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Abstract: In this study, the magnetic and mechanical properties of the magnetic spring system are investigated. Experimental tests of

the levitating magnet displacement in the magnetic spring are conducted by the laser distance meters and the detection of the magnetic

flux density in the magnetic spring is provided by the three Hall-effect sensors. The measurements of the displacement and magnetic flux

density in the magnetic spring excited by the vibration generator are characterized by nonlinear behaviour. The nonlinear mathematical

model is proposed to predict and approximate the magnetic flux density starting from geometrical properties, voltage of vibration

generator, frequency and displacement of the levitating magnet based on the nonlinear autoregressive networks with exogenous input

(NARX) neural network architecture. The accuracy of the results obtained by NARX emphasises as the modeling technique can be

used for construction and design of non-linear magnetic spring devices.

Keywords: Magnetic spring, NARX neural network, energy harvesting, displacement, magnetic flux density, Hall-Effect sensors.

1 Introduction

The renewable energy sources are being explored in
response to the reduction of the system operating cost
which are related to the environmental protection from
fossil fuels pollution and global warming. Energy
harvesters (EHs) convert the solar, wave, wind, thermal,
biological or kinetic energy to electrical energy [1]. EHs
are optimized to ensure the reliable power supply to
autonomous or hard-to-reach systems and lower systems
usage cost [2, 3]. Kinetic energy derived from the
environmental mechanical vibrations is converted to the
electrical energy by vibration energy harvesters (VEHs)
that mostly operate by means of piezoelectric,
electrostatic and electromagnetic transducers. The
electromagnetic transducers are commonly used to

harvest the vibration from the house appliances, vehicles,
buildings or even the human motion [4–8].

Electromagnetic vibration energy harvesters
(EMVEHs) are inertial generators designed as a system of
a proof-mass (magnet), frame (coil and carcass) and
holding mechanism (spring). External vibrations force
moves the frame and, in consequence, inertial and
potential forces act on a proof-mass. The mechanical
external vibrations are converted into electrical
energy [9, 10]. In the EMVEH the induced voltage
depends on the parameters of the coil, velocity of the
proof-mass and the magnetic flux density. The last one is
affected by the relative position of the magnet and coil. In
EMVEHs the holding mechanisms usually comprise the
mechanical spring [11–13]. However, the mechanical
springs is limited by fatigue life and by the resonance
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frequency. Therefore the other solutions are investigated
like planar springs with several frequencies and high
deformation capability, and magnetic spring with
nonlinear spring force [14, 15]. In the magnetic spring,
repulsive forces between two magnets provide the
nonlinear stiffness of the holding mechanisms with higher
life expectancy than traditional springs. In order to
enhance the energy, magnetic spring based energy
harvester with one fixed and two levitating magnets
repelling each others was proposed in [16]. The magnetic
flux density distribution and the output power under
excitation motion in EMVEHs are investigated by the
Finite Element Method (FEM) [16–18]. The motion of
the floating magnet caused by the environmental vibration
in the EMVEHs depends on the parameters of a
spring [19, 20].

In order to improve the efficiency of the energy
harvester the optimization is focused on the coil,
magnetic field and mechanical properties of the magnetic
spring, and performed by mathematical models such as
FEM [21, 22]. The prediction of the magnetic field and in
consequence also magnetic flux density distribution is
conducted by Artificial Neural Networks (ANN) [23, 24].
The authors in [25] proposed 3-D numerical model of the
magnetic field based on ANN and the optimization of the
coil geometry based on the distribution of the magnetic
field can be solved by the ANN according to [26]. The
estimation of vibration and its resonance frequency in the
EMVEHs can be processed by the ANN combined with
optical measurements [20, 27, 28]. The nonlinear
dynamics of the magnetic spring based EMVEH enhance
the resonance frequency bandwidth and also the harvested
power, although the benefits of the combination of the
nonlinearity could be considered an issue for the
modeling due to the complexity of the magnetic spring
device. For instance, the optimization of the energy
harvester have been conducted in many studies using
different approach such as genetic algorithm and
methodology based on artificial intelligence [29–32]. In
particular the machine learning algorithm do not request
complex mathematical relation between inputs and output
parameters.

In this work, the new approach based on neural
network is investigated as a solution to overcome issues
related to the non-linearity and complexity of the
magnetic spring. The measurements of the floating
magnet displacement conducted by the laser distance
meters and the magnetic flux density detected by the
Hall-Effect sensors in the magnetic spring are
characterized by the high instability due to the nonlinear
vibrations generated by the vibration generator [33, 34].
The nonlinear autoregressive networks with exogenous
input (NARX) model has been developed to describe the
magnetic flux density dependence on the geometrical,
magnetic and electrical parameters of the entire tested
system. In the proposed theoretical model, the magnetic
flux density is a function of the geometrical parameters of
the magnetic spring, input voltage of vibration generator,

input voltages frequency and the displacement of the
levitating magnet. On the other hand, the prediction of the
magnetic flux density in the magnetic spring was
estimated using NARX neural network.

The novelty of this research focuses on the description
of the relation between the magnetic spring parameters
and the magnetic flux density that is useful for the
improvement of the magnetic spring to the various
applications in energy harvesting systems. This study has
demonstrated a good accuracy of the NARX approach for
the proposed prediction model applied to the magnetic
spring.

