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Abstract: In the modern day, fractional operators are being utilized more and more to express problems and study the spread of

epidemics, reflecting the growing interest in mathematical biology. Interventions pertaining to plant health and public health can

benefit from the use of mathematical models to forecast the course of infectious illnesses, particularly those affecting plants. For the

earth and all living beings, plants are extremely vital. Consequently, as it can offer valuable information on plant disease transmission,

an understanding of plant disease dynamics is crucial. Among the most important maize diseases in the world are foliar diseases,

which can be brought on by bacteria, viruses, or fungi. A mathematical model based on a hypothesis is expanded to include recovered

plant species in order to observe the control effects of the early detection process. In the field, this strategy is now recognized as the

conventional method. The importance of mathematical methods, especially fractional and integer calculus modeling, is emphasized

by recent researchers when examining the dynamics of different disease models. Consequently, in order to monitor the continuous

tracking of the disease’s spread caused by the infection, the constructed model is transformed into a fractional order model using the

fractal-fractional operator. An investigation, both qualitative and quantitative, is carried out to determine whether the newly constructed

fractional order system is stable. The boundedness and uniqueness of the model are examined, as they are essential properties to

understand the complex dynamics and guarantee robust conclusions. By applying Lipschitz conditions and linear growth, the global

derivative is verified for true positivity and utilized to calculate the rate of disease effects based on each sub-compartment. Assessing

the overall impact of the disease’s spread and containment, the global stability of the system is examined through the application of

Lyapunov’s first derivative functions. The work finds the requirements for a solution to the suggested disease model and calculates

reproductive numbers under particular conditions using a computationally effective approach to tackle both model and simulation

difficulties. In the context of fractal-fractional operators, fractional refers to the fractional ordered derivative operator, and fractal refers

to the spatial distribution of the disease. To view the actual dynamics of infection-induced virus transmission and control for maize

foliar with different sizes and continuous monitoring, we use combine operators. We model both the symptomatic and asymptomatic

consequences of maize foliar disease using MATLAB code, providing insights into the underlying dynamics of disease propagation

and the possible suppressive effects of early detection. This paper presents an innovative approach that incorporates memory into the

model by employing an equal-dimensional fractal-fractional operator. This approach takes into account the dynamic effects of illnesses

on society and offers insightful information for analysis, choice-making, and illness prevention.

Keywords: Plant disease; Mathematical Model; Fractional Calculus; Stability Analysis.

1 Introduction

Biomathematics is a topic that blends biology and mathematics, with the goal of constructing mathematical
representations to explain and address biological difficulties. In contrast, mathematical biology focuses on theoretical
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experimentation [1]. Biomathematics is used in a variety of fields, including population genetics, epidemic modeling,
and cellular neuroscience, to generate analytical and speculative models of biological and medical structures [2, 3]. An
interdisciplinary topic called biomathematics, sometimes referred to as mathematical or theoretical biology, studies
biological systems using computational and mathematical theory. Information is arranged, developing structures are
examined, and biological systems and processes are frequently modeled using a variety of mathematical techniques and
ideas [4, 5]. Numerous biological systems, such as the immune system, cancer cells, and the human genome, are studied
in biomathematics. Even though biology has always used mathematics, modern research, especially in medicine, has
relied more on computers, which has resulted in the development of new mathematical concepts [6]. To address major
biological concerns in the 21st century, the next generation of scientists will require solid foundations in both biology
and mathematics, together with great communication skills [7]. Epidemiological modeling has long been used in
mathematical biology to analyze the spread of infectious diseases, but in recent years, its usage in disease management
and control has increased dramatically. It is possible to solve biological model equations analytically or numerically to
see how the system behaves at equilibrium or over time. In order to make decisions about epidemiological policies,
several countries use mathematical models [8]. The study of mathematical epidemiology makes use of compartmental
models to examine potential future epidemic scenarios and draw lessons from past outbreaks [9, 10].

These tools and technologies have proven invaluable in the development of effective disease prevention and control
strategies. Pine wilt disease (PWD) is caused by the pinewood nematode Bursaphelenchus xylophilus Nickle and is
dispersed by the Japanese pine sawyer beetle Monochamus alternatus. Japan was the first country to record PWD cases
in 1905 [11]. After being discovered in Japan, PWD has spread to China, Taiwan, and Korea, seriously harming the pine
forests of East Asia. Furthermore, in 1999, it was found in Portugal [12]. The country of Japan has suffered the most
losses due to pine wilt disease. Throughout the 20th century, the disease expanded across extremely fragile Japanese red
(P. densiflora) and Japanese black (P. thunbergiana) pine forests, wreaking havoc on both. In Iowa, Illinois, Missouri,
Kentucky, eastern Kansas, and southeast Nebraska, scot pine has experienced considerable losses. PWD is now, by far,
the greatest threat to forests around the globe [13]. Numerous kinds of pine trees can develop the dangerous and
frequently fatal illness known as pine wilt, which is predominantly brought on by the pine wood worm. The quick
wilting, browning of the needles, and final death of the tree are all caused by this minute roundworm, which obstructs
water flow within the tree [14]. Early disease detection and management are crucial to halting the illness’s spread to
other trees. It is helpful to understand how a disease spreads and to identify the different components that contribute to
the disease’s spread through mathematical modeling. To analyze the disease’s spread, various control strategies might be
implemented for this goal. There aren’t many developed mathematical models for pest management dynamics. Lee and
Kim [15] and Shi and Song [16] investigated PWD transmission. The worldwide consistency of a host vector system for
pine-wilt disease with nonlinear prevalence was ascertained by Lee and Lashari [17] in 2014. A fractional order
epidemic model with a bilinear rate of incidence is empirically computed by Lia et al. [18] for the propagation of the
pine wilt disease. Of course, here are more details about the pathogen causing pine wilt disease. The cause of the pine
wilt disease is the microscopic roundworm referred to as the pine wood nematode (Bursaphelenchus xylophilus). The
primary vectors that the worm uses to propagate are pine sawyer beetles (Monochamus spp.), which feed on affected
trees before transferring the nematodes to trees that are healthy [19]. Affected Pine wilt disease primarily affects various
species of pine trees, including Austrian pine (Pinus nigra), Scots pine (Pinus sylvestris), and Japanese black pine (Pinus
thunbergii). Japanese black pine is particularly susceptible and often used as an indicator species for the disease [20].
Symptoms of infected trees typically exhibit rapid wilting, browning of needles, and overall decline within a matter of
weeks. The needles may turn yellow or reddish-brown, starting from the tips and progressing downward. The tree’s
crown might show signs of dieback as well. Transmission of pine sawyer beetles spreading the nematode of pine wood
from infected trees to healthy ones as they feed [21]. The nematode spreads within the tree’s resin canals, blocking water
transport and leading to wilting. The spread of pine wilt disease can occur both through natural beetle migration and the
transportation of infested wood, such as lumber or wood chips [22].

