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Abstract: The controllability analysis of an averaging technique is investigated using the Rosenblatt process for the Atangana-Baleanu-

Caputo fractional derivative (ABC derivative) system. The results of the distinctive averaged system can be used to find solutions to

the underlying system’s problems in terms of convergence in mean square and probability. Furthermore, by employing the Banach

contraction principle, controllability results are proven. Also, numerical examples are given to demonstrate the theoretical findings.
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1 Introduction

In a real world problems, when we modeling a situations
that more and more unpredictable and having fluctuations
and noises we need the help of non-integer (random)
differential equations( [12]). To get the accuracy we ties
up the random elements in non-integer order differential
equations( [5]). These are called the stochastic fractional
differential equation, it helps the researchers for a several
decades to get the accuracy of complex modeling
solutions. We use multiple tactics for averting errors in
the presence and distinctiveness of stochastic fractional
differential equations (SFDE) like fixed point theorems,
integral operator, successive approximation and averaging
principle etc. These models are very useful to absorb the
applications in several fields in sciences, life-sciences,
and biology etc( [6–9]).

We reinforced the stochastic component of our
system, which is determined by the Rosenblatt process
(RP), a straightforward non-Gaussian Hermite function. It
also evolved as a constraint in the Non-Central Restrain

theoretic. This process is identical in nature and exhibits
regular disintegration. The SFDE driven by RP has been
investigated by many researchers, (see [3])and references
there in. There are many different derivatives and
integrals for fractional calculus, quite a few which clash
with one another in some areas of their definitional fields.
Due to the presence of derivatives, it has become
necessitate to examine the characteristics of fractional
derivatives that make them ideal for modelling specific
intricate structures from many fields of STEM fields.
Here, using a series of Riemann-Liouville fractional
integrals to represent the ABC fractional derivative with
Mittag-Leffler core, we can see the non-locality of the
fractional derivative more clearly. It can be implemented
for a range of computational jobs and is simpler to utilise
with than derivatives. These derivatives, which are easier
to employ from a numerical perspective, are used to more
accurately represent the hidden characteristics of
non-local fluid dynamics. It was introduced in [1]. Some
properties of ABC derivative is explained in [2], to more
about the derivative (see [4]).
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The popularity of fractional calculus has driven many
educators to develop a variety of analytical or numerical
techniques to investigate the approximations of nonlinear
differential equations using the fractional operator. On the
other hand, a typical approach that is highly useful for
researching the use of SFDEs in numerous fascinating
disciplines is the averaging principle in SFDE. The
averaging approach is a crucial tool for striking a balance
between complex and straightforward models. A
simplified system is used to approximate the original
system as part of the averaging process. In other words,
using related averaging equations to examine complicated
equations allows us to easily and conveniently study its
attributes. Some scholars attempted to establish averaging
principles for stochastic dynamical systems involving
fractional calculus, which is dealing with the fractional
derivatives describe the system properties the other one is
handling the FBM as the external exication of the system,
thus providing reasonable ways for simplifying such
kinds of equations. The averaging principle for a
dynamical system is crucial in mechanics, control, and a
variety of other fields. As in known to all, a lot of
problems in theory of differential systems can be solved
effectively by the averaging principle. In [6] Guangjun
shen et al(2020), investigate averaging principle and
stability of hybrid stochastic fractional differential
equations driven by Lévy noise. In [7] Hamdy M. Ahmed
et al (2021), investigate the averaging principle of Hilfer
fractional stochastic delay differential equations with
poisson jumps. In [8] Liu et al (2021), study averaging
result for implusive fractional neutral stochastic
differential equations. In [9] Luo Danfend et al (2020),
discussed an averaging principle for stochastic fractional
differential equations with time-delays. In [11] Pengju
Duan et al(2018), investigate averaging principle for
Caputo FSDE driven by FBM with delays. In [14]
Wenjing et al (2020), study averaging principle for
fractional stochastic differential equations with Lévy
noise. In [15] Yong Xu et al (2014), study the averaging
principle for SDDE with FBM.

Controllability is one of the most important concepts
in mathematical control theory. Since the controllability
of fractional stochastic differential equations is typically
too powerful to comprehend the dynamical behaviour of
such systems, the latter type of control system is more
suited for study [10]. There are many deterministic and
stochastic structures, and controllability properties play a
crucial role in these systems (see [13]). There is no carry
out pertinent to the solution of the averaging principle for
the ABC fractional SDE with RP in the current corpus of
research. Therefore, we have demonstrated in this work
how to examine an averaging principle for
Atangana–Baleanu Caputo fractional stochastic
differential equations with Rosenblatt process - A
controllability analysis.
The notable contribution of our work as follows:

–We establish sufficient conditions of an averaging
principle for ABC fractional derivative equations with
the Rosenblatt process.

