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Abstract: We give two new approaches for solving the order fractional model of the Chemical Kinetics (CK). The approaches

(Chebyshev collocation (CC) method and the Chebyshev Galerkin (CG) method) are constituted of the Chebyshev polynomials,

Galerkin method, and the collocation method where these techniques are to convert the system of differential equations into a system

of algebraic equations which can be solved easily. Also, we study the error analysis for the methods. This manuscript is expected to

contribute to the vast advantage of chemical science. A complete agreement is achieved between our new methods. Moreover, We also

checked the stability of the proposed methods.
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1 Introduction

There are many works related to mathematical modeling in chemistry, including the chemistry problem by Abbasbandy
and Shirzadi [1], CK is described by a system of nonlinear differential equations in different published works such as the
chemistry problem by Jawary and Raham [2], Ganji et al. [3], Dokoumetzidis et al. [4], and Matinfar et al. [5]. In recent
years, fractional calculus (FC) has gained significant traction and found numerous versatile and robust applications
across a range of research domains, including fluid dynamics, viscoelasticity, image processing, as well as modeling and
prediction of phenomena like covid-19 (as cited in references [6] and [7]) and cancer (as cited in [8]). Several
mathematicians have proposed various definitions of fractional derivatives (as mentioned in references [9] and [10]), but
the two most renowned ones are the Caputo and Riemann-Liouville definitions. Many noteworthy and foundational
contributions to the field of FC can be found in well-known books, such as those authored by Mainardi [11], Podlubny
(in ”Fractional Differential Equations” [12]), and Diethelm [13]. Additionally, the study of control theory for fractional
linear systems has been explored from different angles, including research on systems with conformable fractional
derivatives [14], fractal linear systems [15], and fractional linear systems in infinite-dimensional spaces [16].

In recent years, Chebyshev polynomials have gained prominence and seen extensive development in various research
fields, including the physical and chemical sciences, computational sciences, image manipulation, signal analysis, data
compression, and numerical analysis. They have found utility in a multitude of research applications, exemplified by
works such as the solution of the non-linear one-dimensional Burgers’ equation using sixth-order Chebyshev
polynomials by Abd-Elhameed et al. [17], the robust spectral treatment of a class of initial value problems as presented
by Youssri et al. [18], the utilization of spectral solutions for linear and nonlinear boundary value problems by
Abd-Elhameed et al. [19], and the application of high-order derivatives of fifth-kind Chebyshev polynomials for solving
convection-diffusion equations, again by Abd-Elhameed et al. [20], Bernstein polynomials [21], Mittag-Leffler
polynomials [22] and other business [23,24,25,26,27,28]. There are other numerical methods, including Fractional BDF
Methods [29], Krylov subspaces for differential matrix equation of large-scale [30,31,32], Jacobi Elliptical Function
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Method [33] and the shifted Jacobi collocation techniques [34]. It is compulsory to note that the fractional chemical
kinetics problem is the first one to be solved by the CC method and CG method.

The complete paper is systematized in the following sections: An overview of basic FC is provided in section 2.
The order fractional Model of both CK is provided in section 3. In sections 4 and 5, CC and CG methods are discussed
and presented for both chemistry models. In Section 6, we present the estimate of the error. Numerical experiments are
provided in section 7.

2 Overview of FC

In this section, we will provide essential definitions in the field of FC. It’s worth noting that there exists a variety of
definitions for both derivatives and integrals in the existing body of literature, as referenced by the following works: [35,
36,37,38,39].

Definition 1.The fractional integral of order ν > 0 of a function Θ can be defined as:

IνΘ(t) =
1

Γ (ν)

∫ t

0

Θ(s)

(t − s)1−ν
ds,

with

Γ (ν) =
∫ ∞

0
µν−1e−µ dµ , ℜ(ν)> 0 .

Definition 2.The Caputo fractional derivative of order ν ∈]0,1] of a function Θ can be written as:

DνΘ(t) =
1

Γ (1−ν)

∫ t

0

Θ
′
(s)

(t − s)ν
ds.