Plant epidemiology is the study of illnesses that affect different plant families. It emphasizes how plants, without
mobile defense and exhibiting characteristics unique to their species, rely on cellular inborn immunity to fight
infections [23]. The promise of mathematical modeling is being highlighted by the growing use of these types of models
to conduct studies by scientists studying vector-borne diseases, a plant virus epidemic, and trying to comprehend the
patterns of transmission in host plants [24, 25]. Studying how infections spread and identifying the various factors that
influence the transmission of diseases are made easier with the use of mathematical modeling. A discrete plant viral
disease model with roguing and replanting that is derived from the continual example was studied by Luo et al. [26]
using the popular backward Euler technique. The impact of a plant regeneration initiative’s execution and the interplay
between pathogen transmission and disease suppression are examined by Mark et al. [27] using sensitivity analyses of
two substantially expressive simulation frameworks. These frameworks provide a summary of some efficient optimal
controllers [28]. Mathematicians have employed a range of mathematical models to provide a foundation for specific
illness modeling. In this order, [29] studies mathematically the behavior of the Jatropha curcas mosaic epidemic, which
is carried out by whitefly vectors, by detecting oscillations in the model caused by a high infection rate.
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Additionally, [30] frames the composition of a soil-borne plant epidemic in addition to host demographic information by
demonstrating the essence of limit cycles.

The preventive and rehabilitative disinfectant model was developed in 2016 by Anggriani et al. [31]. It contains three
parts for the plant population: susceptible, protected, and infectious. Their simulations showed that it is effective to use
fungicides to lower population infection. In 2018, [32] developed a mathematical model of plant disease that included
five elements: therapies that are protective and beneficial, as well as susceptible, exposed, infectious, post-infectious
(removed), and protected. Investigators have used bilinear transfer of infections in their modeling investigations.
Conversely, a nonlinear rate of incident is used in [33, 34] to characterize the development of vector-borne plant
epidemics. Here, temporal delay among biological networks is incorporated to develop another modeling approach. Plant
epidemic systems carried by delay vectors have the capacity to describe stability shifts, transcritical bifurcations,
periodic fluctuations, and more. These observations are somewhat important in determining the degree of infection and
illness control. A plant disease model presented in [35] was amended by Zhang et al. [36] by considering the length of
plant incubation as an additional period to support the required modifications to the supplied dynamical pattern.
Jackson [33] modified a model presented in [37] to account for the latent period in vectors and plant incubation cycles,
therefore defining the processes of vector-borne epidemics in plants. A Caputo-type fractional mathematical model [38]
was employed by researchers to examine the composition of a vector-borne plant epidemic. The goal of the research was
to investigate the dynamics of the epidemic while accounting for memory effects, proving the value of fractional
derivatives in plant epidemiology. Additionally, the research established the model’s incorporation of memory through
the use of Caputo derivatives with equal dimensionality. A fractional order model is used in a study [39] to provide a
disease transmission model for a two-phase illness. Before becoming contagious, a susceptible person goes through an
exposed period, and exposed plants can spread illness. The lack of knowledge regarding the general population’s
retention and acquisition processes for integer-order plant diseases is the cause of this increase. More precise and
practical results were obtained by [40] when they used Caputo sense to study plant virus distribution driven by
periodicity and rivalry between species, [41] yellow virus, in [42] curcas with farm consciousness and implementation
delay. Using fractional and integer order differential equations, [43] provided models for the transmission that took into
account both the vector and potato populations.

Plants are susceptible to infectious illnesses, which are mostly brought on by pathogens [44, 45]. In order to
comprehend illness transmission, pinpoint the variables influencing disease spread, and enhance health management
tactics, mathematical modeling has been thoroughly researched in this field. This vast body of research offers insightful
information about the transmission of infectious illnesses in plants. The differential equations system used by the Plant
Disease Transmission (PDT) model, which was initially presented in [46], splits plant and vector populations into three
compartments. Differential equation systems are used in many studies to represent PDT, and models for positivity,
boundedness, and local and global stability are analyzed. All EPs are assessed in these articles, and their local and global
stability is covered [47, 48]. PDT for mosaic illness has recently been explained by the authors in [49] inside an FDE
system. More specifically, research on the modeling of disease transmission in plants was looked at for several plant
species. Food plants, such as rice [50], maize [51], [52], and plant diseases, such as Huanglongbing (HLB) disease in
orange plants [53] and fractional order pine work in [54], are examples. The fractional order model (FOM), a novel
mathematical framework for epidemic dynamics in plants, is presented in this study. The model governs fractional
differential equations using Caputo derivatives; its accuracy in simulating actual-life situations to regulate the spread of
epidemics has been enhanced by the modification of its parameters. The study also offers a thorough qualitative analysis,
demonstrating the originality of the suggested solution by turning the issue into a fixed point problem and using
Schauder’s fixed-point theorem and the Banach contraction principle [55].