The laboratory station in the Department of
Mechatronics, Silesian University of Technology,
Gliwice, Poland was provided for the measurement tests
of the magnetic flux and the displacement in magnetic
spring.

In Section 2 the design and description of the realized
magnetic spring and vibration generator have been
discussed. Next, the experimental setup and measurement
test results of the displacement and magnetic flux density
are presented in Section 3. Subsequently, the architecture
and model of the neural network have been designed in
Section 4. Finally a conclusion has been reported in
Section 5.

2 Design and work principles of the magnetic

spring and vibration generator

The magnetic spring investigated in the Laboratory of the
Department of Mechatronics, Silesian University of
Technology is realized as a set of magnets that repel each
other. The magnetic spring prototype consists of two
identical neodymium fixed magnets and one neodymium
levitating magnet located between them as shown in Fig.
1 (a). The fixed magnets have the cylindrical shapes with
both, diameter and height, of 5 mm (N38 f). The levitating
magnet is also cylindrical with diameter of 10 mm and
height of 3 mm (N38 l) (Fig. 1 (b)).

Table 1: Magnetic properties of material.

Type m Br HcB HcJ

[g] [T] [kA/m] [kA/m]

(min.) (min.)

N38 f 0.74 1.21 - 1.25 899 955

N38 l 1.77 1.21 - 1.25 899 955

F30 192.76 min. 0.37 175 180

In the manufactured magnetic spring, the fixed
magnets are placed 4 mm from levitating magnet.
Parameters of the magnets: weight (m), remanence (Br)
and coercivities (HcB and HcJ) are presented in the table
1.
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The position of the levitating magnet changes during
the motion of the magnetic spring provided by external
vibrations. In this research the magnetic spring was moved
by the vibration generator.

The magnetic spring is enclosed in the polyamide
cylindrical casing with two thread fastening elements that
arranged the fixed magnets. The casing has a vertical gap
that acts as a vent to reduce inside the air pressure.

The repulsive force between two magnets is presented
by the equation formula [35]:

Fz =
J1J2

2µ0

2

∑
i=1

4

∑
j=3

(−1)i+ j
a1a2a3 fz (1)

where J1 and J2 are magnetization (polarization) of the
magnets along z direction, µ0 is the magnetic
permeability of free space, a1, a2 and a3 are geometrical
parameters as reported in [35] and fz is defined as:
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where K, E and Π are complete elliptic integrals of first,
second and third kind respectively. The geometrical
parameters are defined as:
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where zi and z j are displacements of the centers of the
magnets along z axis, for first magnet the displacements
are z1 and z2, for second magnet the displacements are z3

and z4, and the radii of first and second magnet are r1 and
r2 respectively.

In the magnetic spring there are two identical
repulsive forces between the levitating and fixed magnets
considered nonlinear spring forces. The force acting on
the levitating magnet is the sum of these repulsive forces
that rely on the geometrical and magnetic parameters of
magnetic spring, magnetic flux density of the magnets
and the displacement of the magnet. The stiffness of the
magnetic spring is derived by differential of the magnetic
spring force and is nonlinear depending on the
displacement of the levitating magnet in the magnetic
spring. The resonance frequency of the magnetic spring is
function of the stiffness, as shown in Eq.4.

f0 =
1

2π

√

ks(zm)

ml

(4)

where ks is the vertical stiffness coefficient of the
magnetic spring, zm is the levitating magnet displacement

in the magnetic spring and ml is the mass of the levitating
magnet.

Moreover a strong correlation between the magnetic
flux density and displacement of the levitating magnet
appears in the magnetic spring. The displacement of the
levitating magnet is mostly linear. However, the
non-uniform magnetization of the magnets lead to
imbalance of forces acting on the levitating magnets
causing its rotational movement around the axis
perpendicular to the main axis of.

The magnetic spring is standing up on vibration
generator for this reason the gravitational force acts on
the levitating magnet with effect of the small initial
deflection of magnetic spring, as shown in Figure 2

The vibration generator is the vibration source for the
magnetic spring. The motion of the magnetic spring
depends on the external vibrations that affect the
displacement of the levitating magnet and the magnetic
flux density. The vibration generator realized in
Laboratory of Department of Mechatronics, Silesian
University of Technology, Gliwice consists of the
electromagnetic cylindrical copper coil wounded in the
aluminium carcass on the rod, the ring permanent sintered
ferrite magnet placed between two steel fastening ring,
the steel magnetic core and two beryllium bronze planar
springs (Figure 3(a)). The electromagnetic device
generates vibrations at the application of AC voltage to
the coil that is converted into varying magnetic field. In
consequence the Lorentz force acts on the coil causing its
movement. The aluminium casing of the vibration
generator is 6 cm height with diameter of 10 cm and it is
used as an insulator for the magnetic field of the
permanent magnet. The coil has 280 number of turns,
inner and outer radius of 17.5 mm and 19.5 mm

respectively.
The wire of which the coils is wounded has diameter

of 0.3 mm and length of 32.5 mm. The permanent magnet
and the fastening rings have outer and inner diameter of
80 mm and 40 mm respectively. The permanent magnet is
12 mm height and is made of barium ferrite (BaFe12O19)
and strontium ferrite (SrFe12O19), and its parameters are
presented in the Table 1 (F30 D80 X D40 X 12). The
fastening rings are 7 mm and 10 mm height. The magnetic
core is properly shaped to ensure the optimal magnetic
flux distribution in the vibration generator (Figure 3 (b)).