–The resulting conclusion in this publication is brand-
new in the sense that it generalises a lot of previously
published findings, namely for the RP case of ABC
fractional derivative stochastic situations.

–We represent the existence of original system and
averaged system.

–By demonstrating that the solutions of the averaged
equation approach the solutions of the original
equation under certain assumptions, we are able to
derive an averaging principle for the solution of the
system under consideration.

–The controllability criteria of non-linear is proved by
employing Banach contraction principle.

–Numerical illustrations were given.

The lineation of this manuscript is manifested here. In
section 2, investigate indispensable definitions. In section
3, the representation of our consider system is shown. In
Section 4, we established the solution for original and
averaged systems. In section 5, we instigate the essential
conditions of an averaging principle for our considered
systems. In section 6, we instigate the essential conditions
of the controllability basis. In section 7, we came up with
two numerical examples For proving the value and
relevance of theoretical findings. Finally conclusions are
worn in Section 8.

2 Preludes:

Definition 1. [12]: The Mittag-Leffler function as,

Aρ ,B(F) = ∑∞
v=0

Fv

Γ (vρ+B) .

for F is bounded linear operator,

If B = 1,

Aρ(F) = Aρ(F) = ∑∞
v=0

Fv

Γ (vρ+1)
.

Definition 2. [1]: The fractional integral associate to the

ABC derivative is

ABIρ
a g(s) =

1−ρ

Ω(ρ)
g(s)+

ρ

Ω(ρ)Γ (ρ)

∫ s

a
g(y)(s− y)ρ−1dy

Definition 3. [1]: The ABC fractional derivative is defined

by

ABCD
ρ
a+

g(s) =
Ω(ρ)

1−ρ

∫ s

a
g′(y)Eρ(

−ρ

1−ρ
(s− y)ρ)dy

for 0 < ρ < 1, a < s < b, and g is differentiable on [a,b],

the function Eρ is the mittag-Leffler function. In general,

the normalisation function Ω(ρ) can be Ω(0)=Ω(1)= 1.

Where assume that Ω(ρ) are real and strictly positive.
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2.1 Rosenblatt process

Let (Ω ,A ,{As}s≥0,P) be a filtered probability space. Suppose that {R(s),s ∈ [0,b]} is the 1-dimensional RP with Hurst

parameter H ∈ ( 1
2
,1).

E(R(s),R(v)) = 1
2
(|v|2H + |s|2H −|v− s|2H ).

The Rp with Hurst parameter H > 1
2

is (see [3]):

R(s) = d(H )
∫ s

0

∫ s

0

{

∫ s

X1∨X2

∂KH ′

∂ t
(t,X1)

∂KH ′

∂ t
(t,X2)dt

}

dB(X1)dB(X2) (1)

Where {B(s),s ∈ [0,b]} is a BM, and KH is the core

KH (s,v) = cH v
1
2−H

∫ s
v (t − v)H − 3

2 tH − 1
2 dt

Where cH =

√

H (2H −1)

Γ (2−2H ,H − 1
2 )

.(for more see [10])

Let Y and X be a Separable Hilbert Space

‖Ψ‖2
Y = sup

t∈J

E‖Ψ‖2,

Definition 4. [10]: The SFDE (7) is said to be completely controllable on I if ∀v1 ∈ X, ∃ a control w ∈ L2(I,Y ) ∋: the

solution v(t) is given in (8) satisfies v(b) = v1

Lemma 1. [10]: Banach Contraction Principle

T has a singular fixed point if U is a Banach space and T : U →U is a contraction mapping.

3 System Representation

Consider Atangana - Baleanu Caputo fractional stochastic differential equation with Rosenblatt process

ABCDρ(v(g)) = J(g,v(g))+∆(g,v(g))dzH (g) g ∈ I := [0,b],b > 0,

v(0) = v0. (2)

–Where, ABCDρ is ABC derivative of the order 0 < ρ ≤ 1.
–v(.) ∈ X .
–J : I ×X → X is a bounded linear operator on X.

–∆ : I×X → L0
2 is a Hilbert-Schmidt operator for all g ∈ I, here L0

2 = L2(Q
1
2 K,Y ).

–zH (s) is a Rp with Hurst parameter H ∈ ( 1
2
,1).

–v0 is the initial function.

Let consider the assumptions: (((A 11))) : For each vi ∈ X , Ui ∈ Y , i=1,2.
∃ a non-negative function µ(t), ∋:

‖J(g,v1,U1)− J(g,v2,U2)‖
2 + ‖∆(g,v1,U1)−∆(g,v2,U2)‖

2 ≤ µ(g)(‖(v1 − v2)‖
2 + ‖U1 −U2)‖

2).