2 Fractional Calculus role in real life problems

The integral and differential operators of real or complex order are studied in the branch of mathematics known as
fractional calculus [56]. i.e,

Dg(t) =
d

dt
g(t) (1)

Jg(t) =

∫ t

0
g(u)du (2)

The concept of fractional operators was first put forth with the development of integer ones. The first example of this
can be found in a 1695 correspondence between Gottfried Wilhelm Leibniz and De L’Hopital, in which the question of
semi-meaning derivatives is raised. Consequently, a number of well-known mathematicians developed an interest in this
topic, including Letnikov, Laplace, Euler, Liouville, Riemann, Grunwald, and several others. The application of fractional
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calculus theory has expanded rapidly since the 19th century and includes fractional differential equations (FDE), fractional
geometry, and fractional dynamics, to name just a few. Fractional calculus has a plethora of applications nowadays [57,58].
It is reasonable to say that almost all branches of research and engineering make use of fractional calculus techniques
and resources. For example, there are numerous advantageous applications in the domains of optical science, statistical
and chemical physics, mechanical and electrical engineering, bioengineering, and other subjects [59]. Improvements in
medicine, health care accessibility, and hygiene over the last 20 years have reduced the death and morbidity caused by
viral infections. Nonetheless, the burden of infectious diseases remains high in low- and lower-middle-income nations,
and there is still a strong correlation between mortality and morbidity and HIV infection, TB, malaria, and neglected
tropical diseases. In the twenty-first century, illnesses have persisted in resurfacing and taking lives [60].

A mathematical model is a system in which our assumptions are explained and examined through the application of
rules. Understanding the pathophysiology and mode of transmission is critical for the prevention and control of
infectious illnesses. Using mathematical models based on interactions between hosts, infections, or vectors, scientists
can predict rates of infection and the spread of disease [61]. A new mathematical model was developed by Khan et
al. [62] in order to better understand the novel coronavirus. They gave a brief explanation of their mathematical results
and the modeling of COVID-19 with the omicron version. Several studies have shown that fear’s influence on people’s
behavior during an epidemic can reduce the number of new cases [63], [64]. The Ebola virus causes a dangerous and
often fatal illness in humans. In west African countries, it is a highly contagious disease that has taken many lives. A
mathematical model covering bat compartment, immune response recovery, and vaccine was developed in [65] to study
the population dynamics of Ebola virus infections. [66] looked at a deterministic mathematical model to assess
successful interventions for meningitis and pneumonia co-infection and to offer sane guidance to the general public,
policy or decision makers, and program implementers. A wealth of resources is at your disposal for measles modeling.
Math has emerged as a helpful tool for comprehending the molecular mechanism behind the measles spread [67]. It can
also be used to suggest the safest path to measles eradication, including when vaccination should be administered [68].
Sowole et al. [69] developed a mathematical deterministic modeling approach using Nigerian-specific data to anticipate
the measles disease. A control measure was introduced into the susceptible and subjected classes in order to investigate
the prevalence and management of measles. Liu et al. [70] looked at stochastic control systems and optimal control
theories to control the virus’s propagation utilizing environmental factors. Peter et al. [71] examined the impact of
particular prophylactic strategies for effective measles control. Because of its non-local characteristics, fractional
calculus is a branch of mathematics that studies real and complex number powers of differentiation and integration
operators. It allows for derivatives and integrals of any non-negative order and is utilized in historical modeling [72]. It is
currently used in many different medical specialties and is a useful tool for adding memory and genetic components to
systems [73]. A fractional derivative can have any arbitrary order as its foundation, real or complex. Gottfried Wilhelm
Leibniz first mentioned them in a 1695 letter to Guillaume de l’Hôpital [74]. One of Niels Henrik Abel’s early
publications contains every element of fractional calculus. Therefore, at the time his article was published, Niels Henrik
Abel was the originator of the entire fractional-order calculus situation [75]. The differentiating formula for the
exponential function was employed by Liouville in his 1832 formulation of fractional calculus. The issue was covered in
Riemann’s most important article, ten years after his passing. Many writers have made contributions [76] and fractional
models are frequently employed in [77]. The most frequently used operators connect a local derivative with a function
that has different kernels [78], [79], stability theory in [80]. On the other hand, a lot of real-world phenomena-like
volatility, waterways, permeable media, medicine, and Darcy’s law-show complicated fractal behavior. Atangana
provided FF operators, which are necessary for the kernel to include operators engaging nonlocal differentiation in this
scenario [81].

