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Abstract: This paper is designed to generalize one of the important biomathematical models that studies and analyses smoking spread

in a given population within the framework of conformable derivative. The use of conformable operator instead of the classical integer

order generalizes the epidemic model and gives us the opportunity of obtaining variety of results and expectations. Due to the difficulty

of solving non-linear fractional systems, we use two analytical-approximate techniques to solve this model. The first technique is the

residual power series method, which depends on minimizing the residual error of the equation under study. The second method is

the Laplace decomposition method, which forms an efficient combination between Laplace transform and the well-known Adomian

decomposition method. Both methods effectively solve different types of problems, including ordinary and partial differential equations

of classical integer or fractional orders, with high accuracy and without the need for linearization or discretization.

In this paper, we apply both techniques to the conformable smoking model (CSM). Some numerical and graphical results for different

values of the conformable derivative allow us to notice the effect of this conformable operator to the solution curves of the CSM.

Moreover, some numerical results for the residual error are tabulated to assess the accuracy of our outcomes. The results show the

simplicity, efficiency, rapid convergence and accuracy of both analytical methods. In fact, for the same number of iterations, both

methods produce identical results.

Keywords: Adomian polynomials, conformable derivative, epidemic model, fractional power series, Laplace transform, residual power

series

1 Introduction

It is well-known that smoking can be considered as one of
the main causes of various preventable death in most
countries around the world because its harmful effect on
different body organs, resulting in many respiratory
problems such as strokes, heart diseases and lung cancers.
Recent figures from the World Health Organization
(WHO) estimate that among the world’s 1.2 billion
smokers, more than 8 million people die prematurely
yearly from tobacco use. This is the latest available WHO
estimate as of November 2023 [1]. For this, this issue
must be controlled globally. Consequently, many experts
in different fields of science play great roles to help in
controlling this dangerous problem.
Mathematics can also play a crucial role in this effort by
providing different mathematical epidemic models that

analyses the impact of smoking on people. For example, a
generalized epidemiological model was derived as a
description of the dynamics of drug use among teenagers,
particularly tobacco use. Specific models are derived by
taking into account other factors such as peer pressure,
relapse, counseling and treatment [2]. In [3], a study that
showed mathematically that interventions concerning
with stop smoking tobacco can result in a reduction in
tuberculosis infections. A nonlinear mathematical models
to study the effect of media on smoking cessation was
carried out in 2015 [4]. A four compartment model was
formulated and analyzed to study the dynamics of
smoking and its impact on society in [5], while in [6], the
authors derived a smoking model which can be
considered as a generalization to the giving up smoking
model, and taking into account hospitalized smokers and
smoke quitters. The dynamics of smoking habit under the
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impact of educational and media programs is formulated
in [7] and a mathematical model with the assumption that
the increase in tax reduces the incidence rate and
increases the quitting rate is presented in [8]. Most
recently, a five-dimensional smoking biomathematical
model that accounts for distinct degrees of smoking under
deterministic and stochastic constraints was presented in
2024 [9] and a smoking model that splits population into
six groups, including: non-users, experimental,
recreational, addicted, hospitalized, and prisoners’ class
was established and analyzed in [10].
In this paper, we are interested with the model which was
suggested in [11] as a non-linear model that studies and
analyzes smoking spread in a population. It assumes that
the total population Φ(t) can be split to five categories:
potential smokers P(t), occasional smokers O(t), smokers
S(t), temporary quitters Q(t), and permanent quitters
L(t). That is, Φ(t) = P(t) + O(t) + S(t) + Q(t) + L(t).
The dynamics of smoking in this model was formulated
by the following system of ordinary differential equations
(ODEs):

P′(t) = ϑ − δPS−κP

O′(t) = δPS−σO−κO

S′(t) = σO+αSQ−κS− ζS

Q′(t) =−αSQ−κQ+ ζ (1− ς)S

L′(t) = ςζS−κL,

(1)

where ϑ indicates the recruitment rate in P(t), δ
represents the effective rate of contact between P(t) and
S(t), while the natural rate of death is given by the
parameter κ . The rate of change from occasional to
regular smokers is represented by σ , and the contact rate
between smokers and temporary smoking departures is α .
Moreover, the rate of quitting smoking is symbolized by
ζ and the fraction of smoking who permanently quit
smoking is indicated by ς .
The smoking model in (1) was studied by many experts.
For example, in [11], the stability of the system was
investigated through theoretical and numerical discussion.
In [12], [13] and [14], the classical integer order was
generalized to Caputo fractional derivative and analytical
approximate methodologies were carried out to discuss
the solvability of the new fractional smoking model and
how Caputo derivative affects this epidemic system. Its
approximate solution was obtained via fractional
differential transformation method in [12], by using the
Laplace Adomian method in [13], and via the
q-homotopy analysis transform method [14]. In fact,
many biomathematical models ware generalized to
fractional case due to the great success of fractional
calculus in studying different real-life phenomena over
the past few decades. Examples of recent applications of
fractional operators can be found in describing
viscoelastic phenomena in soft solids [15], in studying the
kinetics of adsorption and extraction processes [16], in
investigating economic growth model that models gross

domestic product [17], in modeling electric circuits [18],
and in the study of hybrid systems [19].
However, due to the evolution of fractional calculus,
many definitions for fractional operators can be found.
Some of which are Grünwald-Letnikov, Erdélyi-Kober,
Riemann-Liouville, Riesz-Feller, Caputo,
Caputo-Fabrizio,and many other formulations [20], [21]
and [22]. Although Caputo and Riemann-Liouville
operators enjoy some advantages [23], both have singular
kernel functions, which diminish their effectiveness in
modeling real-world issues. This limitation encouraged
mathematicians to explore new fractional derivatives. One
of the recent suggestions is a straightforward fractional
derivative presented in 2014 and called ”conformable
fractional derivative” [24]. It is characterized by its
resemblance with the classical integer order derivative in
most features like product and chain rules which attracted
the interest of many researchers who adopted it in their
studies of mathematical models. See for examples [25],
[26] and [27].
In this paper, we study a generalized form of the smoking
model (1) with classical integer order is replaced be the
conformable fractional derivative. So our aim is to
investigate analytic and approximate solution to the
conformable smoking model (CSM):