The planar springs are 0.3 mm thick and are attached
to the casing on the bottom and upper part of the vibration
generator. Their shape composed by several planar beams
ensures few resonance vibration frequencies generated by
the vibration generator. In our case, the resonance
frequencies for the realized vibration generator ( fg0) are
∼ 2 Hz, 30 Hz, 50 Hz and 70 Hz. The vibrations
amplitude of the vibration generator is limited by the
strength of the planar springs.
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(a) (b)

Fig. 1: (a) Prototype of magnetic spring; (b)Structure of the magnetic spring

Fig. 2: Magnetic spring on the vibration generator.

3 Experimental results and discussion

3.1 Laboratory setup for measurements of

displacement and magnetic flux density

In this research scientific activity, the measurements of
magnetic flux density in magnetic spring and magnetic
spring’s displacement induced by the external vibration
have been conducted. The motion of the magnetic spring,
due to the vibration, generated by vibration generator,

causes displacement of the levitating magnet that affects
the magnetic flux density. Hence the Laboratory Stand
was provided to measure the displacement and magnetic
flux density in the magnetic spring.

The Laboratory stand was equipped by Hall-Effect
CYSJ362A sensors mounted on the magnetic spring
moved by the vibration generator, the LK-G152 and the
LK-G32 Keyence laser heads, the function generator
Signal Agilent Keysight 33120A, the Power Amplifier
FPA2000-30W and the MDO3012 Tektronix MSO /
MDO Oscilloscope as shown in Figure 4. The vibration
generator was supplied by the function generator Signal
Agilent Keysight 33120A and the achieved input voltage
was amplified by the Power Amplifier FPA2000-30W
generating the vibration motion of the rod in the vibration
generator. For characterization of magnetic spring in
order to achieve meaningful outcomes of displacement
and magnetic flux density, the AC voltage signal varied in
amplitudes of 1 V , 3 V ,4 V and 5 V and in the frequency
range from 0 Hz to 140 Hz. The input current and voltage
were visualized on the MDO3012 Tektronix MSO / MDO
Oscilloscope.

3.2 Measurement of the levitating magnet

displacement in the magnetic spring

The measurement of the displacement in the magnetic
spring were performed using LK-G3000 Keyence laser
heads connected by driver LK-GD5000 with the PC
supported by LK-Navigator program. In the
LK-Navigator software program, the sampling cycle was
set at 200 µs and the stored data were set to 60004 points.
The laser distance sensor system uses laser triangulation
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Fig. 3: (a) Realized Vibration Generator, (b) Structure of vibration generator

Fig. 4: Laboratory stand for the measurement of
magnetic flux density: magnetic spring with Hall-Effect
sensors supplied by Power Supply Twintex, the vibration
generator supplied by the function generator signal Agilent
Keysight 33120A with the Power Amplifier FPA2000-
30W, MDO3012 Tektronix, MSO / MDO Oscilloscopes,
the LK-G3000 Keyence laser heads and PC.

to calculate the distance via an angle measurement and
the reflected light from the object depicted on the CCD
ruler. The laser distance sensors LK-G32 with
repeatability of 0.05 µm and LK-G152 with repeatability
of 0.5 µm, were used respectively to measure the
magnetic spring casing and the levitating magnet
displacement relative to the surface support where the
vibration generator is placed. The displacement of the
levitating magnet relative to the magnetic spring is
calculated as a function of the magnetic spring casing
displacement and the levitating magnet displacement
relative to the support base, given by Eq.5.

zm = z1 − z2 (5)

where zm is the levitating magnet displacement relative to
the magnetic spring, z1 is the the levitating magnet
displacement relative to the support base and z2 is the

magnetic spring casing. In Figure 5 the mentioned
displacements are marked with blue color.

Fig. 5: Displacements of the levitating magnet and
magnetic spring.

The amplitude of the levitating magnet displacement
relative to the magnetic spring after the application of Fast
Fourier Transform are shown in Figure 6.

The amplitude of the levitating magnet displacement
is greater for the resonance frequencies ( f0) of the tested
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Fig. 6: Amplitude of the levitating magnet displacement
in the magnetic spring as function of frequency obtained
by LK-G3000 Keyence laser heads for external voltage of
vibration generator of 1 V , 3 V , 4 V and 5 V .