Fractional calculus is being used in an increasing number of disciplines to comprehend intricate dynamical systems
with reminiscence consequences. The q-homotopy analysis transform was utilized by [82] for resolving the fractional
order mathematical model of a fatal illness in pregnant women computationally. [83] investigated the behavior of a
piecewise Covid-19 mathematical framework with a quarantine class and vaccination using an epidemic model. They
examined fractional, unpredictable, and consistent forms for different stages. In [84] used non-singular and non-local
kernels to develop a mathematical model for tuberculosis cases in KPK, Pakistan, from 2002 to 2017. In [85] used a
recently proposed numerical method to approximate the fractional ABC derivative and developed a fractional order
model for Hepatitis-B infection by means of the ABC derivative and some applications in [86, 87]. Some researchers
in [88] created a listeriosis model by utilizing derivatives of the FF order in the meanings of Caputo, Atangana-Baleanu,
and others. beneficial and productive study through fractional order is designed in [89–92]. In [93] illustrates the possible
outcomes of getting into contact with a deceased person who is communicable in order to disseminate this illness. They
also created this epidemic model using the fractional Adams-Bashforth-Moulton numerical approach. Treatment and
stem cells in a fractional-order cancer system to study the effects of infection on humans. To investigate the idea, the
Sumudu transform and an extremely effective numerical method were applied [94, 95]. The challenge was solved by
using a crude model that linearizes the four FODEs at each time step. A measles epidemiological model was
fractionalized by [96] employing a non-local operator of the Caputo type, and the results were compared with the
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classical version. They found that fractional counterparts outperform classical counterparts regardless of whether the real
data set is expanding or contracting. An analytical solution to the measles transmission model with three vaccination
doses was provided by [97] via the CF fractional derivative. The proposed solution was based on the Adomian
decomposition approach and the Laplace transform [98]. Using ABC fractional-order derivative, the study [99]
generalizes a plant-nectar-pollinator (PNP) model and shows higher performance under fractional derivative, indicating
an improved comprehension of PNP behavior with non-local impacts. The piecewise plant-pathogen-herbivore
interactions model was updated in the study [100], and it was verified by numerical simulations in fractional and
piecewise fractional representations. A semi-analytical resolution for the Pine Wilt disease model was proposed by
researchers [101], who combined the Adomian decomposition method with the Caputo-Fabrizio fractional derivative and
Laplace transform. In order to comprehend the primary challenges caused by the yellow virus in the production of
Capsicum annuum, researchers [102] have examined the fractional-order model of chili plants via an ABC derivative. A
model for yellow virus proliferation in red chili plants was created by researchers [103], who used mathematical
simulations and a fractional derivative framework to analyze important components. Numerous writers have conducted
extensive research and works to examine the dynamics of infectious diseases in fractional order models [104]- [119]. We
go over the following basic definitions, which are necessary to comprehend our proposed system.

3 Fundamental Definitions

With P⊂ J, let Jn be Euclidean space, and let P be a specific interval along the real line. We assume that for some t ∈ P,
P= [t0,T]. This allows us to show that P̄= (t0,T). Assume that there is clear continuity in the function M : P→ J.

Definition 1. [120] The definition of the Riemann-Liouville fractional derivative for n− 1 < α ≤ n, n ∈ N, is

RL
t0

Dα
t h(t) =

1

Γ (n−α)

( d

dt

)n
∫ t

t0

(t −ρ)n−α−1h(ρ)dρ , −∞ ≤ t0 < t ≤ ∞ , t ∈ P̄. (3)

Definition 2. [120] The Riemann-Liouville fractional integral for α > 0 is defined as

RL
t0
I
α
t h(t) =

1

Γ (α)

∫ t

t0

h(ρ)(t −ρ)α−1dρ , −∞ ≤ t0 < t ≤ ∞ , t ∈ P̄. (4)

Definition 3. [120] The Caputo fractional derivative is defined by

RL
t0

Dα
t h(t) =

1

Γ (n−α)

∫ t

t0

(
d
dt

)n
h(ρ)

(t −ρ)α+1−n
dρ , −∞ ≤ t0 < t ≤ ∞ , t ∈ P̄. (5)

At initial point t = 0, we have

C
0 Dα

t h(t) =
1

Γ (1−α)

∫ t

0
h′(ϑ)(t −ρ)−αdρ/ (6)

Remark.It is clear from the definitions that
C
0 Dα

t h(t) = RL
a I1−α

t h′(t) (7)

Definition 4. [121] About α ∈ [0,1] then allow the following functions to exist: Z0,Z1 : [0,1]×R→ [0,∞) be continuous
in order for ∀t ∈ R, then we can define the Conformable derivative by

PDα
t h(t) = Z1(α, t)h(t)+Z0(α, t)h′(t). (8)

Here, we specify

Z0(α, t) = αt1−α , Z1(α, t) = (1−α)tα . (9)

When Z0 and Z1 are constant with regard to t, as in a particular instance of proportional derivatives, the Constant
Proportional (CP) derivative is defined by

CPDα
t h(t) = Z1(α)h(t)+Z0(α)h′(t). (10)
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Definition 5.The hybrid fractional derivative in [122] is defines as

PC
0 Dα

t h(t) =
1

Γ (1−α)

∫ t

0

{
Z1(α,ρ)h(ρ)+Z0(α,ρ)h′(ρ)

}
(t −ρ)−αdρ

= RL
0 I1−α

t

[
Z1(α, t)h(t)+Z0(α, t)h′(t)

]
. (11)

As a particular instance of PC, the Constant Proportional-Caputo (CPC) derivative is expressed as follows:

CPC
0 Dα

t h(t) =
1

Γ (1−α)

∫ t

0

{
Z1(α)h(ρ)+Z0(α)h′(ρ)

}
(t −ρ)−αdρ

= Z1(α) RL
0 I1−α

t h(t)+Z0(α) C
0 Dα

t h(t). (12)

Remark. [122] If α = 0, then

lim
α→0

PC
0 Dα

t h(t) = lim
α→0

CPC
0 Dα

t h(t) =
∫ t

0
h(ρ)dρ . (13)

and, if α = 1, we get

lim
α→1

PC
0 Dα

t h(t) = lim
α→1

CPC
0 Dα

t h(t) = h′(ρ). (14)

Definition 6. [122] The inverse operator of the CPC derivative is as follows:

CPC
0 Dα

t h(t) =
1

Z0(α)

∫ t

0
(t −ρ)α−1E1,α

(
−Z1(α)

Z0(α)
(t −ρ)

)
h(ρ)dρ

=
∞

∑
n=0

(−Z1(α))n

(Z0(α))n+1
RL
0 Iα+n

t h(t). (15)

which satisfies

CPC
0 Dα

t

[
CPC
0 I

α
t h(t)