Where

sup
0≤t≤b

‖µ(g)‖2 < ∞

Remark:
In assumption (((A 11))), if we let µ(t) = c (where c is a constant), then it becomes Lipschitz condition.
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(((A 12))) : For each b1 ∈ [0,b], v ∈ X and U ∈ Y ,
∃ bounded and measurable functions µi(t)> 0, i=1,2,3,4. J∗ : X ×R → X , ∆∗ : X ×R → L0

2(Y,X), such that

‖J(s,v,U)− J∗(v,U)‖2 ≤ µ1(b1)(‖v‖2 + ‖U‖2),

1

b1

∫ b−1

0
(t − s)2ρ−2‖A(s,v,U)−A∗(v,U)‖2ds ≤ µ2(b1)(‖v‖2 + ‖U‖2),

‖∆(s,v,U)−∆∗(v,U)‖2 ≤ µ3(b1)(‖v‖2 + ‖U‖2),

1

b1

∫ b−1

0
(t − s)2ρ−2‖∆(s,v,U)−∆∗(v,U)‖2ds ≤ µ4(b1)(‖v‖2 + ‖U‖2),

4 Solution Representation

Theorem 1.Under the (((A 11))), ∃ a singular trivial solution v(g) to ABC fractional stochastic differential equation with Rp

(2).

The solution representation of the system (2) is

v(g) = v0 +
1−ρ

Ω(ρ)
J(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
J(s,v(s))(g− s)ρ−1ds

+
1−ρ

Ω(ρ)
∆(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
∆(s,v(s))(g− s)ρ−1dzH (s) (3)

It follows from [6] and [11], exists a singular trivial solution v(g) to (2). We omit the proof.
Let us consider the canonical form of (3).

vε(g) = v0 +
ε(1−ρ)

Ω(ρ)
J(g,vε(g))+

ερ

Ω(ρ)Γ (ρ)

∫ g

0
J(s,vε(s))(g− s)ρ−1ds

+
εH (1−ρ)

Ω(ρ)
∆(g,vε(t))+

εH ρ

Ω(ρ)Γ (ρ)

∫ g

0
∆(s,vε (s))(g− s)ρ−1dzH (s) (4)

Where ε > 0 ∈ (0,ε0] with a fixed number ε0.
The original solution vε(t) converges, as ε → 0, to the solution Uε(t) of the averaged system:

Uε(g) = v0 +
ε(1−ρ)

Ω(ρ)
J∗(g,Uε(g))+

ερ

Ω(ρ)Γ (ρ)

∫ g

0
J∗(s,Uε(s))(g− s)ρ−1ds

+
εH (1−ρ)

Ω(ρ)
∆∗(t,Uε(t))+

εH ρ

Ω(ρ)Γ (ρ)

∫ g

0
∆∗(s,Uε(s))(g− s)ρ−1dzH (s) (5)

Where J∗ : X ×R → X , ∆∗ : X ×R → L0
2(Y,X), are measurable functions.

5 An Averaging Principle

Theorem 2.Suppose the assumptions (((A 11))) and (((A 12))) hold. Then, for a given arbitrary λ > 0, ∃ constants p > 0,

ε ∈ (0,ε0] and γ ∈ (0,1], ∋: ∀ ∆ ∈ (0,ε1],

sup
t∈[0,pε−γ ]

E(‖vε(t)−Uε(t)‖2) ≤ λ

Proof: Based on the canonical forms of (4) and (5),

vε(g)−Uε(g) =
ε(1−ρ)

Ω(ρ)
[J(g,vε(g))− J∗(g,Uε(g))]+

ερ

Ω(ρ)Γ (ρ)

∫ g

0
(g− s)ρ−1[J(s,vε(s))

−J∗(s,Uε(s))]ds+
εH (1−ρ)

Ω(ρ)
[∆(g,vε(t))−∆∗(t,Uε(t))]+

εH ρ

Ω(ρ)Γ (ρ)
∫ g

0
(g− s)ρ−1[∆(s,vε (s))−∆∗(s,Uε(s))]dzH (s) (6)
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E(‖vε(g)−Uε(g)‖2) ≤ E‖
3ε(1−ρ)

Ω(ρ)
[J(g,vε(g))− J∗(g,Uε(g))]‖2 +E‖

3ερ

Ω(ρ)Γ (ρ)
∫ g

0
(g− s)ρ−1[J(s,vε (s))− J∗(s,Uε (s))]ds‖2 +E‖

3εH (1−ρ)

Ω(ρ)

[∆(g,vε(g))−∆∗(g,Uε(g))]‖2 +E‖
3εH ρ

Ω(ρ)Γ (ρ)

