ −λ +λ χ [S̃(θ )]]

][
1− χ [S̃(θ )]

E(χ)[1− S̃(θ )]

]
.

(4.1)

The waiting time for a customer arriving during a busy period depends on the number of customers already present in
the system at the moment of arrival, including the customer currently being served. We have derived the joint transform
ν̃(Z,θ ), which incorporates the system size (denoted by Z) and the remaining service time of the customer currently in
service (denoted by θ ). This leads to the following expression for calculating the waiting time during the busy period:

W̃B(θ ) =
ν̃(S̃(θ ),θ )

S̃(θ )
·

1− χ [S̃(θ )]

E(χ)[1− S̃(θ )]

=
1−ρ

N−1

∑
n=0

ξn +λ E(U)

·
1− χ [S̃(θ )]

E(χ)[1− S̃(θ )]

·

λ [1−Ũ(λ −λ χ [S̃(θ )])]+ (λ −λ χ [S̃(θ )])Ũ(λ −λ χ [S̃(θ )])
N−1

∑
n=0

ξnS̃(θ )n

θ −λ +λ χ [S̃(θ )]
.

(4.2)

4.1 Expected waiting time

To find the expected value of the waiting time Wq,N from the LT given by

W̃q,N(θ ) = W̃I(θ )+W̃U(θ )+W̃B(θ ),

we differentiate W̃q,N(θ ) with respect to θ , evaluate the result at θ = 0, and use LHopital’s rule. This approach allows
us to extract the expected waiting time. After carrying out these steps, we obtain the expected waiting time expressed as
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follows:

Wq,N =
λ E2(χ)E(S2)+E(S)E(χ(χ − 1))

2E(χ)(1−ρ)
+

2

[
λ E(U)E(χ)

N−1

∑
n=0

ξn +
N−1

∑
n=0

nξn

]
+λ 2E(χ)E(U2)

2λ E(χ)

[
N−1

∑
n=0

ξn +λ E(U)

] .

(4.3)

This expression encompasses the contributions to the expected waiting time from various factors, such as service times,
the number of customers, and the efficiency of the system as represented by the parameter ρ .

4.2 Expected length of a cycle

A complete cycle consists of three phases: an idle period, a setup period, and a busy period. We already have the LT for
the distribution of the idle period. The expected length of the idle period is given by:

E(IN) =−Ĩ′N(0) =
1

λ

N−1

∑
k=1

ξk. (4.4)

Next, let’s denote NB as the number of customers in the system at the start of the busy period and NB(Z) as its PGF.
Since NB represents the total number of customers that arrive during both the idle and setup periods?two independent
components?we can express it as follows:

NB(Z) =

(
1− [1− χ(Z)]

N−1

∑
n=0

ξnZn

)
Ũ(λ −λ χ(Z)).

This equation highlights how the number of customers in the system at the beginning of the busy period is derived from
the contributions of customers arriving during both the idle and setup phases. Next, let’s define BN(θ ) as the LT of the
length of the busy period. Since each customer experiences their own busy period, we can express this as follows:

B̃N(θ ) = NB(Z)

∣∣∣∣∣
Z=B̃(θ)

=

(
1− [1− χ(B̃(θ ))]

N−1

∑
n=0

ξn(B̃(θ ))
n

)
Ũ(λ −λ χ(B̃(θ ))), (4.5)

where B̃(θ ) represents the LT of the busy period that starts with one customer in a standard MX |G|1 system. Consequently,
we have:

B̃(θ ) = S̃(θ +λ −λ χ [B̃(θ )]).

As a result, the expected length of the busy period is given by:

E(BN) = E(NB)E(B) =
E(χ)E(S)

1−ρ

(
N−1

∑
n=0

ξn +λ E(U)

)
. (4.6)

From the expected values above, we also find that:

E(NB) = λ E(χ)(E(IN)+E(U)), (4.7)

which follows from Wald’s equation. Now, the expected length of a complete cycle, denoted E(TN), can be expressed as:

E(TN) = E(IN)+E(U)+E(BN)

=
1

λ

N−1

∑
n=0

ξn +E(U)+
E(χ)E(S)

1−ρ

(
N−1

∑
n=0

ξn +λ E(U)

)

=
1

λ (1−ρ)

(
N−1

∑
n=0

ξn +λ E(U)

)
.

(4.8)

This final expression encapsulates the expected duration of a full cycle, combining the contributions from idle, setup, and
busy periods.
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5 Numerical results

A numerical study is conducted to determine the optimal threshold value N that minimizes the total operational cost in
the threshold model, we define two main cost components:

1.Setup Cost (Cs): This cost occurs once per cycle whenever the server initiates the setup. Thus, its contribution to the

cost per unit time depends on the cycle length E(TN), making the per-unit time setup cost Cs

E(TN )
.