]
= h(t)− t−α

Γ (1−α)
lim
t→0

RL
0 In

t h(t); (16)

CPC
0 I

α
t

[
CPC
0 Dα

t h(t)
]
= h(t)− h(0)exp

[−Z1(α)

Z0(α)
t
]
. (17)

Theorem 1.The Laplace transform for the CPC operator looks like this:

L (CPCDα
t h(t)) =

(Z1(α)

S
+Z0(α)

)
S

α h̃(S)−Z0S
α−1h(0), (18)

Proof.Remember the Caputo derivative and the RL integral’s Laplace transforms. For 0 < α < 1,

L
(RL

I
α
t h(t)

)
= S

−α h̃(S), (19)

L
(C

Dα
t h(t)

)
= S

α h̃(S)−S
α−1h(0). (20)

Hence,

L

(CPC

Dα
t h(t)

)
= L

(
Z1(α)RL

I
1−α
t h(t)+Z0(α)CDα

t h(t)
)

= Z1(α)L
(

RL
I
1−α
t h(t)

)
+Z0(α)L

(
CDα

t h(t)
)

= Z1(α)S1−α h̃(S)+Z0(α)
[
S

α h̃(S)−S
α−1h(0)

]

=
[
Z1(α)Sα−1 +Z0S

α
]
h̃(S)−Z0(α)Sα−1h(0).

(21)

Definition 7. [123] If j ∈ C and α ∈ (0,1), then Re( j) > 0. The function h has a left generalized proportional derivative
of order α , which may be found using

uD
j,α
t h(t) =

Dn,α

αn− jΓ (n− j)

∫ t

u
e

α−1
α (t−ρ)(t −ρ)n− j−1h(ρ)dρ . (22)

n = ⌊ j⌋+ 1.
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Remark. [123] Assume that j,q ∈ C and Re(q)> 0, Re( j)≥ 0. Then for 0 < α ≤ 1, we find

{
I

j,α
u e

α−1
α (t)(t − y)q−1

}
(t) =

Γ (q)

α jΓ ( j+ q)
e

α−1
α (t)(t − y) j+q−1, (23)

{
I

j,α
v e

α−1
α (z−t)(z− t)q−1

}
(t) =

Γ (q)

α jΓ ( j+ q)
e

α−1
α (z−t)(z− t) j+q−1. (24)

Definition 8. [123] Let j ∈ (n− 1,n), n ∈ N, α ∈ (0,1) and w ∈ [0,1]. The left/right Hilfer generalized proportional
derivative of a function h of order j and class w is given by

D j,w,α
u h(t) = I

w(n− j),α
u

{
Dα

(
I
(1−w)(n− j),α
u h(t)

)}
. (25)

Where

Dα h(t) = (1−α)h(t)+αh′(t), (26)

At n = 1, the equation (25) simplifies to

D j,w,α
u h(t) = I

w(1− j),α
u

{
Dα

(
I
(1−w)(1− j),α
u h(t)

)}
. (27)

4 Description of Fractional order plant epidemiological models

Two fractional dynamic mathematical models for a mosaic plant epidemic brought on by begomoviruses and whiteflies
were created by Pushpendra et al. [124]. In order to enhance the growth of plants and guard against infection, they took into
consideration natural microbial biostimulants. The structure of the model was defined by the study utilizing Caputo and
Atangana-Baleanu fractional derivatives, and existence and uniqueness studies were carried out via fixed point theory and
the Picard-Lindelof method. The study emphasizes the significance of determining the disease’s main optimum control
methods. A semi-analytical resolution to the Pine Wilt disease model was proposed by Kamal et al. [125], who used the
Caputo-Fabrizio fractional derivative. When attempting to solve nonlinear differential equations of fractional order, they
combined the Laplace transform with the Adomian decomposition approach, which is a very effective tool. The solution
and assessment are validated by the results. The maize streak virus, which affects more than 80 different species of grass in
addition to maize, was investigated by Joseph et al. [126]. The main vectors on maize fields are leafhoppers, and Holling’s
Type III functional response is used to study the relationship between them in a Caputo fractal-fractional derivative
approach. The model was numerically simulated by the study using the Newton polynomial scheme, and it identified
unique positive solutions within a viable domain. The association between state characteristics and epidemiological factors
was also investigated in this study. In their study of the availability of food in the context of population growth, Pawan
et al. [127] concentrated on staple plant-based diets and agriculture. They employed Caputo fractional derivative and
Caputo–Fabrizio fractional derivative operators of arbitrary order in a fractional order model to investigate the behavior
of two-stage plant diseases. The usefulness of replanting in “inter-row” to reduce replant disease in apple orchards was
investigated by Markus et al. [128], with an emphasis on the interaction between plants and microorganisms.