T
γ
t P(t) = ϑ − δPS−κP

T
γ
t O(t) = δPS−σO−κO

T
γ
t S(t) = σO+αSQ−κS− ζS

T
γ
t Q(t) =−αSQ−κQ+ ζ (1− ς)S

T
γ
t L(t) = ςζS−κL,

(2)

subject to the initial conditions (ICs):

P(0) = p0,

O(0) = o0,

S(0) = s0,

Q(0) = q0,

L(0) = l0.

(3)

In (2), the symbol T
γ
t indicates the conformable derivative

of order γ, 0 < γ ≤ 1, with respect to the time variable t.
Unfortunately, dealing with fractional differential
equations (FDEs), especially the non-linear FDEs, and
getting their exact or even analytic solutions is not an
easy task. This difficulty led researchers to develop
distinct methods to evaluate their approximate or analytic
solutions. Among these methods are the Adomian
decomposition method [28], the homotopy analysis
method [29], variational iteration method [30], finite
difference method [31], reproducing kernel Hilbert space
method [32] and differential transform method [33].
In this paper we are going to solve this model by two
analytical and numerical methods. The first technique is
the conformable Laplace decomposition method
(CLDM), which is an efficient combination of the
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conformable Laplace transform and the Adomian
decomposition method. The CLDM has been effectively
applied to tackle a variety of nonlinear problems. For
instance, it was employed to solve fractional
Newell-Whitehead-Segel equation in [34], Fractional
Burger’s Type Equations in [35], and conformable
fractional fokker-planck equation in [36]. The second
technique is the conformable residual power series
algorithm (CRPSA), which minimizes the residual error
of the equation under study. The residual power series
method (RPSM) was firstly developed and applied to
fuzzy equations by Arqub in 2013 [37]. It have been
proved its efficiency, accuracy and simplicity in many
consequent researches when dealing with various
problems. So, it was rapidly modified to FDEs [38], [39]
and [40].
For more recent works that employ Laplace
decomposition method and fractional RPSM to solve
real-life models, the reader is suggested to see [41], [42],
[43] and [44].
This paper is organized as follows: In section 2, we give
some basic concepts related to conformable derivative,
conformable Laplace operator, and fractional power
series. In section 3, a summarized description for the
CLDM when employed to solve the CSM. Similarly, in
Section 4, the FRPSA is described through an organized
algorithm and the algorithm is applied to the CSM. Some
numerical results for both methods are given and
discussed in Section 5. Finally, it is end by a conclusion.

2 Preliminaries related to conformable

derivative and fractional power series

In this section, we present the basic concepts that we need
in our paper. We start by the definition of conformable
derivative, followed by conformable Laplace transform
(CLT) and some properties, then we give the form of
fractional power series with some necessary theorems.

Definition 1.[45] Consider Ψ : [a,∞)→ ℜ, and γ ∈ (0,1].
Then the conformable derivative (CD) of Ψ is

T
γ
t Ψ(t) =

{

limε→0
Ψ (t+ε(t−a)1−γ )−Ψ(t)

ε , t > a,

limt→a+(T
γ
t Ψ )(t), t = a.

(4)

If T
γ
t Ψ exists over [a,∞), then Ψ is said to be

γ-conformable differentiable on [a,∞.)
A beautiful property of the γ-conformable differentiable
function is its relation with classical integer order
derivative which is:

(T
γ
t Ψ)(t) = t1−γΨ

′
(t). (5)

Now, we present the CLT which is a modification of
classical well-known Laplace operator to fit the CD.

Definition 2.[45] Let a∈ ℜ,0 < γ ≤ 1 and Ψ(t) : [a,∞)→
ℜ. Then the CLT of order γ starting from a of Ψ(t) is given

by

Lγ{Ψ(t)}=Ψγ(s) =

∫ ∞

a

e
−s

(t−a)γ

γ Ψ (t)(t − a)γ−1dt. (6)

Theorem 1.[45] Let a ∈ ℜ,0 < γ ≤ 1 and Ψ(t) : [a,∞)→
ℜ be differentiable. Then

Lγ{T
γ
t Ψ )(t)}= sΨγ(s)−Ψ(a). (7)

Some properties of CLT including the relationship
between the classical Laplace transform and the CLT are
listed below [45].

*Lγ{Ψ(t)}= L{Ψ((γt)
1
γ )}.

*Lγ{1}= 1
s
,s > 0,

*Lγ{
tγ

γ }=
1
s2 ,s > 0,

*Lγ{tk}= γ
k
γ

s
1+ k

γ
Γ (1+ 1

γ ),s > 0,

*Lγ{e
tγ

γ }= 1
s−1

,s > 1,

*Lγ{sin(τ tγ

γ )} =
τ

s2+τ2 ,

*Lγ{cos(τ tγ

γ )}=
s

s2+τ2 ,

*Lγ{e
−k tγ

γ Ψ (t)}= L{e−ktΨ((γt)
1
γ )}.

Now, we give the definition of conformable power series
followed by some related theorems.

Definition 3.[46] A power series which has the form

∞

∑
ℵ=0

Cℵ(t − a)ℵγ =C0 +C1(t − a)γ +C2(t − a)2γ + · · · ,

where 0 < γ ≤ 1, t ≥ a, is called conformable power

series(CPS) expansion about a and C0,C1,C2, · · · are

called the coefficients of the series.