system. Therefore the resonance frequencies of the
magnetic spring ( fm0) are obtained corresponding to the
amplitude of the displacement of the levitating magnet as
shown in Figure 6. The resonance frequencies for the
vibration generator fg0 are ∼ 2 Hz, 30 Hz, 50 Hz and 70
Hz.
In Figure 6, two additional f0 corresponding to fm0 are
visible at ∼ 85 Hz and 110 Hz. The first fm0 equal to ∼85
Hz corresponds with the linear motion of the levitating
magnet. The second fm0 equal to ∼ 110 Hz corresponds
to the rotational motion of the levitating magnet. The
lowest displacement of the levitating magnet in the
magnetic spring is noticed for the vibration generator
input voltage of 1 V , due to the low displacement of the
vibration generator. The greatest displacement is
observed for the input voltage of 5 V for the frequencies
more than 20 Hz, due to high input power of the vibration
generator ∼ 3 W . However, the greatest amplitude ∼ 0.2
mm for the 2 Hz is achieved for the input voltage of 4 V .
For the input voltages of 4 V and 5 V the amplitudes of
the levitating magnet displacement for the first fm0 equal
to ∼ 85 Hz and for the fg0 equal to 70 Hz are
indistinguishable, due to the great displacement of the
vibration generator. Moreover, the fm0 equal to ∼ 110 Hz

is the most visible for these input voltages, due to the
great displacement of the vibration generator. For the
operating input voltages of the vibration generator equal
to 1 V and 3 V the levitating magnet mainly oscillates.
Although, for the operating input voltages of the vibration
generator equal to 4 V and 5 V the linear displacement of
the levitating magnet appears more significant.

3.3 Measurements of magnetic flux density in

the magnetic spring

The measurement of the magnetic flux density in the
magnetic spring was carried out by the Hall-Effect
CYSJ362A sensors made of mono-crystal gallium
arsenide (GaAs) semiconductor material group III-V [36].
The parameters of the CYSJ362A Hall-Effect sensor are
shown in Table 2. The Hall-Effect sensor measures the
voltage fluctuation when the device is placed in a
magnetic field. In the conducted tests, the sensors were
supplied by 10 V voltage and 0.05 A current using the
Power Supply Twintex TP-30102 Linear laboratory DC
regulated 30V 10A Dual Channel Output power supply
(Multichannel Power Supplies TWINTEX) and were
connected in electric circuits with the capacitors of 4.7 µF
and 100 nF (Figure 7 (a)) to enhance their performance.

Different measurements of magnetic flux density were
carried out using the three Hall-Effect sensors located in
upper, middle and bottom part of magnetic spring as
shown in Figure 7 (b). In particular, for the upper and
bottom magnets, the magnetic flux density was calculated
in the perpendicular direction of the magnets height.
Whereas, for the levitating magnet located in the middle
of the magnetic spring, the magnetic flux density was
calculated in the perpendicular direction of its radius.

In the measurement conducted by the Hall-effect
sensors the output voltage, Hall Voltage VH , is
proportional to the magnetic flux density. The voltage
signal obtained by the Hall-Effect sensors were displayed
and measured by the MSO2024 Tektronix Mixed Signal
Oscilloscope with the samples rate of 20 ms. The
aforementioned output Hall voltage is obtained by
equation:

VH =VHM −VOS(Vu) (6)

where VH is the Hall Voltage in volts, VHM is the measured
voltage and VOS is the offset voltage.

The measurements of the magnetic flux density in the
magnetic spring were conducted for the input voltage of
the Hall-effect sensors of 10 V , temperature of 20◦C,
input voltage of the vibration generator 1 V , 3 V , 4 V and
5 V and for the frequency range from 0 Hz to 140 Hz.
The dependency of magnetic flux density on Hall voltage
B(VH) can be obtained by technical specifications of the
Hall-Effect CYSJ362A sensors in [36] and by the
following equation:

B = 1/3.1333333VH (7)

Therefore the Fast Fourier Transform was applied to
output Hall voltage and the magnetic flux density was
calculated by the Eq. 7 using the measured voltages
detected by Hall-effect sensors.

The magnetic flux densities measured by the upper,
middle and lower Hall-effect sensors in the magnetic
spring as a function of frequency are displayed in Figure
8 (a), Figure 8 (b) and Figure 8 (c) respectively. As the
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Fig. 7: (a) The circuit diagram of the Hall-Effect sensors connection (b) The Hall Effect Sensor placement

Table 2: Electrical characteristics and absolute maximum rating for CYSJ362A GaAs Hall- Effect Element [36]

Parameter Symbol Value Unit Test conditions

Hall output voltage VH 156∼204 mV B=100 mT , VC=6 V , Ta=25◦C

Offset voltage VOS(Vu) ±8 mV B=0 mT , VC=6 V , Ta=25◦C

Input resistance Rin 1000∼1500 Ω B=0 mT , Ic=0.1 mA, Ta=25◦C

Output resistance Rout 1800∼ 3000 Ω B=0 mT , Ic=0.1 mA, Ta=25◦C

Temperature coefficient

of Hall output voltage
αVH -0.06 %/◦C

Ic=1 mA , B=100 mT

(Ta=25◦C ∼ 125◦C)

Temperature coefficient

of input resistance
αRin 0.3 %/◦C

Ic=0.1mA, B=0mT

(Ta=25 ◦C ∼ 125 ◦C)

Linearity ∆KH 2 % B=0.1/0.5 T , Ic=1 mA, Ta=25◦C

Max. Input Voltage VC 12V V −
Max. Input Power PD 150 mW −
Operating temperature range TA -40 ∼ 125 C −
Storage temperature range TS -55 ∼ 150 C −
MTBF(Mean Time Between Failures) − >100k hour −

amplitude of the input voltage increases, the magnetic
flux density, due to the greater displacement of the
levitated magnet, rises.