∫ g

0
(g− s)ρ−1

[∆(s,vε (s))−∆∗(s,Uε (s))]dzH (s)‖2

:= I1 + I2 + I3 + I4

By (((A 11))),(((A 12))) and the elementary, Cauchy-Schwartz inequality, we have

III111 =
6ε2(1−ρ)2

Ω(ρ)2
E‖J(g,vε(g))− J∗(g,Uε(g))‖2

≤
6ε2(1−ρ)2

Ω(ρ)2
E‖J(g,vε(g))− J(g,Uε(g))‖2 +

6ε2(1−ρ)2

Ω(ρ)2
E‖J(g,Uε(g))− J∗(g,Uε(g))‖2

≤
6ε2(1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2 +E‖vε(s)−Uε(s)‖2)

+
6ε2(1−ρ)2

Ω(ρ)2
sup

0≤s≤g

µ1(s)( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2)

III222 =
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2
E‖

∫ g

0
(g− s)ρ−1[J(s,vε (s))− J∗(s,Uε(s)ds‖2

≤
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2
E‖

∫ g

0
(g− s)ρ−1[J(s,vε (s))− J(s,Uε(s)ds‖2

+
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2
E‖

∫ g

0
(g− s)ρ−1[J(s,Uε(s))− J∗(s,Uε(s)ds‖2

≤
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2

∫ g

0
(g− s)2ρ−2E‖[J(s,vε(s))− J(s,Uε(s)‖2ds

+
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2

∫ g

0
(g− s)2ρ−2E‖[J(s,Uε(s))− J∗(s,Uε(s)‖2ds

≤
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2
sup

0≤g≤b

µ(g)
∫ g

0
(g− s)2ρ−2E‖[(vε(r))− (Uε(r)‖2

+E‖[(vε(s))− (Uε(s)‖2ds+
6ε2(ρ)2

Ω(ρ)2(Γ (ρ))2
sup

0≤s≤g

µ2(s)

×( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2)

III333 =
6ε2H (1−ρ)2

Ω(ρ)2
E‖∆(g,vε(g))−∆∗(g,Uε(g))‖2

≤
6ε2H (1−ρ)2

Ω(ρ)2
E‖∆(g,vε(g))−∆(g,Uε(g))‖2 +

6ε2H (1−ρ)2

Ω(ρ)2

×E‖∆(g,Uε(g))−∆∗(g,Uε(g))‖2

≤
6ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2 +E‖vε(s)−Uε(s)‖2)

+
6ε2H (1−ρ)2

Ω(ρ)2
sup

0≤s≤g

µ3(s)( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2)
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III444 =
6ε2H (ρ)2

Ω(ρ)2(Γ (ρ))2
E‖

∫ g

0
(g− s)ρ−1[∆(s,vε (s))−∆∗(s,Uε(s)dzH (s)‖2

≤
6CH ε2H (ρ)2g2H −1

Ω(ρ)2(Γ (ρ))2

∫ g

0
(g− s)2ρ−2E‖[∆(s,vε(s))−∆∗(s,Uε(s)‖2

L0
2
dzH (s) (where CH > 0 is a constant).

≤
6CH ε2H (ρ)2g2H −1

Ω(ρ)2(Γ (ρ))2
sup

0≤g≤b

µ(g)

∫ g

0
(g− s)2ρ−2E‖[(vε(r))− (Uε(r)‖2 +E‖[(vε(s))− (Uε(s)‖2ds

+
6CH ε2H (ρ)2g2H −1

Ω(ρ)2(Γ (ρ))2
sup

0≤s≤g

µ4(s)× ( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2)

E(‖vε −Uε‖2) ≤
6ε2(1−ρ)2

Ω(ρ)2
+

6ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2

+E‖vε(s)−Uε(s)‖2)+
6ε2(1−ρ)2 + 6ε2H (1−ρ)2

Ω(ρ)2
× sup

0≤s≤g

µ1(s) sup
0≤s≤g

µ3(s)( sup
0≤s≤g

E‖vε(s)‖2

+ sup
0≤s≤g

E‖Uε(s)‖2)+
6ε2ρ2g+ 6CH ε2H (ρ)2g2H −1

Ω(ρ)2(Γ (ρ))2

× sup
0≤g≤b

µ(g)

∫ g

0
(g− s)2ρ−2(E‖vε(g)−Uε(g)‖2 +E‖vε(s)−Uε(s)‖2)ds

+
6ε2ρ2t2 + 6CH ε2H (ρ)2t2H

Ω(ρ)2(Γ (ρ))2
× sup

0≤s≤g

µ2(s) sup
0≤s≤g

µ4(s)(g− s)2ρ−2

×( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).