Theorem 2.[46] Suppose that the CPS

Ψ(t) = ∑∞
ℵ=0Cℵtℵγ has radius of convergence ℘> 0 for

all 0 ≤ t <℘. Then Ψ(t) is infinitely γ-differentiable over

the interval [0,℘) with Cℵ =
((ℵ)T

γ
t Ψ )(0)

γℵℵ!
, where

(ℵ)T
γ
t Ψ = T

γ
t (T

γ
t (T

γ
t · · ·T

γ
t (Ψ ))) (ℵ-times).

3 Conformable Laplace Decomposition

Algorithm for Solving CSM

In this section, we present a summarized description for
the CLDM through a simple organized algorithm. After
that, we employ this algorithm to produce recurrence
formulas to solve the CSM in (2) and (3).
Algorithm 1: To get analytic-approximate solution for
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the system of conformable ordinary differential equations
(CODEs) of the form:

T
γ
t Ψ1(t) = H1(t,Ψ1,Ψ1, · · · ,Ψm),0 < γ ≤ 1, t ≥ 0,

T
γ
t Ψ1(t) = H2(t,Ψ1,Ψ1, · · · ,Ψm),

...

T
γ
t Ψm(t) = Hm(t,Ψ1,Ψ1, · · · ,Ψm),

(8)

subject to

Ψ1(0) = δ1, Ψ2(0) = δ2, · · · Ψm(m) = δm, (9)

by the CLDM, we do the following steps for each
i = 1,2, · · · ,m:

Step 1: We start by separating each Hi into linear and
nonlinear functions of Ψi(t). That is

Hi(t,Ψ1,Ψ2, . . . ,Ψm) =ℓi(Ψ1,Ψ2, . . . ,Ψm)+

Ni(Ψ1,Ψ2, . . . ,Ψm),
(10)

where ℓi and Ni are the linear and nonlinear
components of Hi, respectively.
Step 2: Take the CLT to both sides of each equation in
(10). So, we get:

sLγ{Ψi(t)}=δi +Lγ{ℓi(Ψ1,Ψ2, . . . ,Ψm)}

+Lγ{Ni(Ψ1,Ψ2, . . . ,Ψm)}.
(11)

Step 3: Make suitable manipulation and take the
inverse CLT to both sides of each equation in system
(11) to obtain:

Ψi(t) =δi +L
−1
γ {

1

s
Lγ{ℓi(Ψ1,Ψ2, . . . ,Ψm)}}

+L
−1
γ {

1

s
Lγ{Ni(Ψ1,Ψ2, . . . ,Ψm)}}.

(12)

Step 4: Replace each unknown function Ψi(t) in the
linear terms of (12) by the infinite series ∑∞

k=0 ψik(t),
and replace each nonlinear term Ni by the series of
Adomian polynomials:

Ni(Ψ1,Ψ2, . . . ,Ψm) =
∞

∑
k=0

Aik.

The Adomian polynomials Aik can be calculated by

Ai,k

=
1

k!

dk
Ni

dηk

(

k

∑
j=0

η jψ1 j,
k

∑
j=0

η jψ2 j, . . . ,
k

∑
j=0

η jψm j

)
∣

∣

∣

∣

∣

η=0

,

k = 0,1,2, . . . .

(13)

Step 5: From the resulting system of equations:

∞

∑
k=0

ψik = δi

+L−1
γ {

1

s
Lγ{ℓi

(

∞

∑
k=0

ψ1k,
∞

∑
k=0

ψ2k, . . . ,
∞

∑
k=0

ψmk

)

}}

+L−1
γ {

1

s
Lγ{

∞

∑
k=0

Aik}},

(14)

we deduce the recurrence relations:

ψi0(t) = δi,

ψi(k+1)(t) = L−1
γ {

1

s
Lγ{ψik(t)}}+L−1

γ {
1

s
Lγ{Aik}},

k = 0,1,2, . . . .

(15)

Step 6: Choose a suitable number of iterations to get
the approximate solution:

ΨiN(t) =
N

∑
k=0

ψik(t).

Surely, a larger number of iterations N leads to more
accuracy. In fact,

lim
N→∞

ΨiN(t) =
∞

∑
k=0

ψik(t) =Ψi(t). (16)

Convergence conditions of this series have been
examined by several authors, mainly in [47]. Additional
references related to the use of the ADM, combined with
the CLT, can be found in [48], [49], and [50].
Now, we implement Algorithm 1 to solve the CSM in (2)
with the ICs in (3). We start by separating the linear and
non-linear terms of each equation in (2) and then taking
the CLT to get the desired results.

sLγ{P(t)}= p0 +
ϑ

s
−κLγ{P}− δLγ{P(t)S(t)},

sLγ{O(t)}= o0 − (σ +κ)Lγ{O}+ δLγ{P(t)S(t)},

sLγ{S(t)}= s0 +Lγ{σO− (κ + ζ )S}+αLγ{S(t)Q(t)},

sLγ{Q(t)}= q0 −Lγ{κQ− ζ (1− ς)S}−αLγ{S(t)Q(t)},

sLγ{L(t)}= l0 +Lγ{ςζS−κL}.
(17)
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Rearranging the terms of (17), and taking the inverse
CLT, we obtain

P(t) = p0 +
ϑ tγ

γ
−L−1

γ

{κ

s
Lγ{P}

}

−L−1
γ

{

δ

s
Lγ{P(t)S(t)}

}

,

O(t) = o0 −L
−1
γ

{

σ +κ

s
Lγ{O}

}

+L−1
γ

{

δ

s
Lγ{P(t)S(t)}

}

,

S(t) = s0 +L−1
γ

{

1

s
Lγ{σO− (κ + ζ )S}

}

+L
−1
γ

{α

s
Lγ{S(t)Q(t)}

}

,

Q(t) = q0 −L−1
γ

{

1

s
Lγ{κQ− ζ (1− ς)S}

}

−L−1
γ

{α

s
Lγ{S(t)Q(t)}

}

,

L(t) = l0 +L
−1
γ

{

1

s
Lγ{ςζS−κL}

}

.