In Figure 8 (a), Figure 8 (b) and Figure 8 (c) the
displacement of the vibration generator for the input
voltage of 1 V is too low to move the magnetic spring
significantly, so the magnetic flux density is nearly 0 T . In
the Figure 8 (b), for the very low frequency ∼ 2 Hz the
magnetic flux density reaches the maximum value of ∼
0.0152 mT , detected by the middle sensor. The input
voltage greater than 1 V causes more visible displacement
of the vibration generator and magnetic spring, and the
increase of the magnetic flux density in correspondence
of resonance frequencies of the vibration generator (2 Hz,

30 Hz, 50 Hz and 70 Hz) and the resonance frequencies
magnetic spring (85 Hz and 110 Hz) for upper and middle
sensor (Figure 8(a) and Figure 8(b)). For the
non-resonance frequencies, the values of the magnetic
flux density detected by the lower sensors in the magnetic
spring (Figure 8(c)) are higher than detected by the upper
and middle sensors. It is caused by the gravitational force
acting on the levitating magnet. For input voltage ∼ 3 V

the movement of the magnetic spring is low, so the
levitating magnet mostly oscillates. Therefore the
displacement of the levitated magnet is up to ∼ 0.2 mT

for the second resonance frequency of the magnetic
spring (110 Hz) associated with the rotational movement
of the levitated magnet. For the input voltage of vibration
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Fig. 8: Relative magnetic flux density of magnetic spring
as function of frequency obtained by Hall-Effect sensors
for external voltage of vibration generator that varies in the
range from 1 V to 6 V : (a) for Hall-Effect sensor located on
upper fixed magnet of magnetic spring ; (b) for Hall-Effect
sensor located on levitated magnet of magnetic spring (c)
for Hall-Effect sensor located on lower fixed magnet of
magnetic spring.

generator equal 4 V two resonance frequencies 85 Hz and
110 Hz are achieved in correspondence of the high value
of the magnetic flux density. For the input voltage of 5 V

the value of the magnetic flux density for the first

resonance frequency (85 Hz) of the magnetic spring is up
to 0.5 mT and the second frequency is not noticeable. It is
caused by high amplitude of the magnetic spring
displacement and therefore higher linear displacement of
the levitating magnet.

4 NARX EQUATION

The Artificial Neural Networks (ANNs) are
computational models for solving many complex
real-problem in clustering, recognition, pattern
classification, optimization, function approximation and
prediction. ANNs are mathematical algorithms and tools
inspired by the biological human brain that perform
dependencies between input and output information. The
ANN networks are non-linear maps of m-dimensional
input space onto an n-dimensional output space, when the
mathematical relations between input and output
variables contains unknown parameters. Generally, the
ANN networks depend on the knowledge of the system to
be modeled.

Considering that the magnetic flux density is a time
series related to the nonlinear systems of magnetic spring
and vibration generator, the NARX neural network is a
good predictor of the time series that can be used in this
research study. The nonlinear autoregressive network with
exogenous inputs (NARX) model is a recurrent dynamic
neural network that encloses several layers with feedback
connections. NARX networks can be applied to nonlinear
dynamic and time series models with much faster
convergence and better generalization than other neural
network models. To maximize the performance of the
NARX neural network in nonlinear time series
forecasting, it is considered its ”memory” ability to use
the past values of the predicted or true time series. The
mathematical expression for the output of NARX model
is represented by the following equation:

ŷ(t) = f (y(t − 1),y(t − 2), ....,y(t − ny),

u(t − 1),u(t − 2), ....,u(t − nu))+ e(t)
(8)

where y(t) is the target output variable, ŷ(t) is the
predicted output of the NARX model that is regressed on
previous values of the output signal and previous values
of the independent input signal, u(t) is the input variable
of the NARX, nu is the number of input delays, ny is the
number of output delays, and e(t) is the error value
between the target and predicted values.

According to the input variable u(t), the hidden layer
output at time t is obtained as:

Hi(t) = f1

[

nu

∑
r=0

wiru(t − r)+
ny

∑
l=1

wily(t − l)+ ai

]

(9)

where wir is the connection weight between the input
neuron u(t − r) and ith hidden neuron, wil is the
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connection weight between the ith hidden neuron and the
output feedback y(t − l), ai is the bias of the ith hidden
neuron and f1 is the hidden layer activation function. The
final prediction equation can be expressed as a
combination of Eq.8 and Eq. 9.

ŷ j(t) = f2

[

nh

∑
i=1

w jiHi(t)+ b j

]

(10)

where f2 is the output layer activation function with an
argument being a sum of a bias of a jth predicted output
b j plus a weighted sum of the hidden layer outputs Hi(t)
taken with weights w ji, calculated for nh hidden neurons
as in [37].