2.Holding Cost (Ch): This cost applies to each customer present in the system per unit time. With an increase in N, while
the per-unit time setup cost decreases, the holding cost increases due to a higher steady-state system size LN .

Our objective is to balance these costs by choosing an optimal N that minimizes the long-run expected total cost per unit
time. We introduce the cost criterion Tc(N) as a function of N:

Tc(N) =
Cs

E(TN)
+ChLN .

In this expression:

–The term Cs

E(TN )
captures the setup cost per unit time, which decreases as N increases since a larger threshold reduces

the frequency of setups.
–The term ChLN represents the total holding cost, which generally increases with N due to the larger average number
of customers in the system.

By optimizing Tc(N) with respect to N, we can find the threshold level that minimizes the total cost, achieving an efficient
balance between setup and holding costs in the system, see Hur and Ahn [8]. Hence, the optimal threshold N∗ is given by
N∗ = min{a ≥ m : Tc(a+ 1)−Tc(a) > 0}, where m be the first a such that Tc(a+ 1)−Tc(a) > 0 and Tc(a) is monotone
increasing for a ≥ m.

5.1 Real data analysis

In this subsection, we provide a case study to demonstrate the methodology proposed in previous sections, using a practical
scenario in a car engine pistons manufacturing industry. Specifically, this case focuses on a factory where pistons arrive
in bulk from a turning center to a CNC copy turning center, and the process of handling these arrivals is modeled as an
MX/G/1 queuing system.

Case background

In this setup:

–Pistons arrive in bulk from the turning center to the CNC machine, following a Poisson process with arrival rate λ .
–The operator enters an idle periods whenever the available number of pistons is below a certain minimum threshold
after finishing a machine operation. During these breaks, the operator engages in other tasks until the required
threshold quantity, N, is reached.

–Upon return from vacation, if the piston count meets or exceeds N, a setup time is required for the operator to prepare
the machine for operation.

To balance the workload efficiently between the operator and the CNC machine, management aims to determine the
optimal threshold value N that minimizes the overall average cost.

Modeling the System

The queuing system is modeled as an MX/G/1 queue, with the following specific parameter choices based on practical
relevance:

1.Service Time Distribution: Follows a 2-Erlang distribution with parameters k = 2 and µ = 7.
2.Batch Arrival Process: Modeled as a Poisson process.
3.Vacation Time and Setup Time: Both follow exponential distributions, with arrival rate λ = 10 and setup rate γ = 7.
4.Cost Parameters:
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–Threshold values considered: N = 1− 10,15,20,25
–Setup cost, Cs = 4 USD
–Holding cost per customer, Ch = 6 USD

Using this setup, we analyze the system?s behavior and determine the optimal threshold level N that minimizes the total
cost per unit time, balancing setup and holding costs efficiently. This approach aids management in optimizing operational
efficiency while minimizing associated costs.
Table 1 provides the numerical results across various threshold levels, detailing the probabilities of the system being in
an idle state P(I), setup state P(S), and busy state P(B). Additionally, we calculate the expected number of pistons in the
system at steady state, LN , along with the waiting time for a randomly selected piston who arrives during the idle (W̃I),
setup (W̃U ), and busy (W̃B) periods, assuming a FCFS protocol. Following these calculations, we determine the overall
waiting time in the queue for the selected piston, W̃q,N , which accounts for all potential arrival periods. The analysis also
includes the expected cycle length E(TN), composed of an idle, setup, and busy period. Finally, we determine the optimal
threshold level N⋆ that minimizes the total operational cost Tc of the threshold model as outlined in Section 2. This optimal
threshold balances the costs associated with setup and holding, providing guidance for efficient resource allocation. Figure
1 illustrates the relationship between the threshold value and the total average cost, as well as the optimal threshold
value that minimizes the total average cost. This visual comparison highlights how adjusting the threshold affects overall
operational expenses and identifies the threshold point at which costs are minimized.