(18)

The CLDM presents the solution of system (2) in the
form of infinite series as

P(t) =
∞

∑
k=0

pk(t),

O(t) =
∞

∑
k=0

ok(t),

S(t) =
∞

∑
k=0

sk(t),

Q(t) =
∞

∑
k=0

qk(t),

L(t) =
∞

∑
k=0

lk(t),

(19)

while it expresses the nonlinear terms P(t)S(t) and
S(t)Q(t) in terms of Adomian polynomials as follows:

P(t)S(t) =
∞

∑
k=0

Ak(t),

Ak =
1

k!

dk

dηk

(

(
k

∑
ι=0

η ι pι )(
k

∑
ι=0

η ι sι )

)
∣

∣

∣

∣

∣

η=0

,

S(t)Q(t) =
∞

∑
k=0

Bk(t),

Bk =
1

k!

dk

dηk

(

(
k

∑
ι=0

η ι sι )(
k

∑
ι=0

η ι qι)

)
∣

∣

∣

∣

∣

η=0

, k = 0,1, · · · .

(20)

As an illustration, the first 6 Adomian polynomials are:

A0 = p0s0,

A1 = p1s0 + p0s1,

A2 = p2s0 + p1s1 + p0s2,

A3 = p3s0 + p2s1 + p1s2 + p0s3,

A4 = p4s0 + p3s1 + p2s2 + p1s3 + p0s4,

A5 = p5s0 + p4s1 + p3s2 + p2s3 + p1s4 + p0s5,

B0 = q0s0,

B1 = q1s0 + q0s1,

B2 = q2s0 + q1s1 + q0s2,

B3 = q3s0 + q2s1 + q1s2 + q0s3,

B4 = q4s0 + q3s1 + q2s2 + q1s3 + q0s4,

B5 = q5s0 + q4s1 + q3s2 + q2s3 + q1s4 + q0s5.

Substituting (19) and (20) into (18) implies:

∞

∑
k=0

pk = p0 +
ϑ tγ

γ
−L−1

γ

{

κ

s
Lγ

{

∞

∑
k=0

pk

}}

−L−1
γ

{

δ

s
Lγ

{

∞

∑
k=0

Ak

}}

,

∞

∑
k=0

ok = o0 −L
−1
γ

{

σ +κ

s
Lγ

{

∞

∑
k=0

ok

}}

+L−1
γ

{

δ

s
Lγ

{

∞

∑
k=0

Ak

}}

,

∞

∑
k=0

sk = s0 +L−1
γ

{

1

s
Lγ

{

σ
∞

∑
k=0

ok − (κ + ζ )
∞

∑
k=0

sk

}}

+L−1
γ

{

α

s
Lγ

{

∞

∑
k=0

Bk

}}

,

∞

∑
k=0

qk = q0 −L
−1
γ

{

1

s
Lγ

{

κ
∞

∑
k=0

qk − ζ (1− ς)
∞

∑
k=0

sk

}}

−L
−1
γ

{

α

s
Lγ

{

∞

∑
k=0

Bk

}}

,

∞

∑
k=0

lk = l0 +L−1
γ

{

1

s
Lγ

{

ςζ
∞

∑
k=0

sk −κ
∞

∑
k=0

lk

}}

.

(21)
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which suggests the recurrence relations:

p0(t) = p0 +
ϑ tγ

γ
, o0(t) = o0, s0(t) = s0,

q0(t) = q0, l0(t) = l0,

pk+1 =−L−1
γ

{κ

s
Lγ {pk}

}

−L−1
γ

{

δ

s
Lγ {Ak}

}

,

ok+1 =−L−1
γ

{

σ +κ

s
Lγ {ok}

}

+L−1
γ

{

δ

s
Lγ {Ak}

}

,

sk+1 = L
−1
γ

{

1

s
Lγ {σok − (κ + ζ )sk}

}

+L−1
γ

{α

s
Lγ {Bk}

}

,

qk+1 =−L−1
γ

{

1

s
Lγ {κqk − ζ (1− ς)sk}

}

−L
−1
γ

{α

s
Lγ {Ak}

}

,

lk+1 = L−1
γ

{

1

s
Lγ {ςζ sk −κ lk}

}

, k = 0,1,2, . . .

(22)

As a final step in applying the CLDM to solve CSM in
(2), we choose a suitable number of iterations for (22) to
get a good approximation.

4 Description of Conformable Residual

Power Series Method to Solve CSM

Our target in this section is to employ CRPSA to solve the
CSM in (2) and (3). We first summarize this methodology
by an algorithm, then employ it to the CSM.

Algorithm 2: To get a conformable fractional series
solution for the system of CODEs in (8) and (9), we
follow the following successive steps for each
i = 1,2, . . . ,m:

Step 1: Start by assuming that the solution of (8) and
(9) has a CPS of the form

Ψi(t) =
∞

∑
k=0

ψiktkγ . (23)

Step 2: Use the ICs in (9) to get ψi0 = δi. So, the series
solution can be rewritten as:

Ψi(t) = δi +
∞

∑
k=1

ψiktkγ . (24)

Step 3: Use the R-th truncated series as an
approximation of each unknown function in (8) as:

ΨiR(t) = δi +
R

∑
k=1

ψiktkγ . (25)

Step 4: Define the R-th residual function as:

ResidΨiR(t) = T
γ
t ΨiR(t)−Hi(t,Ψ1R,Ψ2R, . . . ,ΨmR),

(26)
and the residual function by:

ResidΨi(t) = lim
R→∞

ResidΨiR(t)

= T
γ
t Ψi(t)−Hi(t,Ψ1,Ψ2, . . . ,Ψm).