≤
6ε2(1−ρ)2 + 6ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2

+E‖vε(s)−Uε(s)‖2)+
6ε2ρ2g+ 6CH ε2H (ρ)2g2−1

Ω(ρ)2(Γ (ρ))2

× sup
0≤g≤b

µ(g)

∫ g

0
(g− s)2ρ−2(E‖vε(g)−Uε(g)‖2 +E‖vε(s)−Uε(s)‖2)ds+Λ

4

∑
i=1

sup
0≤s≤g

µi(s)

×( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).

Where Λ = (Γ (ρ))2(6ε2(1−ρ)2+6ε2H (1−ρ)2)+(Ω(ρ))2(6ε2ρ2g2+6CH ε2H (ρ)2g2H )
Ω(ρ)2(Γ (ρ))2

When g ∈ (0,b)⇒ E(‖vε(g)−Uε(g)‖2) = 0

E(‖vε −Uε‖2) ≤
12ε2(1−ρ)2+ 12ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2)

+
12ε2ρ2g+ 12CH εH (ρ)2gH − 1

Ω(ρ)2(Γ (ρ))2
sup

0≤g≤b

µ(g)

∫ g

0
(g− s)2ρ−2

×(E‖vε(s)−Uε(s)‖2)ds+Λ
4

∑
i=1

sup
0≤s≤g

µi(s)× ( sup
0≤s≤t

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).

The Gronwall-Bellman inequality provides us with,

E(‖vε −Uε‖2) ≤
12ε2(1−ρ)2+ 12ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2)

+
∞

∑
v=0

(12ε2ρ2gρ+1 + 12CH ε2H (ρ)2g2H +ρ−1)v

(Ω(ρ))v(Γ (ρ))vΓ (vρ + 1)
( sup

0≤g≤b

µ(g))v

+Λ
4

∑
i=1

sup
0≤s≤g

µi(s)( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).
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So,

sup
0≤s≤g

E(‖vε −Uε‖2) ≤
12ε2(1−ρ)2+ 12ε2H (1−ρ)2

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2)

+
∞

∑
v=0

(12ε2ρ2gρ+1 + 12CH ε2H (ρ)2g2H +ρ−1)v

(Ω(ρ))v(Γ (ρ))vΓ (vρ + 1)
( sup

0≤g≤b

µ(g))v

+Λ
4

∑
i=1

sup
0≤s≤g

µi(s)( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).

Let β ∈ (0,1), p > 0, ∋: ∀ g ∈ [0, pε−β ]⊆ [0,G],

sup
0≤s≤g

E(‖vε −Uε‖2) ≤ Lε1−β ,

Here,

L =
12ε1−β (1−ρ)2+ 12ε(2H −1)(1−β )

Ω(ρ)2
sup

0≤g≤b

µ(g)(E‖vε(g)−Uε(g)‖2)

+
∞

∑
v=0

(12ε2ρ2gρ+1 + 12CH ε2H (ρ)2g2H +ρ−1)v

(Ω(ρ))v(Γ (ρ))vΓ (vρ + 1)
( sup

0≤g≤b

µ(g))v

+Λ
4

∑
i=1

sup
0≤s≤g

µi(s)( sup
0≤s≤g

E‖vε(s)‖2 + sup
0≤s≤g

E‖Uε(s)‖2).

Therefore, for any λ > 0, there exists ε1 ∈ (0,ε0), ∈: for any ε ∈ (0,ε1) and g ∈ [0, pε−β ],

sup
0≤g≤pε−β

E(‖vε −Uε‖2) ≤ λ .

Hence the Proof.

Theorem 3.Under the assumptions (((A 11))) and (((A 12))), for a arbitrary λ1 > 0, ∃ constants p> 0, ε ∈ (0,ε0] and β ∈ (0,1],
∈: ∀ ∆ ∈ (0,ε1],

lim
ε→0

P( sup
t∈[0,pε−β ]

E(‖vε(t)−Uε(t)‖2)> λ1) = 0.

Proof: The Chebyshev- Markov inequality and theorem (2) provides us with, for any λ1 > 0,

P( sup
g∈[0,pε−β ]

E(‖vε(g)−Uε(g)‖2)> λ1) ≤
1

λ 2
1

E( sup
g∈[0,pε−β ]

‖vε(g)−Uε(g)‖2)

≤
L

λ 2
1

ε1−β

If ε → 0, the necessary outcomes are as follows.
Remark:
The probability of the initial solution vε(t) and the averaged solution Uε(t) converges, according to the theorem (3).