3 Fractional model of CK problem

In this section, we present the order fractional model of the CK problem. Assuming that D,E, and H represent distinct
locations within a chemical process model, we proceed to describe the reactions as follows:

D−→ E, (1)

E+H−→D+H, (2)

E+E−→H. (3)

The concentrations within the three spaces represented by D,E, and H are symbolized as Θ1,Θ2, and Θ3, respectively.
Additionally, the reaction rates for Equations (1), (2), and (3) are denoted as r1,r2, and r3, respectively. We will examine
an integer-order model for the chemical kinetics problem, as referenced in previous works [2,1,40,5,3].











dΘ1(t)
dt

=−r1Θ1(t)+ r2Θ2(t)Θ3(t),
dΘ2(t)

dt
= r1Θ1(t)− r2Θ2(t)Θ3(t)− r3Θ 2

2 (t),
dΘ3(t)

dt
= r3Θ 2

2 (t),

(4)

where the initial condition (Θ1(0),Θ2(0),Θ3(0)) = (1,0,0). The main target of this section is to convert the integer order
CK problem into a fractional order CK. The order fractional model of the CK is presented as







cD
ν1
t Θ1(t) =−r1Θ1(t)+ r2Θ2(t)Θ3(t),

cD
ν2
t Θ2(t) = r1Θ1(t)− r2Θ2(t)Θ3(t)− r3Θ 2

2 (t),
cD

ν3
t Θ3(t) = r3Θ 2

2 (t),
(5)

where, D
ν1
t = dν1

dtν1
,D

ν2
t = dν2

dtν2
,D

ν3
t = dν3

dtν3
are fractional derivative with 0 < ν1,ν2,ν3 ≤ 1. If r1 = 1,r2 = 0, and r3 = 1

then










cD
ν1
t Θ1(t) =−Θ1(t),

cD
ν2
t Θ2(t) =Θ1(t)−Θ 2

2 (t),
CD

ν3
t Θ3(t) =Θ 2

2 (t).

(6)

The above system represents a nonlinear reaction that was taken from literature [1,5,3].

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 4, 601-613 (2024) / www.naturalspublishing.com/Journals.asp 603

4 The first approach: CC method

In this section, the Chebyshev polynomials are defined by recurrence formulae on the interval [−1,1] as follows

CP0(t) = 1, CP1(t) = t, CPi+1(t) = 2tCPi(t)−CPi−1(t), i = 1,2,3, . . . ,

and the collocation nodes used in this paper are the roots of Chebyshev polynomials:

ti =
1

2
(1+ cos

(

(2i+ 1)π

2N

)

), i = 0,1, . . . ,N − 1.

Now, assume that the approximate solution of the Eq. (4) in the form:

Θ j,N(t) =
N

∑
i=0

c j,iCPi(t), (7)

For (4), we get the residuals ℜ j,N(t), j = {1,2,3} defined:







ℜ1,N(t) =
cD

ν1
t Θ1,N(t)+ r1Θ1,N(t)− r2Θ2,N(t)Θ3,N(t),

ℜ2,N(t) =
cD

ν2
t Θ2,N(t)− r1Θ1,N(t)+ r2Θ2,N(t)Θ3,N(t)+ r3Θ 2

2,N(t),

ℜ3,N(t) =
cD

ν3
t Θ3,N(t)− r3Θ 2

2,N(t),
(8)

from the initial conditions, we have

Θ1,N(0) = 1, Θ2,N(0) = 0, Θ3,N(0) = 0, (9)

and by inserting the nodes into the (8) such that

ℜ j,N(ti) = 0, i = 1, . . . ,N. (10)

Solving these equations (9) and (10) yields the coefficients c j,0,c j,1, . . . ,c j,N . Thus, Θ j,N(t) given in (7) are founded.

5 A second approach: CG method

In this section, we present new second approach for solving the chemistry fractional problems (4). The philosophy in
applying the CG method is to find Θ j,N such that

1
∫

0

ℜ j,N(t)CPi(t)dt = 0, i = 0, . . . ,N − 1. (11)

Eq. (11) with (9) generate N + 1 sets of equations. Solving these equations gives the unknown coefficients
c j,0,c j,1, . . . ,c j,N . Consequently, Θ j,N given in Eq. (7) can be calculated. Thus, the CG method is obtained.