Table 1: Optimal threshold values and performance measures

N[N⋆] P(I) P(S) P(B) LN W̃I W̃U W̃B W̃q,N E(TN) Tc(N) Tc(N
⋆)

1[2] 0.8666 0.0619 0.0714 1.5757 0.9285 0.0619 0.0714 1.0619 0.0616 9.7010 8.3128

2[2] 0.8803 0.0482 0.0714 2.5491 1.4918 0.0482 0.0714 1.6114 0.6798 18.0138 9.7010

3[2] 0.8855 0.0430 0.0714 3.4031 2.1150 0.0430 0.0714 2.2294 1.0218 24.5059 18.0138

4[5] 0.8879 0.0407 0.0714 4.0090 2.5970 0.0407 0.0714 2.7091 1.1982 28.8468 28.8468

5[6] 0.8889 0.0396 0.0714 4.4124 2.9266 0.0396 0.0714 3.0376 1.2886 31.6291 31.6291

6[7] 0.8895 0.0391 0.0714 4.6705 3.1380 0.0391 0.0714 3.2485 1.3350 33.3633 33.3633

7[8] 0.8897 0.0388 0.0714 4.8305 3.2683 0.0388 0.0714 3.3785 1.3589 34.4187 34.4187

8[8] 0.8899 0.0387 0.0714 4.9273 3.3463 0.0387 0.0714 3.4564 1.3711 35.0480 35.0480

9[9] 0.8899 0.0386 0.0714 4.9846 3.3920 0.0386 0.0714 3.5021 1.3774 35.4170 35.4170

10[10] 0.8900 0.0386 0.0714 5.0179 3.4184 0.0386 0.0714 3.5285 1.3806 35.6302 35.4170

15[15] 0.8900 0.0386 0.0714 5.0595 3.4509 0.0386 0.0714 3.5609 1.3839 35.8930 35.8811

20[18] 0.8900 0.0386 0.0714 5.0618 3.4526 0.0386 0.0714 3.5626 1.3840 35.9068 35.9032

25[21] 0.8900 0.0386 0.0714 5.0619 3.4527 0.0386 0.0714 3.5627 1.3842 35.9074 35.9071

Discussion

The numerical findings presented in Table 1 reveal the following insights:

1.System State Probabilities: The probability of the system being in the setup state decreases as the threshold value
increases, whereas the probability of it being in the idle state rises with higher thresholds.

2.Total Probability Consistency: Across all threshold values examined, the sum of the probabilities for the system being
in idle, setup, or busy states consistently equals one.

3.Waiting Time Trends: As threshold values increase, the waiting times for a randomly chosen piston arriving during
idle, W̃I , as well as the overall queue waiting time W̃q,N , also rise. However, the waiting time for a piston arriving

during the setup period, W̃U , decreases with higher threshold values.
4.Cycle Lengths and Operational Costs: Both the expected cycle lengths and the total operational costs increase as the

threshold values grow.
5.Optimal Threshold Level: The threshold level N⋆ minimizes the total operational cost Tc of the threshold model,

providing a cost-efficient balance between setup and holding costs.
6.Threshold Value Recommendation: For a copy turning center with a maximum threshold of 25 pistons, setting the

threshold to 2 achieves the minimum total average cost, according to the model?s findings.
7.Cost Efficiency of Optimal Threshold: The total operational costs Tc calculated for the optimal threshold values are

lower than those calculated for the initial threshold values, confirming the cost-saving advantage of this model’s
threshold optimization approach.
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Figure 1 shows the side-by-side plots based on the table data:

–Left Plot: This shows the relationship between the threshold value N and the total average cost Tc(N). We can see that
as N increases, the cost rises sharply and then stabilizes at higher threshold values.

–Right Plot: This depicts the optimal threshold values N⋆ and their corresponding total average costs Tc(N
⋆). The cost

Tc(N
⋆) increases with higher optimal threshold levels, highlighting that the minimal cost is achieved at a lower N⋆

value.

These plots provide a visual comparison of total costs across different threshold levels and emphasize the impact of
selecting the optimal threshold on operational costs.

Fig. 1: Left: Threshold N vs. Total Average Cost Tc(N). Right: Optimal Threshold N⋆ vs. Total Average Cost Tc(N
⋆).

6 Conclusion

We analyzed an MX/G/1 queuing model with a setup period, where the system size can be decomposed into the queue
size in a standard MX/G/1 system and the count of customers waiting when the server is unavailable. The probability
generating function of the queue size at any point in time was determined, along with key performance metrics. To
optimize costs, a cost model was proposed and quantitatively assessed. A practical example was included to illustrate
how this cost model can assist managers in manufacturing with informed decision-making. Our findings on system size
distribution leveraged multiple analytical approaches. We observed that the system size, as viewed by an incoming group
arriving during server downtime, is easier to derive due to the arrival occurring during a defined vacation period.
Additionally, under the First-Come-First- Served protocol, the waiting time distribution reflects a combination of two
distinct variables, accounting for both multiple and single vacation models within the system size.
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