The work of Massimo et al. [129] is centered on the selection of innovative biological control agents (BCAs) to
combat plant pathogens that are carried by the soil. Large-scale implementation requires quick screening techniques, and
digital technology can be applied for quick performance evaluations and early illness identification. In order to improve
understanding about crop management and address the decline in apple orchard land in Central Europe, Manici et al. [130]
performed a transnational survey on apple root-associated bacteria. Farman et al. [131] created a sustainable method
using fractal fractional derivatives to examine the dynamics of plant infection. Studies that were both qualitative and
quantitative were carried out to confirm the presence and uniqueness of the model. The positiveness and boundedness of
the solutions were confirmed using linear growth and Lipschitz criteria. We also evaluated both local and global stability
with the Lyapunov function. The fractional order model for plant diseases was first presented by El-sayed et al. [132]
in a two-stage infection, highlighting the significance of comprehending plant disease dynamics for comprehension of
transmission and mitigation of plant-related problems. Tariq et al. [133] investigated how growing global population
affects food requirements, specifically with regard to plant diseases. Utilizing Atangana-Baleanu derivatives in the sense
of Caputo, they employed mathematical models to investigate the dynamics of plant disease treatments (ABC). They
investigated the existence and distinctiveness of treatments for fractional models of plant disease prevention and cure,
employing Lagrange interpolation for numerical simulations and particular parameters. Ali et al. [134] have used Caputo
derivatives to create a new mathematical model for the evolution of epidemics in plants. The parameters have been adjusted
to align both dimensions, improving the precision of the model in simulating actual situations involving the containment
of disease spread. The paper contains a thorough qualitative analysis that demonstrates the originality of the suggested
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solution by turning the issue into a fixed point problem and using Schauder’s fixed-point hypothesis and the Banach
contraction theorem. Sunil et al. [135] used Caputo’s operator to analyze field data in order to construct a computational
framework for the tritrophic food chain population. The model explores the prospect of getting fresh chaotic patterns
using a singular fractional operator that is composed of a host, a pest, and a predator. The study also looks at how climate
change is affecting the world’s food supply, including the staple crop potato. The research emphasizes how important it is
to comprehend and manage this intricate ecology more effectively. A potato disease model in a fractional-order derivative
that includes a nonlocal and nonsingular operator (AB) is presented in the research [136]. The Banach space technique
is utilized for determining the existence and uniqueness of solutions, as well as the reproduction number and steady
phases. To ascertain stability, Hyers-Ulam stability is also looked at. Jeger and colleagues [137] investigated plant viruses,
which are generally spread by arthropods, especially insects that are part of the hoop family. They classified plant-virus
illnesses into four groups according to how the viruses interacted with the vector and how they spread. Persistent viruses
are ingested, penetrate the gut wall, and may go to the salivary glands. Nonpersistent viruses are typically located in the
insect’s stylet. Behre examined the effects of protective netting, roguing, and insecticide spraying as control measures
for the tomato yellow leaf curl virus. It develops and examines a deterministic framework for the dynamics of disease
transfer, taking into account the fundamental reproduction number, the occurrence and stability of endemic and disease-
free equilibria, and a stable control scenario. The research is predicated on a [138].

4.1 Power Law Kernel

We obtained some important and useful results from contemporary calculus and nonlinear dynamics.

Definition 9.Assume that h(t) is a function that is not necessarily differentiable. Given β as the fractal dimension and α
as the fractional order, let 0 < α ≤ 1 and 0 < β ≤ 1. [139] defines a fractal fractional derivative with power law kernel

as follows:

FFPD
α ,β
0,t h(t) =

1

Γ (1−α)

d

dtβ

∫ t

0
h(ρ)(t −ρ)−αdρ , (28)

where
dh(t)

dtβ
= lim

t→t1
(2−β )

h(t)− h(t1)

t2−β − t
2−β
1

. (29)

The corresponding fractional integral is

FFPI
α ,β
0,t h(t) =

1

Γ (α)

∫ t

0
(t −ρ)α−1ρ1−β h(ρ)dρ . (30)

4.1.1 Application I (Vector Borne Plant Disease)

The study of the detrimental impact of viruses or deadly diseases on plants is known as plant epidemiology. The model’s
characteristics are examined in this work, including its genesis, nonnegativity, boundedness of solutions, equilibrium point
stability, and disease-free and endemic conditions [140]. With the Caputo fractional derivative obtained from the singular-
type kernel, many mathematicians have suggested nonclassical type derivatives since the beginning of the decade. This
study generalizes a Caputo-type model with equal dimension time on both sides by reformulating an integer-order model
into the Caputo sense. 




CDλ
t Q(t) = gλ Q

{
1− Q+R

kλ

}
− Ωλ QS

1+δ λ Q+bλ S
,

CDλ
t R(t) =

Ωλ e−βτ Q(t−τ)S(t−τ)

1+δ λ Q(t−τ)+bλ S(t−τ)
−
(
β λ +Λ λ

)
R,

CDλ
t S(t) = αλ R− γλ S.

(31)

The main goal of this replacement is to imitate memory effects by studying the dynamics of an integer-order model at
fractional-order values.

4.1.2 Application II (Mosaic Plant Disease)

The fractional-order mathematical model of mosaic illness, first presented in [141], is examined here. The entire
population is divided into four major classes, including the plant and vector populations. There are two classes in the
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plant (host) class: healthy or uninfected plants Ps and infected plants Pi. There are two classifications in the vector
population: susceptible or uninfected Vs and infected Vi. Hence, the model for mosaic illness is provided by





CDλ
t Ps(t) = g(b)Ps

{
1− Ps−Pi

k

}
−η(b)ViPs,

CDλ
t Pi(t) = η(b)ViPs −β Pi,

CDλ
t Vs(t) =Λ(Vi +Vs)

{
1− Vs−Vi

α(Ps+Pi)

}
− γVsPi − d(b)(Ps+Pi)Vs,

CDλ
t Vi(t) = γVsPi − δVi − d(b)(Ps+Pi)Vi.

(32)

This study uses Caputo fractional derivatives to propose an optimal control problem for the mosaic disease model.
Microbial biostimulants (MBs) derived from natural sources are employed to enhance plant growth and provide defense
against mosaic infection. To find out more about how spraying and roguing, two more ideal controls, affect mosaic
spread, they are used. The forward-backward sweep method is used to execute experiments at different fractional order
levels. According to the study, the only control that can successfully halt the spread of mosaics in the presence of MBs is
roguing.

4.1.3 Application III

By applying a generalized Liouville Caputo type fractional operator, a fractional-order model is substituted for the
classical one. The objective is to perform dynamical changes simulations at different fractional-order levels. Whether a
solution exists and if they are appropriate for the particular model depends on the usage of non-integer order derivatives.
In research on ecology, fractional derivatives work well. The model’s fractional sense generalization is derived in [142]
in order to satisfy this criterion. 