In this work, the MATLAB Neural Network tool has
been used to build the NARX models for a combination
of the magnetic flux density time-series data sets and the
geometry of the magnetic spring, the input voltages of the
vibration generator, input voltages frequencies and
displacement of the levitated magnet in the magnetic
spring as shown in Figure 9. Not only the relation
between the inputs (geometry of the magnetic spring,
input voltages of the vibration generator, input voltages
frequencies and movement of the levitated magnet) and
the desired output of magnetic flux density in the
magnetic spring is provided by the neural network, but
also the prediction of the output variables value of
magnetic flux density in future instants of time. In fact,
the investigated magnetic spring system is affected by the
nonlinear vibrations in the frequency domain generated
by the vibration generator. Also the dynamic and
complexity provided by the non-linearity can be seen in
the levitated magnet displacement that impacts the
analyzed magnetic flux density in the magnetic spring.
The proposed theoretical model based on NARX
networks can be adapted to describe the physical
magnetic phenomena and the characterization of the
strong non-linearity involved in the measurements of the
magnetic spring to achieve the optimum results and
improve the modelling of the prototype. The NARX
network model for magnetic spring can be expressed as:

B̂(t) = f [x(t), f ,V,h,Vin,B(t − 1), ...,B(t − nB))] (11)

where B̂(t) is the predicted value of magnetic flux density,
x(t) is the displacement of the levitated magnet in the
magnetic, f is the input voltages frequency, V is the
volume of the fixed magnet and levitated magnet, h is the
height of the fixed magnet and levitated magnet in the
magnetic spring, Vin is the input voltage of vibration
generator, B(t) is the magnetic flux density measured by
Hall-Effect sensors, and nB = 1 is the time delay.

The architectures of a NARX network consist of three
different layers: input, which includes the input
parameters of the network, hidden layer, and output layer.
The Matlab Code was used to automatically normalize
input and target data and un-normalize output results. The
neural network is trained and initialised with a set of

weights. These weights are then optimised during the
training period and the optimum weights are obtained.
The bias is a constant parameter-vector added to the
product of inputs and weights utilised to offset the result.
For the modeling a set of 5 input variables, three hidden
layer and the output variable were considered. The input
variables training data selected for the developed NARX
model are the input voltage of vibration generator of 1 V ,
3 V , 4 V and 5 V and the input voltage frequency from 0
to 140 Hz, the geometry including volume and height of
fixed magnets and levitating magnet, and mean value of
levitating magnet displacement as shown in the Figure 9.
The output variable is the magnetic flux density obtained
by Hall-sensor effect measurement for the two fixed
magnet and the levitated magnet of magnetic spring. The
magnetic flux density of magnetic spring in function of
frequency is obtained by Hall-Effect sensors located at
the corresponding fixed magnets (in upper and lower
position) and floating magnet (middle position) for
external voltage of vibration generator that varies from 1
V to 6 V . In the developed neural network, the first and
second hidden layer contain 7 number of neurons with
respectively log-sigmoid transfer function called Logsig
( f (n) = logsig(n) = 1/(1 + exp(−n))) and Hyperbolic
tangent sigmoid transfer function called also Tansig
( f (n) = tansig(n) = 2/(1+ exp(−2 ∗ n))− 1), the third
hidden layer only 6 neurons with tansig transfer function
and a linear transfer function for the output layer as
shown in Figure 10. The network training function
Bayesian regularization, trainbr, that updates the weight
and bias values according to Levenberg-Marquardt
optimization has been implemented in training neural
network.

It determines the minimization of the appropriate
combination of the squared error and weights for network
generalization. The best validation performance for Mean
Square Error (MSE) is 6.1132e-9 at 998 epochs as shown
in Figure 11.

After the accurate training, learning and validation
process, the weights parameters associated to hidden
layer 1 from input 1 are shown in the Table 3, the weights
parameters associated to hidden layer 2 from hidden layer
1 are shown in the Table 4, the weights parameters
associated to hidden layer 3 from hidden layer 2 in the
Table 5, the weights associated to hidden layer 4 (or
Output layer) from hidden layer 2 in the Table 6, and the
weights associated to hidden layer 1 from hidden layer 4
(or Output layer) in the Table 7. The biases parameters
associated to the layers are shown in the Table 8 and in
the Table 9. The final mathematical relation of magnetic
flux density prediction as function of frequency, magnetic
spring’s geometry, vibration generator’s input voltage,
and displacement of levitated magnet in magnetic spring
is expressed as a combination of Eq.10 and Eq.11 with
the weights and bias parameters obtained by
computational neural model.

The Figure 12(a), Figure 12(b), Figure 12(c) represent
the results of the developed Narx model of the prediction
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Fig. 9: Developed NARX with inputs and output.

Fig. 10: View design of structure neural network.

Fig. 11: Training Performance of neural network

of magnetic flux density of magnetic spring in function of
frequency.

The Figure 12(a) shows the results of the magnetic
flux density prediction obtained by neural network and
the magnetic flux density achieved by Hall-Effect sensor
located at the upper fixed magnet for external voltage of

Table 3: Weight to hidden layer 1 from input 1

i/j 1 2 3 ... 10

1 0.071042 0.099864 -0.22672 ... 0.00044682

2 0.11454 -0.029476 -0.33076 ... -0.00089211

... ... ... ... ... ...