6 Controllability Criteria

6.1 System Representation with Control

Consider Atangana - Baleanu Caputo fractional stochastic differential equation with Rosenblatt process

ABCDρ(v(g)) = A(g,v(g))+∆(g,v(g))dzH (g)+Hw(g) g ∈ I := [0,b],b > 0,

v(0) = v0. (7)
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–H : Y → X is a bounded linear operator on X.
–w(.) ∈ L2(I,Y ),

System (7) has the solution as,

v(g) = v0 +
1−ρ

Ω(ρ)
A(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
A(s,v(s))(g− s)ρ−1ds

+
1−ρ

Ω(ρ)
∆(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
∆(s,v(s))(g− s)ρ−1dzH (s)

+
1−ρ

Ω(ρ)
Hw(g)+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
Hw(s)(g− s)ρ−1ds (8)

we assume the Assumptions,
(C11): Assume that there exists constants h1 h2 > 0 for all v1,v2 ∈ X and g ∈ I.

‖A(g,v1)−A(g,v2)‖
2 ≤ h1‖v1 − v2‖

2

‖∆(g,v1)−∆(g,v2)‖
2 ≤ h2‖v1 − v2‖

2

(C12): Θ : L2(J,Y )→ X , the linear operator defined by

Θ =
1−ρ

Ω(ρ)
Hw(g)+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
Hw(s)(g− s)ρ−1E{v/Fs}ds

Let Θ−1 : X → L2(J,Y )/ker(Θ),inverse operator Θ−1 is bounded and ∃ constants M̃1 > 0 and M̃2 > 0 ∈: ‖H‖2 ≤ M̃1
and ‖Θ−1‖2 ≤ M̃2

(C13): Let Σ := D1+D2+D1D3M̃1M̃2+D3D2+D4D1M̃1M̃2+D4D2,

Where, D1 = 1−ρ
Ω(ρ)

(h1+ h2), D2 = ρ
Ω(ρ)Γ (ρ)

(h1+ h2), D3 = 1−ρ
Ω(ρ)

, D4 = ρ
Ω(ρ)Γ (ρ)

, be such that 0 ≤ Σ < 1

Theorem 4.Suppose (C11)-(C13) hold, moreover let Σ < 1 then (7) is completely controllable on I.

Proof: Consider the operator F defined by

Fv(t) = v0 +
1−ρ

Ω(ρ)
A(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
A(s,v(s))(g− s)ρ−1ds

+
1−ρ

Ω(ρ)
∆(g,v(g))+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
∆(s,v(s))(t − s)ρ−1dzH (s)

+
1−ρ

Ω(ρ)
Hw(g)+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
Hw(s)(g− s)ρ−1ds

Using assumption (C12), let v1 be an arbitrary point in X. We have Θ−1 is bounded and the control variable w as

w(g) = E{Θ−1[v1 − v0 −
1−ρ

Ω(ρ)
A(g,v(g))−

ρ

Ω(ρ)Γ (ρ)

∫ b

0
A(s,v(s))(b− s)ρ−1ds

−
1−ρ

Ω(ρ)
∆(g,v(g))−

ρ

Ω(ρ)Γ (ρ)

∫ b

0
∆(s,v(s))(b− s)ρ−1dzH (s)]/Fs} (9)
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Clearly F(v(b)) = v1, To show F has a fixed point.
Let {vn}n∈N be a sequence ∋: vn → v in X.

‖F(vn)(g)−F(v)(g)‖2 ≤
1−ρ

Ω(ρ)
‖A(g,vn(g))−A(t,v(g))‖2+

ρ

Ω(ρ)Γ (ρ)

×

∫ g

0
‖A(s,vn(s))−A(s,v(s))‖2(g− s)ρ−1ds

+
1−ρ

Ω(ρ)
‖∆(g,vn(g))−∆(g,v(g))‖2 +

ρ

Ω(ρ)Γ (ρ)

×

∫ g

0
‖∆(s,vn(s))−∆(s,v(s))‖2(g− s)ρ−1dzH (s)

+
1−ρ

Ω(ρ)
‖H‖2‖wvn(g)−wv(g)‖

2 +
ρ

Ω(ρ)Γ (ρ)

×

∫ g

0
‖H‖2‖wvn(s)−wv(s)‖

2(g− s)ρ−1ds

≤
1−ρ

Ω(ρ)
h1‖vn(g)− v(g)‖2+

ρ

Ω(ρ)Γ (ρ)

∫ g

0
‖A(s,vn(s))−A(s,v(s))‖2

×(g− s)ρ−1ds+
1−ρ

Ω(ρ)
h2‖vn(g)− v(g)‖2+

ρ

Ω(ρ)Γ (ρ)

