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Abstract: In this paper we consider a model for description of processes in a system of neurons. The model gives a 

possibility to make an analysis of processes in the system of neurons in more common case in comparison with recently 

introduced models. We introduce an analytical approach to analyze the above process. Based on the model and approach 

we consider the possibility to control processes in the system of neurons. 
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Introduction 

One of the ways to study the patterns of information 

processing by the brain is to analyze the transmission of 

electrical impulses in it. The transmission of electrical 

impulses in the human brain is a complex oscillatory process 

that can be registered when electrodes are placed on the brain 

or on the surface of the scalp and is the result of combining 

and filtering elementary processes occurring in brain neurons 

[1-5]. The main aim of this work is to formulate a model for 

analyzing the transmission of electrical impulses in the brain. 

The model should be more common in comparison with the 

recently introduced model. The accompanying aim of this 

work is choosing an analytical approach for analyzing the 

formulated model, which gives a possibility to obtain 

solutions of the obtained in the above equations in so much 

common case as possible. Previous models for description of 

processes in neurons, which were considered in recently 

published works [4, 6-11], were considered stationary values 

of their parameters and usually (almost always) linear 

processes. The model, which was considered in the present 

paper, gives a possibility to take into account non-stationarity 

and non-linearity of the processes considered where it is 

necessary. 

Method and results of solution 

In the section we consider the following model for 

analyzing the transmission of electrical impulses in the 

brain 
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where Cm are the specific membrane capacity; 
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is the synaptic current; Esyn is the reversible synaptic 

potential; syn and ksyn are the shift and steepness of 

synaptic current; gsyn is the synaptic strength factor; Vi(t) is 

the memprane potential (i =1 is for control neuron, i =2 for 

the control neuron); t is the current time; gNa, gK and gL are 

the sodium, potassium and ohmic leakage currents; Iapp is 

the current, which describes membrane depolarization; ENa, 

EK and EL are the appropriate reversible potentials; e is the 

elementary charge. The instantaneous values of ion currents 

depend on the state of the gate variables: m (t) is an 

activation sodium variable with an equilibrium value m 

and a relaxation time m, h (t) is the sodium inactivation 

variable with equilibrium value h and relaxation time h, n 

(t) is the potassium activation variable with equilibrium 

value n and relaxation time n. All variables, which were 

marked as functions of time, could be controlled by 

external influence on organism. It could be changing diet as 

a consequence of changing the type of food or by speed of 

obtaining of food. The above variables could be also 

changed by changing external parameters (air, physical 

activity, ...). The equilibrium values of the considerate 

variables and their relaxation times were determined by the 

following relations 
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Solutions of the third, fourth and fifth equations of the 

system (1) were determined in the framework of the 

appropriate standard procedure for the ordinary differential 

equations [6]. These solutions could be written in the 

following form 
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The first and the second equations of the system (1) with 

account solutions of the third, the fourth and the fifth 

equations have no analytically exact solution. In this 

situation the first and the second equations will be solved 

by method of averaging of function corrections [7-9]. In the 

framework of the approach to determine the first-order 

approximations of the required functions we replace them 

in the right sides of the considered equations on their not 

yet known average values Vi(t)→i1. At the same time due 

to cumbersomeness of the obtained relations we consider 

exponential functions in the considered equations in the 

linear approximation on their arguments. Integration of the 

obtained relations on time gives a possibility to obtain the 

required first-order approximations of the considered 

functions in the following form 
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Average values i1 were determined by using the standard 

relation [7-9]. The relation to our case could be written in 

the following form 
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Substitution of relations (2) into relations (3) and future 

transformations give a possibility to obtain the following 

relations to determine the required average values i1 
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The second-order approximations of membrane potentials. 

We determine the considered potentials by using the 

following standard replacements Vi(t)→i2+Vi1(t) [7-9] in 

the right sides of the first and the second equations of 

system (1). The replacement and integration on time of the 

obtained result gives a possibility to obtain the second-

order approximations of the required potential in the final 

form 
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Average values i2 were calculated by using the following 

standard relation [7-9] 
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Substitution of relations (2) and (5) into relation (6) gives a 

possibility to obtain the following result 
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We analyzed changing in time the membrane potentials 

analytically as the second-order approximation in the 

framework of the method of averaging functional 

corrections. This approximation is usually sufficient to 

make a qualitative analysis and obtain some quantitative 

results. The results of analytical calculations were verified 

by comparing them with the results of numerical 

simulation. Using the obtained relationships, it was 

revealed that by changing the reversal synaptic potential, 

the shift and steepness of the synaptic current, as well as the 

current describing membrane depolarization, it is possible 

to both increase and decrease membrane potentials. Figure 

1 shows typical dependences of the neural potential on 

leakage currents. Figure 2 shows typical dependences of the 

neural potential on time. The figure shows two pairs of 

curves: analytical results with numerical one. The results of 

analytical calculations turned out to be larger than the 

results of numerical calculations. Figure 3 shows typical 

dependences of the neural potential on activation variables. 

 

Fig. 1: Typical dependences of the neural potential on 

leakage currents 

 

Fig. 2: Typical dependences of the neural potential on time 

 

Fig. 3: shows typical dependences of the neural potential 

on activation variables 
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Conclusion 

In this paper we present a model for the description of 

processes in a system of neurons. The model gives a 

possibility to make analysis processes in the system of 

neurons in more common cases in comparison with recently 

introduced models: the model gives a possibility to take 

into account variation of several parameters in time. We 

introduce an analytical approach to analyze the above 

process. Based on the model and approach we consider the 

possibility to control processes in the system of neurons. 
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