(27)

Obviously, T
γ
t Residq(t) = 0 for t ≥ 0. And more

generally,

((ℵ)T
γ
t ResidΨi)(0) = ((ℵ)T

γ
t ResidΨiR)(0) = 0

for eachℵ = 0,1,2, . . . ,R− 1.

Step 5: For ℵ = 0,1,2, . . . ,R− 1, solve:

((ℵ)T
γ
t ResidΨiR)(0) = 0 (28)

to get the coefficients ψiR.
Step 6: Repeat Steps 3-6 so that you can find more
coefficients of the CPS and achieve the required
accuracy.

Now, we implement the CRPSA to solve the CSM in (2)
and (3) as follows. Assume that the solution of (2) and (3)
has a CPS of the form:

P(t) =
∞

∑
k=0

pktkγ ,

O(t) =
∞

∑
k=0

oktkγ ,

S(t) =
∞

∑
k=0

sktkγ ,

Q(t) =
∞

∑
k=0

qktkγ ,

L(t) =
∞

∑
k=0

lktkγ .

(29)

Using the ICs in (3), we can approximate the solution by
the R-th truncated series of the forms:

PR(t) = p0 +
R

∑
k=1

pktkγ ,

OR(t) = o0 +
R

∑
k=1

oktkγ ,

SR(t) = s0 +
R

∑
k=1

sktkγ ,

QR(t) = q0 +
R

∑
k=1

qktkγ ,

LR(t) = l0 +
R

∑
k=1

lktkγ .

(30)
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Now, we define the Rth-residual functions as

ResidPR(t) = T
γ
t PR −ϑ + δPRSR +κPR,

ResidOR(t) = T
γ
t OR − δPRSR +(σ +κ)OR,

ResidSR(t) = T
γ
t SR −σOR −αSRQR +(κ + ζ )SR,

ResidQR(t) = T
γ
t QR +αSRQR +κQR− ζ (1− ς)SR,

ResidLR(t) = T
γ
t LR − ςζSR +κLR.

(31)

The main step is to solve the system of algebraic
equations withℵ = 0,1,2, . . . ,R− 1.

((ℵ)
T

γResidPR)(0) = 0,

((ℵ)T
γ
t ResidOR)(0) = 0,

((ℵ)T
γ
t ResidSR)(0) = 0,

((ℵ)T
γ
t ResidQR)(0) = 0,

((ℵ)T
γ
t ResidLR)(0) = 0.

(32)

So, we compute the coefficients of each truncated CRPS in
(30). To illustrate this, let R = 1 in systems (30) and (31).
Then:

P1(t) = p0 + p1tγ ,

O1(t) = o0 + o1tγ ,

S1(t) = s0 + s1tγ ,

Q1(t) = q0 + q1tγ ,

L1(t) = l0 + l1tγ .

ResidP1(t) = γ p1 +κ p0 + δ p0s0 + δ p1s1t2γ + δ p1s0tγ

+ δ p0s1tγ +κ p1tγ −ϑ ,

ResidO1(t) = αo0 + γo1 +κo0 +αo1tγ +κo1tγ − δ p0s0

− δ p1s1t2γ − δ p1s0tγ − δ p0s1tγ ,

ResidS1(t) =−o0σ + o1 −σ tγ −αq0s0 −αq1s1t2γ

−αq1s0tγ −αq0s1tγ + γs1 + ζ s0 +κs0

+ ζ s1tγ +κs1tγ ,

ResidQ1(t) = γq1 +κq0 +αq0s0 +αq1s1t2γ +αq1s0tγ

+αq0s1tγ +κq1tγ + ζ s0ς − ζ s0 + ζ s1ςtγ

− ζ s1tγ ,

ResidL1(t) = γl1 +κ l0 +κ l1tγ − ζ s0ς − ζ s1ςtγ .

From (32), we have to solve the system of algebraic
equations (ResidP1)(0) = 0, (ResidO1)(0) = 0,
(ResidS1)(0) = 0, (ResidQ1)(0) = 0,
and(ResidL1)(0) = 0, which implies

p1 =
ϑ − p0 (κ + δ s0)

γ
,

o1 =
δ p0s0 − o0(α +κ)

γ
,

s1 =
o0σ − s0 (ζ +κ −αq0)

γ
,

q1 =−
q0 (κ +αs0)+ ζ s0(ς − 1)

γ
,

l1 =
ζ s0ς −κ l0

γ
.

To find the second set of coefficients, we put R=2 in
systems (30) and (31). Then

P2(t) = p0 + p1tγ + p2t2γ ,

O2(t) = o0 + o1tγ + o2t2γ ,

S2(t) = s0 + s1tγ + s2t2γ ,

Q2(t) = q0 + q1tγ + q2t2γ ,

L2(t) = l0 + l1tγ + l2t2γ ,

ResidP2(t) =
−γϑ −κ p2

0 (γ +κtγ)+ p0ϑ (γ +κtγ)

γ

+ δ p0s0

(

o0σϑ t2γ

γ2
− p0

)

+ p2tγ (2γ +κtγ)

+
δ s0tγ

(

γo0 p2σ t2γ −κ p2
0 (γ + o0σ tγ)

)

γ2

−
δ p0s2

0t2γ (ϑ(ζ +κ)− p0 (κ(ζ +κ)− δo0σ))