CD
φ ,ρ
t C(t) = PU

C+1
− αUC

C+v2
− ηCV

C+v3
−C,

CD
φ ,ρ
t U(t) =

{
QC

C+v1
−U

}
U − UV

U+κ − γU,

CD
φ ,ρ
t V (t) = ωC2

C2+v2
4

UV
U+κ −βV.

(33)

This research focuses on studying the dynamics of a coupled plankton-oxygen model using three non-linear differential
equations. Ocean dynamics significantly impact global climate change and environmental creation.

4.1.4 Application IV (Plant Virus Model)

A fractional operator of the extended Riemann Liouville Caputo type is used to replace the traditional framework with
a fractional-order model. Simulating dynamical changes at different fractional-order levels is the aim. To make sure that
they are appropriate for the particular model and to determine whether a solution exists, non-integer order derivatives must
be used. Ecological research can benefit from the use of fractional derivatives. [143] derives the model’s fractional sense
generalization in order to satisfy this criterion.






CD
φ
t S(t) = µ(κ − S)+ dI − βY

1+αY
S,

CD
φ
t I(t) = βY

1+αY
S− (d+ µ + γ)I,

CD
φ
t X(t) = Λ − β1I

1+α1I
X − c1X

1+α3X
P−mX ,

CD
φ
t Y (t) = β1I

1+α1I
X − c2Y

1+α3Y
P−mY,

CD
φ
t P(t) =ΛP +

α4c1X
1+α3X

P+ α4c2Y
1+α3Y

P− δP.

(34)

This study presents an application for reproduction number for epidemic models utilizing the next generation matrix
approach, and explores the characteristics of the plant virus model using its fractional order equivalent. Additionally, the
study proves that there are solutions to this fractional order system and that they are unique. Additionally, the authors
include figures derived from the numerical method.

4.2 Exponential Decay Kernel

Definition 10.Assume that h(t) is a function that is not necessarily differentiable. Given β as the fractal dimension and α
as the fractional order, let 0 < α ≤ 1 and 0 < β ≤ 1. [139] defines a fractal fractional derivative with exponential decay
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kernel as follows:

FFED
α ,β
0,t h(t) =

M(α)

1−α

d

dtβ

∫ t

0
h(ρ)exp

[
− α

1−α
(t −ρ)

]
dρ . (35)

The associated integral is given by

FFEJ
α ,β
0,t h(t) =

1−α

M(α)
t1−β h(t)+

α

M(α)

∫ t

0
ρ1−β h(ρ)dρ . (36)

4.2.1 Application I (yellow virus in red chili plants)

We present a compartmental model for the dynamics of the Yellow virus in red chili plants, focusing on the origins and
recurrence of hypothesized epidemics. The model, proposed by Sajjad et al. [144], is represented by a set of nonlinear
system of differential equations, providing a comprehensive understanding of the virus’s dynamics.





CF
D

ϑ
t Sv(t) = A−αSv−β1(1− δP)SvIBT − µPSv,

CF
D

ϑ
t Iv(t) =−β1(1− δP)SvIBT − µPIv,

CF
D

ϑ
t Sg(t) = αSv −β2(1− δP)SgIBT − µPSg,

CF
D

ϑ
t Ig(t) = β2(1− δP)SgIBT − µPIg,

CF
D

ϑ
t SBT (t) = rSBT

(
1− SBT

K

)
− γ1(1− δP)IvSBT − γ2(1− δP)IgSBT −θ1δPSBT NP − µ1SBT ,

CF
D

ϑ
t IBT (t) = γ1(1− δP)IvSBT + γ2(1− δP)IgSBT −θ1δPIBT NP − µ1IBT .

(37)

This work employs the Caputo-Fabrizio operator in fixed point theory to determine the existence, uniqueness, and stability
criteria for the fractional order yellow virus in the red chilli model. The Laplace transform method is combined with a
dependable iterative method in the iterative Laplace transform approach, and the fractional derivative methodology is new
for biological models. Charts are used to illustrate numerical simulations based on the analysis of parameters that describe
the evolution of illness.

4.3 Mittag-Leffler Kernel

Definition 11.Assume that h(t) is a function that is not necessarily differentiable. Given β as the fractal dimension and

α as the fractional order, let 0 < α ≤ 1 and 0 < β ≤ 1. [139] defines a fractal fractional derivative with Mittag Leffler

kernel as follows:

FFMD
α ,β
0,t f (t) =

AB(α)

1−α

d

dtβ

∫ t

0
f (δ )Eα

[
− α

1−α
(t − δ )α

]
dδ , (38)

The associated integral is given by

FFMJ
α ,β
0,t f (t) =

1−α

AB(α)
t1−β f (t)+

α

AB(α)Γ (α)

∫ t

0
δ 1−β (t − δ )α−1 f (δ )dδ . (39)

4.3.1 Application I (yellow virus in red chili plants by FFM)

Using the Mittag-Leffler fractal-fraction operator, the study investigates the yellow virus in red chili plants. Improved
fractional order model of the yellow virus is achieved by applying results from fixed point hypothesis. The stability
of the Ulam-Hyres model is evaluated using nonlinear analysis. The suggested approach’s effectiveness is shown by
numerical simulations. Strong tools capable of simulating expected theoretical conditions are employed in this model
[145] associated with transmission. This work uses fractional order approaches to investigate the dynamical behavior of
the yellow virus in red chili. The yellow virus is becoming more and more of a problem, so it’s critical to create plans
to halt its spread while preserving immunity. The work makes use of Atangana’s unique fractal-fractional operators to
observe the unexpected aspects of an issue. The objective of the research is to examine how vaccination affects the yellow
virus in the red chilli model by varying the values of υ1 and υ2, which indicate the vaccination effect. The goal of the
research is to create methods for stopping the yellow virus from spreading while preserving immunity.
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4.3.2 Application II (plant disease model with replanting)

Within fractional calculus, we examine a model of plant disease spread in which sensitive individuals pass through an
exposed stage before becoming infectious individuals and whereby illnesses can also be transmitted by exposed plants.
The main reason for this delay is that the plant illnesses in the classical example do not impart any knowledge regarding
retention and acquisition strategies that influence the spread of a disease. The plant disease model with fractional order
in [146] is now viewed as follows.