7 1.9005 -1.2134 0.15919 ... -0.0039798

Table 4: Weight to hidden layer 2 from hidden layer 1

i/j 1 2 3 ... 7

1 -0.27228 -0.20086 0.081792 ... 0.87682

2 0.052804 0.066778 -0.15028 ... -0.3711

... ... ... ... ... ...

7 0.052804 -0.066778 0.15028 ... 0.3711

Table 5: Weight to hidden layer 3 from hidden layer 2

i/j 1 2 3 ... 7

1 0.30256 -0.052127 -0.29461 ... 0.052127

2 0.30256 -0.052127 -0.29461 ... 0.052127

... ... ... ... ... ...

6 0.30256 -0.052127 -0.29461 ... 0.052127

Table 6: Weight to hidden layer 4 (or Output layer) from
hidden layer 2

i/j 1 2 3 ... 6

1 0.51983 0.51983 0.51982 ... 0.51983

vibration generator that varies from 1 V to 6 V . The
RMSE (Root Mean Square Error) between the original
and predicted magnetic flux density obtained by upper
sensor in magnetic spring is equal 0.1935.

The Figure 12(b) shows the results of prediction of
magnetic flux density obtained by neural network and the
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Table 7: Weight to hidden layer 1 from hidden layer 4
(Output layer)

i/j 1 2

1 1.3049e-172 2.6838e-172

2 1.4012e-172 1.4336e-172

... ... ...

7 2.3239e-174 -3.8244e-172

Table 8: Bias to layer 1 and Bias to layer 2

1 2 ... 7

b(1) 0.00119 -0.0023759 ... -0.010599

b(2) -0.25068 0.023375 ... -0.023375

Table 9: Bias to layer 3

1 2 ... 6

b(3) 0.074165 0.074165 ... 0.074165

magnetic flux density achieved by Hall-Effect sensor
located at the middle levitated magnet for external voltage
of vibration generator that varies from 1 V to 6 V . The
RMSE between the original and predicted magnetic flux
density obtained by middle sensor in magnetic spring is
equal 0.0682.

The Figure 12(c) shows the results of prediction of
magnetic flux density obtained by neural network and the
magnetic flux density achieved by Hall-Effect sensor
located at the lower fixed magnet for external voltage of
vibration generator that varies from 1 V to 6 V . The
RMSE between the original and predicted magnetic flux
density for the lower sensor in magnetic spring is equal
0.1693.

The prediction performance of magnetic flux density
by NARX is more accurate for the levitated magnet in
magnetic spring as observed in Figure 12(b) because the
proposed external input data are focused mainly on
information (geometry and displacement) of the levitated
magnet in the magnetic spring. It is possible to view the
resonance frequencies of magnetic spring for 6 V voltage
of both predicted and original magnetic flux density in
Figure 12(b). In Figure 12(b) and Figure 12(c) for the
external voltage less of 2 V , the NARX neural network
accurately predicted the magnetic flux density because
the vibration generator movement is not so strong and the
levitated magnet displacement is more significant than the
vibration generator displacement for the resonance
frequencies of magnetic spring.
In the Fig.12 the accuracy of the predicted model is low
for estimation of amplitude of the magnetic flux density
in the frequency range from 1 to 140 Hz with absolute
error of 50 %, due to the high non-linearity of the system.
However the computed absolute error of 20% and 10 % of
predicted magnetic flux density is obtained respectively
for frequency of 50 Hz and 90 Hz and voltage of 4 V , 5 V

and 6 V useful for the energy harvesting system.

Fig. 12: Relative magnetic flux density of magnetic spring
as function of frequency predicted and obtained by the
Hall-Effect sensors: (a) for Hall-Effect sensor located on
upper fixed magnet of magnetic spring ; (b) for Hall-Effect
sensor located on levitated magnet of magnetic spring (c)
for Hall-Effect sensor located on lower fixed magnet of
magnetic spring

5 Conclusion

This article investigates the mechanical and magnetic
properties of a realized prototype consisting of the
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magnetic spring located on the vibration generator in the
vertical position. The levitating permanent magnet and
two identical fixed magnets enclosed in the polyamide
casing are included in the magnetic spring. The motion of
the magnetic spring is generated by the vibration
generator causing the displacement of the levitating
magnet and the change in the magnetic flux density.
The experimental test measurements of the levitating
magnet displacement have been conducted in the
laboratory using function generator, power amplifier,
oscilloscope and laser distance meters. The magnetic flux
density values in the magnetic spring have been detected
by the three Hall-Effect sensors mounted on the magnetic
spring.
The magnetic spring is excited by the designed vibration
generator that generates the nonlinear vibrations in the
frequency domain. The conducted analysis was focused
on the non-linearity and complexity exhibited by the
displacement of the levitating magnet that affect the
magnetic flux density in the magnetic spring. The
nonlinear phenomena of the magnetic spring has been
exploited using as a solution the nonlinear autoregressive
network with exogenous inputs (NARX) model that
captures the dynamic of the magnetic spring system. For
this purpose, the relation between the inputs data
corresponding values of geometrical parameters of the
magnetic spring, input voltage of vibration generator,
input voltages frequency, displacement of the levitating
magnet and the output data corresponding the magnetic
flux density has been described by the NARX model. The
predicted magnetic flux density were validated with the
available experimental data set. In the case of the
magnetic flux density obtained by upper, middle and
lower sensors in the magnetic spring, the deviation
between simulated and measured values is acceptable
with the RMSE equal 0.1935, 0.0682 and 0.1693
respectively. The NARX model has provided a
mathematical relationship between the magnetic flux
densities and parameters with high non-linearity and
complexity, although the accuracy of the predictive model
is not high. The limitation of this work is due to the high
complexity and non-linearity causes by vibrations,
displacements and frequency within the energy harvesting
system. The representative relation-algorithm based on
the NARX equation could be a valid approach in the
future manufactured design of the magnetic spring and a
potential solution to enhance the harvested electric power
for engineering applications. However the predicted
results of NARX show most an effective qualitative
analysis exhibiting low values of resonances frequencies
especially for the lower sensor. To obtain a detailed
prediction result various methods and approaches will be
proposed and investigated in the future works.