6 Estimate error

In this section, we study the estimate error.

Theorem 1.Let Θ j(t) be the exact solution of (4) and let Θ j,N(t) be the approximate solution. The error e j,N(t) =Θ j(t)−
Θ j,N(t) satisfies the following equation











































cD
ν1
t e1,N(t) = −r1e1,N(t)+ r2e2,N(t)e3,N(t)+ r2Θ2,N(t)e3,N(t)+ r2Θ2,N(t)Θ3,N(t)−ℜ1,N(t),

cD
ν2
t e2,N(t) = r1e1,N(t)− r2e2,N(t)e3,N(t)− r2e2,N(t)Θ3,N(t)− r2Θ2,N(t)e3,N(t)− r3e3,N(t)

2

−2r3e3,N(t)Θ3,N(t)−ℜ2,N(t),

cD
ν3
t e3,N(t) = r3e2,N(t)

2 + 2r3e2,N(t)Θ2,N(t)−ℜ3,N(t),

e1,N(0) = 1−Θ1,N(0), e2,N(0) =−Θ2,N(0), e3,N(0) =−Θ3,N(0).

(12)
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Proof.We have






ℜ1,N(t) =
cD

ν1
t Θ1,N(t)+ r1Θ1,N(t)− r2Θ2,N(t)Θ3,N(t),

ℜ2,N(t) =
cD

ν2
t Θ2,N(t)− r1Θ1,N(t)+ r2Θ2,N(t)Θ3,N(t)+ r3Θ 2

2,N(t),

ℜ3,N(t) =
cD

ν3
t Θ3,N(t)− r3Θ 2

2,N(t),

and






cD
ν1
t Θ1(t) =−r1Θ1(t)+ r2Θ2(t)Θ3(t),

cD
ν2
t Θ2(t) = r1Θ1(t)− r2Θ2(t)Θ3(t)− r3Θ 2

2 (t),
cD

ν3
t Θ3(t) = r3Θ 2

2 (t),

then

cD
ν1
t e1,N(t) =

cD
ν1
t (Θ1(t)−Θ1,N(t))

= −r1Θ1(t)+ r2Θ2(t)Θ3(t)+ r1Θ1,N(t)− r2Θ2,N(t)Θ3,N(t)−ℜ1,N(t)

= −r1(e1,N(t)+Θ1,N(t))+ r2(e2,N(t)+Θ2,N(t))(e3,N(t)+Θ3,N(t))+ r1Θ1,N(t)

−r2Θ2,N(t)Θ3,N(t)−ℜ1,N(t)

= −r1e1,N(t)+ r2(e2,N(t)e3,N(t)+ e2,N(t)Θ3,N(t)+Θ2,N(t)e3,N(t)+Θ2,N(t)Θ3,N(t))

−r2Θ2,N(t)Θ3,N(t)−ℜ1,N(t)

= −r1e1,N(t)+ r2e2,N(t)e3,N(t)+ r2Θ2,N(t)e3,N(t)+ r2Θ2,N(t)Θ3,N(t)−ℜ1,N(t).

and

cD
ν2
t e2,N(t) =

cD
ν2
t (Θ2(t)−Θ2,N(t))

= r1Θ1(t)− r2Θ2(t)Θ3(t)− r3Θ 2
2 (t)− r1Θ1,N(t)+ r2Θ2,N(t)Θ3,N(t)+ r3Θ 2

2,N(t)−ℜ2,N(t)

= r1(e1,N(t)+Θ1,N(t))− r2(e2,N(t)+Θ2,N(t))(e3,N(t)+Θ3,N(t))− r3(e3,N(t)+Θ3,N(t))
2

−r1Θ1,N(t)+ r2Θ2,N(t)Θ3,N(t)+ r3Θ
2
2,N(t)−ℜ2,N(t)