γ2

−
δ s2

0t2γ (α p0q0 (κ p0 −ϑ)+ γ p2(ζ +κ)tγ)

γ2

+
δ s2

0t2γ
(

δ p2
0s0 (ζ +κ −αq0)+αγ p2q0tγ

)

γ2

+
δ s2t3γ

(

−p2
0 (κ + δ s0)+ γ p2tγ + p0ϑ

)

γ
,
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ResidO2(t) =
αγo2t2γ − o2

0(α +κ)(γ +(α +κ)tγ)

γ

+
δo0 p0s0 (γ +(α +κ)tγ)+ γo2tγ (2γ +κtγ)

γ

−
δ s0t2γ

(

o0σ
(

−κ p2
0 + γ p2tγ + p0ϑ

)

− ζ p0s0ϑ
)

γ2

+
δ p0s2

0t2γ (κϑ − p0 (κ(ζ +κ)− δo0σ))

γ2

+
δ s2

0t2γ (α p0q0 (κ p0 −ϑ)+ γ p2(ζ +κ)tγ)

γ2

−
δ s2

0t2γ
(

δ p2
0s0 (ζ +κ −αq0)+αγ p2q0tγ

)

γ2

−
δ s2t3γ

(

−p2
0 (κ + δ s0)+ γ p2tγ + p0ϑ

)

γ
,

ResidS2(t) =
σ
(

o0s0 (γ + ζ tγ)− γo2t2γ + o2
0(α +κ)tγ

)

γ

−
o0σs0tγ

(

γδ p0 +αtγ
(

γq2tγ −κq2
0

))

γ2

−
s2

0 ((ζ +κ)(γ +(ζ +κ)tγ)−αγq0)

γ

+
αq0s2

0tγ (γ(ζ +κ)+ ζo0σ(ς − 1)tγ)

γ2

+
αq2

0s2
0t2γ (αo0σ −κ (ζ +κ −αq0))

γ2

−
αt3γ

(

−q2s2
0 (ζ +κ −αq0)−κq2

0s2

)

γ

−
αζq0s3

0t2γ (ζς +κ(ς − 1)+ 2αq0)

γ2

+
αq0s3

0t2γ
(

ζ 2 +α2q2
0 +αq0(ζς −κ)

)

γ2

− s2tγ
(

−2γ +αq2t3γ − (ζ +κ)tγ
)

+
αq0s0s2t3γ (γζ (ς − 1)+ακo0q0σs0tγ)

γ2
,

ResidQ2(t) =
γq2tγ (2γ +κtγ)−κq2

0

(

γ +αs2t3γ +κtγ
)

γ

+
ζ s0(ς − 1)(o0σ tγ − q0 (γ +κtγ))

γ

−
αs0

(

o0q2(−σ)t3γ + γq2
0 + ζq0s2(ς − 1)t3γ

)

γ

−
s0tγ

(

ζ s0 ((ς − 1)(ζ +κ)+αq0)+α2q2
0s2t2γ

)

γ

+
αq0s0t2γ (ζκq0s0 − o0σ (κq0 + ζ s0(ς − 1)))

γ2

−
αs2

0t2γ
(

q2
0

(

αo0σ −κ2
)

+ακq3
0+ γζq2tγ

)

γ2

+
αs2

0t2γ (γq2 (−tγ) (κ −αq0)− ζq0s0(ζ +κ))

γ2

−
αq0s3

0t2γ (αq0(ζ (ς − 2)−κ)− ζς(ζ +κ))

γ2

+
t2γ
(

γ2s2

(

ζ (ς − 1)+αq2t2γ
)

−α3q3
0s3

0

)

γ2

−
ακq2

0s0tγ

γ
,

ResidL2(t) =−κ l2
0 −

κ2l2
0tγ

γ
+κ l2t2γ + 2γl2tγ − ζ s2ςt2γ

+ ζ l0s0ς +
ζκ l0s0ςtγ

γ
−

ζo0σs0ςtγ

γ

+
ζ 2s2

0ςtγ

γ
+

ζκs2
0ςtγ

γ
−

αζq0s2
0ςtγ

γ
.

From (2), we have to solve the system of algebraic
equations
(T

γ
t ResidP2)(0) = 0,

(T
γ
t ResidO2)(0) = 0,

(T
γ
t ResidS2)(0) = 0,

(T
γ
t ResidQ2)(0) = 0, and

(T
γ
t ResidL2)(0) = 0.

So, we get the system

2γ2 p2 −κ p2
0 (κ + δ s0)+κ p0ϑ = 0,

− o2
0(α +κ)2 + 2γ2o2 + δo0 p0s0(α +κ) = 0,

o2
0σ(α +κ)+ o0σs0 (ζ +κ − δ p0)

− s2
0(ζ +κ)(ζ +κ −αq0)+ 2γ2s2 = 0,

− ζ s0(ς − 1)(s0(ζ +κ)− o0σ)+ 2γ2q2

+ ζq0s0(ς − 1)(αs0 −κ)−κq2
0 (κ +αs0) = 0,

2γ2l2 −κ2l2
0 + ζ s0ς (κ l0 − o0σ)+ ζ s2

0ς (ζ +κ −αq0) = 0.
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Solving the resulting system, we get

p2 =−
κ p0 (−ϑ + p0 (κ + δ s0))

2γ2
,

o2 =
o0(α +κ)(o0(α +κ)− δ p0s0)

2γ2
,

s2 =
1

2γ2
(o2

0σ(α +κ)+ o0σs0 (ζ +κ − δ p0)

− s2
0(ζ +κ)(ζ +κ −αq0)),

q2 =
−1

2γ2
(σ(κ +σ)o2

0 +σo0(ζ +κ − δ p0)s0

− (ζ +κ)(ζ +κ −αq0)s
2
0),

l2 =
κ2l2

0 − ζκ l0s0ς + ζ s0ς (o0σ − s0 (ζ +κ −αq0))

2γ2
.