×
∫ g

0
‖∆(s,vn(s))−∆(s,v(s))‖2(g− s)ρ−1dzH (s)+

1−ρ

Ω(ρ)
M̃1M̃2[

1−ρ

Ω(ρ)
h1

×E‖vn(r)− v(r)‖2 +
ρ

Ω(ρ)Γ (ρ)

∫ b

0
E‖A(q,vn(q))−A(q,v(q))‖2

×(b− q)ρ−1dq+
1−ρ

Ω(ρ)
h2E‖vn(r)− v(r)‖2 +

ρ

Ω(ρ)Γ (ρ)

×

∫ b

0
E‖∆(q,vn(q))−∆(q,v(q))‖2(b− q)ρ−1dzH (q)]

+
ρ

Ω(ρ)Γ (ρ)

∫ g

0
(g− s)ρ−1M̃1M̃2[

1−ρ

Ω(ρ)
h1E‖vn(r)− v(r)‖2

+
ρ

Ω(ρ)Γ (ρ)

∫ b

0
E‖A(q,vn(q))−A(q,v(q))‖2(b− q)ρ−1dq

+
1−ρ

Ω(ρ)
h2E‖vn(r)− v(r)‖2 +

ρ

Ω(ρ)Γ (ρ)

∫ b

0
E‖∆(q,vn(q))−∆(q,v(q))‖2

×(b− q)ρ−1dzH (q)]ds

We obtain limn→∞ F(vn) = F(v) in X, because the linear operators A, ∆ are continuous on X.

Our claim is F maps X into itself.

sup
g∈I

E‖w(g)‖2 ≤ ‖Θ−1‖2[E‖v1‖
2 +E‖v0‖

2 +
1−ρ

Ω(ρ)
E‖A(g,v(g))‖2 +

ρ

Ω(ρ)Γ (ρ)

×

∫ b

0
E‖A(s,v(s))‖2(b− s)ρ−1ds−

1−ρ

Ω(ρ)
E‖∆(g,v(g))‖2

+
ρ

Ω(ρ)Γ (ρ)

∫ b

0
E‖∆(s,v(s))‖2(b− s)ρ−1dzH (s)]

≤ 2M̃2(h1 + h2)[
1−ρ

Ω(ρ)
+

ρ

Ω(ρ)Γ (ρ)
]

< ∞
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sup
g∈I

‖Fv(g)‖2 ≤ 4E‖v0‖
2 +

1−ρ

Ω(ρ)
(h1 + h2)+

ρ

Ω(ρ)Γ (ρ)
(h1 + h2)

+M̃1{2M̃2[
1−ρ

Ω(ρ)
(h1 + h2)+

ρ

Ω(ρ)Γ (ρ)
(h1 + h2)]}

(
1−ρ

Ω(ρ)
+

ρ

Ω(ρ)Γ (ρ)
)

< ∞

Now, for v1,v2 ∈ X we have

sup
g∈I

‖Fv1(g)−Fv2(g)‖
2 ≤ sup

g∈I

E‖
1−ρ

Ω(ρ)
[A(g,v1(g))−A(g,v2(g))]+

ρ

Ω(ρ)Γ (ρ)

×

∫ g

0
[A(s,v1(s))−A(s,v2(s))](g− s)ρ−1ds

+
1−ρ

Ω(ρ)
[∆(g,v1(g))−∆(g,v2(g))]+

ρ

Ω(ρ)Γ (ρ)

×

∫ g

0
[∆(s,v1(s))−∆(s,v2(s))](g− s)ρ−1dzH (s)

+
1−ρ

Ω(ρ)
HΘ−1{

1−ρ

Ω(ρ)
[A(r,v1(r))−A(r,v2(r))]

+
ρ

Ω(ρ)Γ (ρ)

∫ b

0
[A(q,v1(q))−A(q,v2(q))]

×(b− q)ρ−1dq+
1−ρ

Ω(ρ)
[∆(r,v1(r))−∆(r,v2(r))]

+
ρ

Ω(ρ)Γ (ρ)

∫ b

0
[∆(q,v1(q))−∆(q,v2(q))](b− q)ρ−1dzH (q)}

+
ρ

Ω(ρ)Γ (ρ)

∫ g

0
(g− s)ρ−1HΘ−1{

1−ρ

Ω(ρ)
[A(r,v1(r))−A(r,v2(r))]

+
ρ

Ω(ρ)Γ (ρ)

∫ b

0
[A(q,v1(q))−A(q,v2(q))](b− q)ρ−1dq

+
1−ρ

Ω(ρ)
[∆(r,v1(r))−∆(r,v2(r))]+

ρ

Ω(ρ)Γ (ρ)

×

∫ b

0
[∆(q,v1(q))−∆(q,v2(q))](b− q)ρ−1dzH (q)}‖2

≤ 8{D1+D2+D3D1M̃1M̃2+D3D2+D4D1M̃1M̃2+D4D2}‖v1− v2‖
2

≤ 8Σ‖v1 − v2‖
2

The assumptions of theorem (4) are satisfied, therefore F is a contraction mapping and ∃ a singular point v1 ∈ X for F
satisfied Fv(b)= v1. Hence from theorem(4) we conclude that the non-linear fractional stochastic system (7) is completely
controllable on I.