= r1e1,N(t)− r2(e2,N(t)e3,N(t)+ e2,N(t)Θ3,N(t)+Θ2,N(t)e3,N(t)+Θ2,N(t)Θ3,N(t))

−r3(e3,N(t)
2 + 2e3,N(t)Θ3,N(t)+Θ3,N(t)

2)+ r2Θ2,N(t)Θ3,N(t)+ r3Θ 2
2,N(t)−ℜ2,N(t)

= r1e1,N(t)− r2(e2,N(t)e3,N(t)+ e2,N(t)Θ3,N(t)+Θ2,N(t)e3,N(t))

−r3(e3,N(t)
2 + 2e3,N(t)Θ3,N(t))−ℜ2,N(t)

= r1e1,N(t)− r2e2,N(t)e3,N(t)− r2e2,N(t)Θ3,N(t)− r2Θ2,N(t)e3,N(t)

−r3e3,N(t)
2 − 2r3e3,N(t)Θ3,N(t)−ℜ2,N(t),

and

cD
ν3
t e3,N(t) =

cD
ν3
t (Θ3(t)−Θ3,N(t))

= r3Θ 2
2 (t)− r3Θ 2

2,N(t)−ℜ2,N(t)

= r3(e2,N(t)+Θ2,N(t))
2 − r3Θ 2

2,N(t)−ℜ2,N(t)

= r3(e2,N(t)
2 + 2e2,N(t)Θ2,N(t)+Θ2,N(t)

2)− r3Θ 2
2,N(t)−ℜ2,N(t)

= r3e2,N(t)
2 + 2r3e2,N(t)Θ2,N(t)−ℜ2,N(t).

By solving the Eq. (12) in the same way as Section 4 or Section 5, we get the approximation

e j,N,M(t) =
M

∑
i=0

ce
j,iCPi(t),

with the coefficients ce
j,i, i = 0,1,2, . . . ,M are determined by solving the error problem (12).

The importance of the theorems 1 is to use this error estimation to test the reliability of the results.

7 Numerical experiments

In this section, we showcase a series of numerical experiments aimed at elucidating the two methodologies and
highlighting their effectiveness. These experiments were conducted on a laptop equipped with an Intel Core i3 processor
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and 4GB of RAM, utilizing the Maple software. Our analysis is based on a fractional model of the chemical kinetics
problem, with the initial condition (Θ1(0),Θ2(0),Θ3(0)) = (1,0,0) with r1,r2 and r3 are reaction rates. Let
r1 = 0.1,r2 = 0.02 and r3 = 0.009 as given in Aminikhah [41]. If we apply the Chebyshev Galerkin method for solving
the above problem with N = 4, ν1 = ν2 = ν3 = 1 then the approximate solution of Θ j,4(t), j = 1,2,3 may be written as:











































Θ1,4(t) = 0.9999999995−0.1000832497t+ 0.005002936939t2− 0.00008325522424t(2t2− 1)
+9.96685157610−7t(2t(2t2 − 1)− t),

Θ2,4(t) = 3.13010−13+ 0.1000683538t− 0.005001485605t2+ 0.00006835249296t(2t2− 1)
−4.90977374010−7t(2t(2t2 − 1)− t),

Θ3,4(t) = −1.10−16+ 0.00001489891712t− 0.000001456162535t2+ 0.00001490516004t(2t2− 1)
−5.06296626610−7t(2t(2t2 − 1)− t).

(13)

If we apply the Chebyshev Collocation method for solving the above problem with N = 4, ν1 = ν2 = ν3 = 1, then the
approximate solution of Θ j,4(t), j = 1,2,3 may be written as:











































Θ1,4(t) = 1.000000000− 0.1000832566t+ 0.005002947148t2− 0.00008325926356t(2t2− 1)
+9.97151516810−7t(2t(2t2 − 1)− t),

Θ2,4(t) = −3.66610−13+ 0.1000683525t− 0.005001483687t2+ 0.00006835179030t(2t2− 1)
−4.90920733210−7t(2t(2t2 − 1)− t),

Θ3,4(t) = 0.00001490419378t− 0.000001463713148t2+ 0.00001490763382t(2t2− 1)
−5.06270969810−7t(2t(2t2 − 1)− t).