Ethical approval:

This article does not contain any studies with human
participants performed by the author.

Acknowledgments

The authors are thankful to the Deanship of Graduate
Studies and Scientific Research at University of Bisha for
supporting this work through the Fast-Track Research
Support Program.

Data Availability Statement

Data sharing is not applicable to this article as no data sets
were generated during the current study.

Conflicts of Interest

The authors declare that there is no conflicts regarding the
publication of this paper.

References

[1] A. Harb, Energy harvesting: State-of-the-art, Renewable

Energy 36(10) (2011) 2641–2654.

[2] S. Bai and C. Liu, Overview of energy harvesting and

emission reduction technologies in hybrid electric vehicles,

Renewable and Sustainable Energy Reviews 147 (2021) p.

111188.

[3] H. Pan, L. Qi, Z. Zhang and J. Yan, Kinetic energy

harvesting technologies for applications in land

transportation: A comprehensive review, Applied Energy

286 (2021) p. 116518.

[4] N. Wu, B. Bao and Q. Wang, Review on engineering

structural designs for efficient piezoelectric energy

harvesting to obtain high power output, Engineering

Structures 235 (2021) p. 112068.

[5] N. Tran, M. H. Ghayesh and M. Arjomandi, Ambient

vibration energy harvesters: A review on nonlinear

techniques for performance enhancement, International

Journal of Engineering Science 127 (2018) 162–185.

[6] M. A. Abdelkareem, L. Xu, M. K. A. Ali, A. Elagouz, J. Mi,

S. Guo, Y. Liu and L. Zuo, Vibration energy harvesting in

automotive suspension system: A detailed review, Applied

energy 229 (2018) 672–699.

[7] C. Saha, T. O’donnell, N. Wang and P. McCloskey,

Electromagnetic generator for harvesting energy from

human motion, Sensors and Actuators A: Physical 147(1)

(2008) 248–253.

[8] S. Khalid, I. Raouf, A. Khan, N. Kim and H. S. Kim,

A review of human-powered energy harvesting for smart

electronics: recent progress and challenges, International

Journal of Precision Engineering and Manufacturing-Green

Technology 6 (2019) 821–851.

© 2025 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 1, 87-99 (2025) / www.naturalspublishing.com/Journals.asp 99

[9] C. Wei and X. Jing, A comprehensive review on vibration

energy harvesting: Modelling and realization, Renewable

and Sustainable Energy Reviews 74 (2017) 1–18.

[10] B. Maamer, A. Boughamoura, A. M. F. El-Bab, L. A.

Francis and F. Tounsi, A review on design improvements

and techniques for mechanical energy harvesting using

piezoelectric and electromagnetic schemes, Energy

Conversion and Management 199 (2019) p. 111973.

[11] Y. Peng, L. Zhang, Z. Li, S. Zhong, Y. Liu, S. Xie

and J. Luo, Influences of wire diameters on output

power in electromagnetic energy harvester, International

Journal of Precision Engineering and Manufacturing-Green

Technology (2022) 1–12.

[12] A. E. ELGebaly and M. K. El-Nemr, Optimized design

of pm halbach array linear generator for sea wave energy

converters operate at maximum power transfer, Advances in

Science, Technology and Engineering Systems 4(4) (2019)

440–448.

[13] Z. Liu, X. Wang, E. Al Shami, N. J. Baker and X. Ji, A study

of a speed amplified linear generator for low-frequency

wave energy conversion, Mechanical Systems and Signal

Processing 149 (2021) p. 107226.

[14] J. Yunas, N. Indah, H. M. Hanifah, I. Hamidah, D. F.

Ramadhan, I. Mustagisin, B. Bais and A. A. Hamzah,

Mechanical charaterization of mems vibration membrane

with planar spring design for energy harvester, J. Eng. Sci.

Technol 15(5) (2020) 3178–3188.

[15] P. Carneiro, M. P. S. dos Santos, A. Rodrigues, J. A.

Ferreira, J. A. Simões, A. T. Marques and A. L.

Kholkin, Electromagnetic energy harvesting using magnetic

levitation architectures: A review, Applied Energy 260

(2020) p. 114191.

[16] M. L. Monaco, C. Russo and A. Somá, Numerical and
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