This procedure can be repeated many times to get the
required number of coefficients for the approximate
solution of the CSM in (2) and (3), and consequently the
required accuracy. Of course, higher accuracy can be
achieved by evaluating more components.

5 Numerical Results

In this section, we apply both proposed techniques that
are described in Algorithms 1 and 2 to investigate
approximate numerical solutions for the CSM with
specified values of the parameters. In fact, we assume the
same values of the parameters as given in the classical
smoking model of integer order derivative [11]. So, we
assign values for each parameters as follows:

ϑ = 1, δ = 0.14, κ = 0.05, σ = 0.002,

α = 0.0025, ζ = 0.8, ς = 0.1,

and the initial populations of potential smokers,
occasional smokers, smokers, temporary quitters, and
permanent quitters are assumed to be:

p0 = 40, o0 = 1, s0 = 20, q0 = 10, l0 = 5,

successively.
To perform our calculations, we use Mathematica 10
software and compute 25 iterations for the CSM solutions
with arbitrary conformable order. In fact, the solution
terms that result from both methods are identical. A
sample of the results is the tenth truncated series solution

that is obtained by both techniques as

P10(t) =40+
203.109t10γ

γ10
−

257.646t9γ

γ9
+

312.847t8γ

γ8

−
360.864t7γ

γ7
+

391.628t6γ

γ6
−

394.829t5γ

γ5

+
363.319t4γ

γ4
−

297.238t3γ

γ3
+

207.169t2γ

γ2

−
113tγ

γ
,

O10(t) =10−
203.161t10γ

γ10
+

257.716t9γ

γ9
−

312.938t8γ

γ8

+
360.977t7γ

γ7
−

391.7605t6γ

γ6
+

394.976t5γ

γ5

−
363.469t4γ

γ4
+

297.377t3γ

γ3
−

207.242t2γ

γ2

+
tγ

γ
,

S10(t) =20+
0.0592332t10γ

γ10
−

0.0811802t9γ

γ9

+
0.10849899t8γ

γ8
−

0.143958t7γ

γ7
+

0.201203t6γ

γ6

−
0.339961t5γ

γ5
+

0.800531t4γ

γ4

−
2.421034t3γ

γ3
+

7.24448t2γ

γ2
−

16.48tγ

γ
,

Q10(t) =10−
0.00668552t10γ

γ10

+
0.0101606t9γ

γ9
−

0.0160952t8γ

γ8
+

0.0287447t7γ

γ7

−
0.0636761t6γ

γ6
+

0.179750t5γ

γ5
−

0.599103t4γ

γ4

+
2.07556t3γ

γ3
−

6.3968t2γ

γ2
+

13.4tγ

γ
,

L10(t) =5−
0.000654304t10γ

γ10
+

0.000972514t9γ

γ9

−
0.001454t8γ

γ8
+

0.002333t7γ

γ7
−

0.004644t6γ

γ6

+
0.0133183t5γ

γ5
−

0.0509799t4γ

γ4

+
0.204735t3γ

γ3
−

0.69295t2γ

γ2
+

1.35tγ

γ
.
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Comparisons between the 25th approximate solutions for
the epidemic smoking model for γ ∈ {1,0.95,0.85} are
presented in Tables 1-5. The solution natures for
γ ∈ {1,0.95,0.85,0.75} are explored with time change
for each category of smokers in the CSM in Figures 1-5.
It is clear form these graphs that the numbers of both
potential smokers and smokers decrease over time, while
the numbers of smokers in the remaining three categories
increase with time. Moreover, we notice that the use of
conformable operator instead of the classical integer order
generalizes the epidemic model and gives us the
opportunity of obtaining variety of results and
expectations. In our proposed smoking model, at fixed
time, the number of potential smokers and smokers
decrease when conformable derivative order become less
than 1 which is clear since the curves in fractional case
appear below the curves of γ = 1 as shown in Figures 1
and 3. Conversely, the solution curves of fractional orders
for O,Q and L are above the curves of γ = 1 in Figures 2,
4 and 5.
To check the validity of our results, and due to the
absence of the exact solution of this CSM, we calculate
some values for the 25th residual errors depending on the
formulas (25) with R = 25. These values are given in
Tables 6-10.

Table 1: Approximate number of potential smokers P25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 40. 40. 40.

0.1 30.5072 29.1166 25.8128

0.2 23.785 22.2577 18.9452

0.3 18.9262 17.5369 14.6692

0.4 15.3484 14.1636 11.7893

0.5 12.6687 11.6867 9.75302

0.6 10.6306 9.8277 8.26193

0.7 9.05873 8.40668 7.13469

0.8 7.83055 7.29999 6.16484

0.9 6.84653 6.36993 4.11757

1. 5.85895 4.8901 -9.63683

6 Conclusion

In this paper, we investigated the solution of a
biomathematical model that is related to the population of
smoker. We replaced classical first derivative by the
conformable fractional derivative. The CRPSA and
CLDM are implemented to obtain analytic and
approximate solution and some numerical results are
produced by the help of Mathematica 10 software. From
the tabulated and graphical results that are shown in
Tables 1-10 and in Figures 1-5, we can conclude the
following:

Table 2: Approximate number of potential smokers O25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 10. 10. 10.