(14)

From the Eq.(12) with N = 4, we construct the error equation











































cD
ν1
t e1,4(t) = −r1e1,4(t)+ r2e2,4(t)e3,4(t)+ r2Θ2,4(t)e3,4(t)+ r2Θ2,4(t)Θ3,4(t)−ℜ1,4(t),

cD
ν2
t e2,4(t) = r1e1,4(t)− r2e2,4(t)e3,4(t)− r2e2,4(t)Θ3,4(t)− r2Θ2,4(t)e3,4(t)− r3e3,4(t)

2

−2r3e3,4(t)Θ3,4(t)−ℜ2,4(t),

cD
ν3
t e3,4(t) = r3e2,4(t)

2 + 2r3e2,4(t)Θ2,4(t)−ℜ3,4(t),

e1,4(0) = 1−Θ1,4(0), e2,4(0) =−Θ2,4(0), e3,4(0) =−Θ3,4(0).

(15)
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where

ℜ1,4(t) = 2.66× 10−9− 0.00000342851t+ 7.391334× 10−7t2 − 0.000006331623322t(2t2− 1)

+9.971515168×10−7t(12t2 − 3)+ 9.971515168×10−8t(2t(2t2 − 1)− t)

−0.02(−3.666000000×10−13+ 0.1000683525t− 0.005001483687t2

+0.00006835179030t(2t2− 1)− 4.909207332× 10(− 7)t(2t(2t2− 1)− t))

(0.00001490419378t− 0.000001463713148t2+ 0.00001490763382t(2t2− 1)

−5.062709698×10(− 7)t(2t(2t2− 1)− t)),

ℜ2,4(t) = 7.10−10+ 0.00000584921t− 0.0000901839730t2+ 0.000007344084890t(2t2− 1)

−4.909207332×10−7t(12t2 − 3)− 9.971515168×10−8t(2t(2t2 − 1)− t)

+0.02(−3.666000000×10−13+ 0.1000683525t− 0.005001483687t2

+0.00006835179030t(2t2− 1)− 4.909207332× 10−7t(2t(2t2 − 1)− t))

(0.00001490419378t− 0.000001463713148t2+ 0.00001490763382t(2t2− 1)

−5.062709698×10−7t(2t(2t2 − 1)− t))+ 0.009(−3.666000000×10−13+ 0.1000683525t

−0.005001483687t2+ 0.00006835179030t(2t2− 1)− 4.90920733210−7t(2t(2t2 − 1)− t))2
,

ℜ3,4(t) = −3.44004× 10−9− 0.000002421155326t+ 0.00008944580292t2

−0.000001012541940t(2t2− 1)− 5.062709698×10(− 7)t(12t2− 3)

−0.009(−3.666000000×10−13+ 0.1000683525t− 0.005001483687t2

+0.00006835179030t(2t2− 1)− 4.90920733210−7t(2t(2t2− 1)− t))2
.

We solve the Eq. (15) for the truncated limited M = 5 by CC method and we obtain the approximation

e1,4,5(t) = −2× 10−17− 1.033126567×10−7t + 1.775594094×10−7t2

−1.09546691510−7t(2t2 − 1)+ 4.443094862×10−8t(2t(2t2 − 1)− t)

−8.89253842610−9t(2t(2t(2t2− 1)− t)− 2t2+ 1),

e2,4,5(t) = 3.66602× 10−13− 2.305139230×10−8t + 3.954844426×10−8t2

−2.430792251×10−8t(2t2 − 1)+ 9.773478744×10−9t(2t(2t2 − 1)− t)

−1.928743091×10−9t(2t(2t(2t2− 1)− t)− 2t2+ 1),

e3,4,5(t) = 3× 10−17+ 1.262833684×10−7t − 2.168598161×10−7t2

+1.336938814×10−7t(2t2 − 1)− 5.416416654×10−8t(2t(2t2 − 1)− t)