7 Examples

Example 1.Let us consider the following fractional stochastic differential equation

ABCDρ(v(g)) = (vε(g)sin2g− gvε(g)cosg)+ cdzH (g), g ∈ I := [0,π ],

(10)

Where g ∈ I := [0,π ], A(g,v(g)) = (vε(g)sin2g− gvε(g)cosg) and ∆(g,v(g)) = c(c is a constant), 1
2
< ρ < 1.

Here, A,∆ satisfies (((A 11))) and (((A 12))),
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Define A∗(g,v(g)) as follows
∫ π

0
A∗(g,v(g))dt =

1

π

∫ π

0
A(g,v(g))dg

=
v

π

∫ π

0
(sin2g− gcosg)dg

=
v

π
{

∫ π

0
(sin2g)dg−

∫ π

0
(gcosg)dg}

=
v

π
{

∫ π

0

(1− cos2g)

2
dg− [gsing]π0 −

∫ π

0
singdg]}

we can derive that

A∗(g,v(g)) = v(
π + 4

2π
).

∆∗(g,v(g)) = c

The averaging from of (10) can be defined as

ABCDρ(U(g)) =U(g)(
π + 4

2π
)+ cdzH (g), g ∈ I := [0,π ],

(11)

Clearly, for λ = 2g2 > 0 and g ∈ [0,π ],

sup
g∈[0,π ]

E(‖vε(g)−Uε(g)‖2) ≤ λ

According to theorems (2) and (3), the results can be checked here that the solution of averaged system (11) will converge
to that the standard stochastic system (10) in the sense of mean square.

Example 2.Evaluate the non-linear SFDE with RP,

ABCDρ(v(g)) = A(g,v(g))+∆(g,v(g))dzH (g)+Hw(g) g ∈= [0,1],

v(0) = v0. (12)

Where ρ = 1
2
, v(g) =

(

v1(g)
v2(g)

)

, for g ∈ [0,1],

A =

(

0 −0.5
0.5 0

)

; H =

(

0
1

)

; ∆(g,v(g)) =

(

e−g sing v1(g)
(eg + 1) sing v2(g)

)

the solution of (12) is given by

v(g) = v0 +
1− 0.5

B(0.5)
A(g,v(g))+

0.5

B(0.5)Γ (0.5)

∫ g

0
A(s,v(s))(g− s)0.5−1ds

+
1− 0.5

B(0.5)
∆(g,v(g))+

0.5

B(0.5)Γ (0.5)

∫ g

0
∆(s,v(s))(g− s)0.5−1dzH (s)

+
1− 0.5

B(0.5)
Hw(g)+

0.5

B(0.5)Γ (0.5)

∫ g

0
Hw(s)(g− s)0.5−1ds

we have the control of the system (12) as

w(g) = E{Θ−1[v1 − v0 −
1− 0.5

B(0.5)
A(g,v(g))−

0.5

B(0.5)Γ (0.5)

∫ b

0
A(s,v(s))(b− s)0.5−1ds

−
1− 0.5

B(0.5)
∆(g,v(g))−

0.5

B(0.5)Γ (0.5)

∫ b

0
∆(s,v(s))(b− s)0.5−1dzH (s)]/Fs}

By computation, we have Σ which is defined in (C13) as Σ = 0.4924 < 1 ( f or h1 = h2 = 0.1), .
All the assumptions of theorem (4) are verified and hence the system (12) is completely controllable on [0,1].
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8 Conclusion

This study looks at the analysis of the averaging principle
for the fractional equations of ABC derivative using the
Rosenblatt process. We looked into the possibility of and
the uniqueness of the system of stochastic fractional
differential equations. More efforts have been made to
create adequate conditions for the analysis of the
averaging principle. Suitable examples have been used to
illustrate the entire analysis. As a conclusion, the
stochastic differential equation with Rosenblatt process
and the ABC fractional derivative can be employed as
effective tools for analysing the dynamical patterns of a
variety of real-world issues. In the future, we shall
construct the ABC fractional derivative driven by
Rosenblatt’s stochastic fractional integro-differential
equation’s averaging principle. Efficacy of the technique
was represented using control theory and expressed the
effectiveness with the mathematical tool MATLAB.
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