0.1 19.3402 20.703 23.9331

0.2 25.909 27.393 30.5957

0.3 30.614 31.9489 34.6821

0.4 34.038 35.1601 37.3822

0.5 36.5641 37.4773 39.2459

0.6 38.4489 39.1785 40.5701

0.7 39.8679 40.4436 41.5352

0.8 40.9438 41.396 42.347

0.9 41.776 42.1734 44.24

1. 42.6125 43.5021 57.8448

Table 3: Approximate number of potential smokers S25(t).

0. 20. 20. 20.

0.1 18.4221 18.1508 17.4509

0.2 16.9756 16.5902 15.6542

0.3 15.6484 15.2053 14.1662

0.4 14.4298 13.9617 12.8889

0.5 13.3102 12.8377 11.7724

0.6 12.281 11.8175 10.785

0.7 11.3344 10.8889 9.90465

0.8 10.4633 10.0417 9.11493

0.9 9.66146 9.26717 8.40295

1. 8.92304 8.55802 7.75713

Table 4: Approximate number of potential smokers Q25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 10. 10. 10.

0.1 11.278 11.4967 12.0593

0.2 12.4398 12.7476 13.4913

0.3 13.4959 13.846 14.6619

0.4 14.4556 14.8215 15.6529

0.5 15.3276 15.6924 16.5068

0.6 16.1194 16.4725 17.2503

0.7 16.8381 17.1726 17.9022

0.8 17.4898 17.8015 18.4766

0.9 18.0802 18.3667 18.9845

1. 18.6145 18.8748 19.4348

*Regardless of the values of conformable orders, the
numbers of both potential smokers and smokers
decrease over time, while the numbers of smokers in
the remaining three categories increase with time.

*The use of conformable operator instead of the
classical integer order generalizes the epidemic model
and gives us the opportunity of obtaining variety of
results and expectations. In CSM, at fixed time, the
number of potential smokers and smokers decrease
when conformable derivative order become less than
1 which is clear since the curves in fractional case
appear below the curves of γ = 1 as shown in Figures
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Table 5: Approximate number of potential smokers L25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 5. 5. 5.

0.1 5.12827 5.15011 5.20611

0.2 5.24384 5.27425 5.34733

0.3 5.34778 5.38195 5.46091

0.4 5.44105 5.47623 5.5553

0.5 5.52453 5.55902 5.63491

0.6 5.59902 5.63175 5.70255

0.7 5.66527 5.69557 5.76021

0.8 5.72393 5.75142 5.8094

0.9 5.77564 5.80013 5.85129

1. 5.82094 5.84239 5.88684

Fig. 1: Plots of the 25th approximate solution for potential

smoker with (Black: γ = 1, Blue: γ = 0.95, Red: γ = 0.85, Green:

γ = 0.75 )

Fig. 2: Plots of the 25th approximate solution for occasional

smoker with (Black: γ = 1, Blue: γ = 0.95, Red: γ = 0.85, Green:

γ = 0.75 )

1 and 3. Conversely, the solution curves of fractional
orders for O,Q and L are above the curves of γ = 1 in
Figures 2, 4 and 5.

*Matching results for the same number of iteration
proves the validity and efficiency of the CRPSA and
CLDM in solving epidemic model. In fact, small

Fig. 3: Plots of the 25th approximate solution for smoker with

(Black: γ = 1, Blue: γ = 0.95, Red: γ = 0.85, Green: γ = 0.75 )

Fig. 4: Plots of the 25th approximate solution for temporary

quitters with (Black: γ = 1, Blue: γ = 0.95, Red: γ = 0.85, Green:

γ = 0.75 )

Fig. 5: Plots of the 25th approximate solution for permanent

quitters with (Black: γ = 1, Blue: γ = 0.95, Red: γ = 0.85, Green:

γ = 0.75 )

residual error values support the the accuracy of our
approximations.
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Table 6: The 25th residual errors |ResidP25| of approximating

the number of potential smokers by P25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 0 0 0

0.1 1.4211×10−14 2.8422×10−14 0.

0.2 7.1054×10−15 7.1054×10−15 7.3186×10−13

0.3 7.3186×10−13 1.1404×10−11 3.5720×10−9

0.4 9.0326×10−10 1.0039×10−8 1.5283×10−6

0.5 2.2809×10−7 1.9159×10−6 0.000166597

0.6 0.0000207933 0.000138975 0.00765294

0.7 0.000938747 0.00517346 0.193733

0.8 0.0253469 0.118224 3.17187

Table 7: The 25th residual errors |ResidO25| of approximating

the number of occasional smokers by O25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 0 0 0

0.1 0. 0. 1.4211×10−14

0.2 0. 7.1054×10−15 6.9633×10−13

0.3 7.2475×10−13 1.1397×10−11 3.5720×10−9

0.4 9.0337×10−10 1.0041×10−8 1.5285×10−6

0.5 2.2812×10−7 1.9162×10−6 0.000166624

0.6 0.0000207966 0.000138998 0.00765426

0.7 0.000938904 0.00517434 0.193768

0.8 0.0253513 0.118245 3.17246

Table 8: The 25th residual errors |ResidS25| of approximating

the number of smokers by S25(t).

ti γ = 1 γ = 0.95 γ = 0.85

0. 0 0 0

0.1 0. 1.7764×10−15 0.

0.2 3.5527×10−15 1.7764×10−15 1.7764×10−15

0.3 3.5527×10−15 1.7764×10−15 5.5778×10−13

0.4 1.4033×10−13 1.5810×10−12 2.5184×10−14

0.5 3.6907×10−11 3.1642×10−10 2.8858×10−8

0.6 3.5196×10−9 2.4023×10−8 1.3889×10−6

0.7 1.6596×10−7 9.3423×10−7 0.0000367405

0.8 4.6734×10−6 0.0000222642 0.000627088

0.9 0.0000887776 0.000365037 0.00765924

1. 0.00123624 0.004456 0.0718472
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