+1.082126714×10−8t(2t(2t(2t2− 1)− t)− 2t2+ 1).
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Fig. 1: Plot of comparison between CC method, CG method, and ABM solutions for ν1 = ν2 = ν3 = 1.

and by the CG method, we obtain the approximation

e1,4,5(t) = −2× 10−17− 1.033126567×10−7t + 1.775594094×10−7t2

−1.095466915×10−7t(2t2 − 1)+ 4.443094862×10−8t(2t(2t2 − 1)− t)

−8.892538426×10−9t(2t(2t(2t2 − 1)− t)− 2t2+ 1),

e2,4,5(t) = 3.66602× 10−13− 2.305139230×10−8t + 3.954844426×10−8t2

−2.430792251×10−8t(2t2 − 1)+ 9.773478744×10−9t(2t(2t2 − 1)− t)

−1.928743091×10−9t(2t(2t(2t2 − 1)− t)− 2t2+ 1),

e3,4,5(t) = 3× 10−17+ 1.262833684×10−7t − 2.168598161×10−7t2

+1.336938814×10−7t(2t2 − 1)− 5.416416654×10−8t(2t(2t2 − 1)− t)

+1.082126714×10−8t(2t(2t(2t2 − 1)− t)− 2t2+ 1).

Figure 1, Plot of comparison between Chebyshev Galerkin method, Chebyshev Collocation method, and ABM [42] for
ν1 = ν2 = ν3 = 1. We have depicted a comparison between numerically obtained solutions using by Chebyshev Galerkin
method, Chebyshev Collocation method, and ABM schemes for the values of N = 4. It is clear from all figures that both
obtained solutions by our methods and ABM are identical. Figure 2, the absolute error and estimation of absolute error.
Table 1 compares the obtained approximate solution at ν1 = ν2 = ν3 = 1 where N = 4 and the method in [43] with
N = 64. Figure 3, Plot of comparison between Chebyshev Galerkin method, Chebyshev Collocation method, and ABM
solutions for ν1 = ν2 = ν3 = {0.89,0.9}1 for the values of N = 4. It is clear from all figures that both obtained solutions
by our methods and ABM are identical. Table 2 compares the obtained approximate solution at ν1 = ν2 = ν3 = 0.89
where N = 4 with ABM. Table 3 compares the obtained approximate solution at ν1 = ν2 = ν3 = 0.9 where N = 4
with ABM. Figure 4, Plot of comparison between Chebyshev Galerkin method and Chebyshev Collocation method for
ν1 = 0.7,ν2 = 0.8,ν3 = 0.9. We have depicted a comparison between numerical obtained solutions using by Chebyshev
Galerkin method, and the Chebyshev Collocation method for the values of N = 4. Figure 5, Plot of comparison between
Chebyshev Galerkin method and Chebyshev Collocation method for ν1 = 0.7,ν2 = 0.8,ν3 = 0.9. We have depicted a
comparison between numerical obtained solutions using by Chebyshev Galerkin method, and the Chebyshev Collocation
method for the values of N = 6.

Remark.To check the stability of the proposed two methods, we introduce the small perturbation Θ
p
j (t) = (1−ε)Θ j(t) and

impose it upon problems Eq. (4) with ν1 = ν2 = ν3 = {0.89,0.9,1} and N = 4. Then, the resulting perturbed problems are
solved using the proposed two methods to evaluate the perturbation solution Θ

p
j,N(t). In Table 4, we list the max absolute

errors of the perturbed problems defined by

max
0≤t≤1

|Θ ABM
j (t)−Θ

p
j,N(t)|,
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Fig. 2: The absolute error and estimation of absolute error for (N,M) = (4,5).

Θ1(t) Θ2(t)
t ABM Method [43] CC CG ABM Method [43] CC CG

0.1 0.9900 0.9901 0.9900 0.9900 0.0100 0.0100 0.0100 0.0100

0.2 0.9802 0.9802 0.9802 0.9802 0.0198 0.0198 0.0198 0.0198

0.3 0.9704 0.9704 0.9704 0.9704 0.0296 0.0296 0.0296 0.0296

0.4 0.9608 0.9608 0.9608 0.9608 0.0392 0.0393 0.0392 0.0392

0.5 0.9512 0.9512 0.9512 0.9512 0.0488 0.0489 0.0488 0.0488

0.6 0.9418 0.9418 0.9418 0.9418 0.0582 0.0585 0.0582 0.0582

0.7 0.9324 0.9324 0.9324 0.9324 0.0676 0.0680 0.0676 0.0676

0.8 0.9231 0.9231 0.9231 0.9231 0.0769 0.0775 0.0769 0.0769

0.9 0.9139 0.9139 0.9139 0.9139 0.0860 0.0869 0.0860 0.0860

1.0 0.9048 0.9048 0.9048 0.9048 0.0951 0.0963 0.0951 0.0951

Θ3(t)
t ABM Method [43] CC CG

0.1 2.9776e−08 3.0e−8 2.9820e−08 2.9611e−08

0.2 2.3643e−07 2.4e−7 2.3680e−07 2.3650e−07

0.3 7.9200e−07 7.9e−7 7.9254e−07 7.9225e−07

0.4 1.8634e−06 1.8e−6 1.8638e−06 1.8636e−06

0.5 3.6123e−06 3.6e−6 3.6124e−06 3.6123e−06

0.6 6.1956e−06 6.2e−6 6.1954e−06 6.1954e−06

0.7 9.7653e−06 9.8e−6 9.7650e−06 9.7651e−06

0.8 1.4469e−05 1.5e−5 1.4468e−05 1.4469e−05

0.9 2.0448e−05 2.0e−5 2.0448e−05 2.0448e−05

1.0 2.7842e−05 2.8e−5 2.7842e−05 2.7842e−05

Table 1: Comparison of the approximate solutions using the two proposed methods versus the method in [43] with ν1 = ν2 = ν3 = 1.
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Fig. 3: Plot of comparison between CC method, CG method, and ABM solutions for ν1 = ν2 = ν3.

Θ1(t) Θ2(t) Θ3(t)
t ABM CC CG ABM CC CG ABM CC CG

0.1 0.9867 0.9868 0.9895 0.0133 0.0132 0.0105 8.4760e−08 8.8754e−08 3.4552e−08

0.2 0.9754 0.9751 0.9794 0.0246 0.0249 0.0206 5.3412e−07 5.8432e−07 2.7686e−07

0.3 0.9650 0.9645 0.9695 0.0350 0.0355 0.0305 1.5622e−06 1.6518e−06 9.0257e−07

0.4 0.9550 0.9547 0.9598 0.0450 0.0453 0.0402 3.3375e−06 3.4458e−06 2.0805e−06

0.5 0.9454 0.9453 0.9502 0.0546 0.0547 0.0498 6.0032e−06 6.1100e−06 3.9725e−06

0.6 0.9362 0.9362 0.9408 0.0638 0.0638 0.0592 9.6848e−06 9.7776e−06 6.7339e−06

0.7 0.9272 0.9272 0.9314 0.0728 0.0727 0.0685 1.4495e−05 1.4571e−05 1.0513e−05

0.8 0.9184 0.9184 0.9222 0.0816 0.0816 0.0778 2.0534e−05 2.0603e−05 1.5451e−05

0.9 0.9098 0.9097 0.9131 0.0901 0.0903 0.0869 2.7896e−05 2.7973e−05 2.1683e−05

1.0 0.9015 0.9014 0.9042 0.0985 0.0986 0.0958 3.6664e−05 3.6773e−05 2.9336e−05

Table 2: Comparison of the approximate solutions using the proposed methods versus the method ABM with ν1 = ν2 = ν3 = 0.89.

with N = 4 for problems Eq.(4). The numerical results listed in Table 4 show that there are no total changes in the final
results and that our proposed two approaches are stable.

8 Conclusion

In this work, two numerical approaches are proposed to solve fractional chemical kinetics numerically. Our presented
tabular and graphical outcomes clearly demonstrate that by increasing the number of collocation points, denoted as a
larger value of ”N,” the quality of the solution improves significantly. The key benefit of employing both the Chebyshev
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Θ1(t) Θ2(t) Θ3(t)
t ABM CC CG ABM CC CG ABM CC CG

0.1 0.9870 0.9871 0.9871 0.0130 0.0129 0.0129 7.7169e−08 8.0568e−08 7.0945e−08

0.2 0.9759 0.9756 0.9756 0.0241 0.0244 0.0244 4.9661e−07 5.4024e−07 5.1211e−07

0.3 0.9655 0.9651 0.9653 0.0345 0.0349 0.0347 1.4706e−06 1.5481e−06 1.4991e−06

0.4 0.9555 0.9553 0.9555 0.0445 0.0447 0.0445 3.1694e−06 3.2625e−06 3.1949e−06

0.5 0.9460 0.9459 0.9461 0.0540 0.0541 0.0539 5.7397e−06 5.8309e−06 5.7501e−06

0.6 0.9367 0.9367 0.9369 0.0633 0.0633 0.0631 9.3114e−06 9.3903e−06 9.3029e−06

0.7 0.9276 0.9277 0.9278 0.0724 0.0723 0.0722 1.4002e−05 1.4067e−05 1.3979e−05

0.8 0.9188 0.9188 0.9188 0.0812 0.0812 0.0812 1.9916e−05 1.9975e−05 1.9890e−05

0.9 0.9102 0.9101 0.9100 0.0898 0.0899 0.0899 2.7154e−05 2.7221e−05 2.7139e−05

1.0 0.9018 0.9016 0.9018 0.0982 0.0983 0.0982 3.5803e−05 3.5897e−05 3.5812e−05

Table 3: Comparison of the approximate solutions using the proposed method versus the method ABM with ν1 = ν2 = ν3 = 0.9.
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Fig. 4: Plot of comparison between CC method, CG method, and ABM solutions for ν1 = 0.7,ν2 = 0.8,ν3 = 0.9 with (N,M) = (4,5).

collocation method and the Chebyshev Galerkin method lies in their ability to transform complex problems into a set of
algebraic equations, whether linear or nonlinear. This approach greatly simplifies the computational process and aligns
it with computer-based techniques. This new comparative study between the Chebyshev collocation method and the
Chebyshev Galerkin method for fractional chemical kinetics that both approaches can be applied successfully to the
chemistry problems of chemistry science.
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Fig. 5: Plot of comparison between CC method, CG method, and ABM solutions for ν1 = 0.7,ν2 = 0.8,ν3 = 0.9 with (N,M) = (6,7).

ν1 = 1

CG method CC method

εεε Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

10−1 1.98×10−9 2.78×10−6 2.78×10−6 2.64×10−9 2.78×10−6 2.78×10−6

10−4 6.11×10−10 2.82×10−9 2.78×10−9 4.42×10−10 2.78×10−9 2.55×10−9

10−8 7.59×10−10 4.24×10−11 2.55×10−10 4.46×10−10 9.80×10−11 5.35×10−10

ν1 = 0.89

CG method CC method

εεε Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

10−1 3.97×10−4 3.97×10−4 3.65×10−6 4.39×10−4 4.39×10−4 3.56×10−6

10−4 3.97×10−4 3.97×10−4 3.30×10−8 4.39×10−4 4.39×10−4 1.09×10−7

10−8 3.97×10−4 3.97×10−4 3.32×10−8 4.39×10−4 4.39×10−4 1.09×10−7

ν1 = 0.9

CG method CC method

εεε Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

10−1 3.49×10−4 3.49×10−4 3.57×10−6 3.79×10−4 3.80×10−4 3.49×10−6

10−4 3.49×10−4 3.49×10−4 2.90×10−8 3.79×10−4 3.79×10−4 9.37×10−8

10−8 3.49×10−4 3.49×10−4 2.92×10−8 3.79×10−4 3.79×10−4 9.41×10−8

Table 4: Max absolute errors of perturbed problems for (4) with ν1 = ν2 = ν3 = {0.89,0.9,1} and N = 4.
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