ABC
D

ν
�

S1(t) = r(M−N)− γS1(t)− a1
M

S1(t)I1(t)−αS1(t)+β P1(t),
ABC

D
ν
�

P1(t) = αS1(t)+β P1(t)− γP1(t),
ABC

D
ν
�

E1(t) =
a1
M

S1(t)I1(t)− (γ +α2 + b1)E1(t),
ABC

D
ν
�

I1(t) = α2E1(t)− (γ +α3 + b2 +η)I1(t),
ABC

D
ν
�

R1(t) = α3I1(t)− (γ + b3)R1(t).

(40)

4.3.3 Application III (cotton leaf curl virus)

The formula for this is Nν (t) = Xν +Yν . The model took into account the recruiting rate of vulnerable vectors m2 and
the transition rate α2 from diseased plants or cotton to infected vectors (Yν ). At α1, the illnesses spread to cotton when
sensitive cotton (Sc) is eaten by infected vectors (Yν ). The infections then spread to the sensitive cotton (Sc), which
replanted at a pace of m1. Cotton seldom fully recovers from infection and either yields very little or nothing at all. The
induced mortality rate, β1, and the elimination rate of infected cotton plants from uninfected cotton plants, β2, are the
parameters used to control the sickness. Additionally, the natural death rates of cotton plants are d and ψ . We now view
the fractional order plant disease model in [147] as follows.






ABC
D

ν
t Sc(t) = m1 −α1ScYν − dSc,

ABC
D

ν
t Ic(t) = α1ScYν − (d+β1 +β2)Ic,

ABC
D

ν
t Xν(t) = m2 −α2IcXν −ψXν ,

ABC
D

ν
t Yν(t) = α2IcXν −ψYν .

(41)

The CLCuV model was employed in the study to classify cotton plants into subgroups that were susceptible to infection.
Cotton that is susceptible to infection is denoted as Sc(t), whereas cotton that is vulnerable to infection is Ic(t). There
are subclasses of susceptible and infected vectors inside the vector population; the susceptible and infected vectors are
represented by the vectors Xν(t) and Yν(t), accordingly.

5 Application of Fractional order derivative for Plant virus model: Future direction

The authors [148] have created a mathematical model to assess the effects of foliar diseases on the dynamics of maize plant
inhabitants. Thorough qualitative evaluations of the model’s primary components have been approved, indicating that low-
cost control approaches can successfully employ it. The authors [149] created a mathematical model to investigate how
foliar diseases affect the dynamics of maize plants. They did this by computing asymptotic stability at the equilibrium
point of the non-integer system through a system of differential equations for MFD that involves fractional operators
and reproduction numbers. A mathematical model for maize foliar disease was published by the authors [150]; it is an
improvement over the Collins and Duffy model, which employed a bilinear incidence rate.

This study’s primary goal is to apply newly developed fractional derivatives to mathematical modeling and analysis of
the maize foliar. The life of the plant is seriously at stake due to the extremely hazardous disease known as maize foliar.
Along with a qualitative evaluation of the system, the existence and unique properties of the solution system are verified.
Additionally, the actual outcomes of the mathematical model are evaluated using the Atangana-Blaneao derivative. Lastly,
the biological observations are verified by numerical simulations. Given the importance of the aforementioned, we intend
to focus our effort on these basic questions, utilizing a model that has been carefully designed to account for the constraints
of our reaction to the dynamics of maize foliar. First, we demonstrated the epidemic dynamics within a single community
with a specific social pattern using a classic method that permits a long incubation period. In this instance, the old model
is describe in [148] as follows:

DS(t) =Λ −P(t)β S(t)− µ1S(t);

DI(t) =P(t)β S(t)− (µ2+σ)I(t);

DP(t) =− ξ P(t)+σ I(t).

(42)
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The following initial circumstances match the system indicated above: S0 = S(0), I0 = I(0) and P0 = P(0).
After the consideration of an integrated control management practices. Model becomes

DS =Λ −Pβ S− µ1S−φS+ τI;

DC =φS− εCP− µ3C;

DI =Pβ S+ εCP− (µ2 + τ)I;

DP =σ I − (ξ +θ )P.

(43)

The following initial circumstances match the system indicated above: S0 = S(0), C0 =C(0), I0 = I(0) and P0 = P(0).

5.1 Formulation of pine wilt disease model

The recovery impact is included in a recently created model for maize foliar, while the prior model only employed
the framework. We include a new variable named recover in this new model. A synopsis of the key concepts in this
paradigm is provided below; The population at time t is represented by N(t), which is further split into five subclasses.
The control population C(t) of maize foliar is subject to worm infection control. Susceptible S(t) is the term used to
describe maize foliar that is prone to worm infection. The nematode I(t)-infected maize foliar is unable to emit oleoresin
into the surrounding environment. The model presupposes a small class of recovered maize foliar R(t). Protected P(t)
refers to maize foliar that is protected and measures the pathogens that cause foliar disease up to worm infection. The
following are the parameters of the system: α is the transform rate from recover to susceptible, φ is the transmission rate
of susceptible to control, τ is the rate of transform from infected to susceptible, µ1 is the rate of natural death of plants,
and Λ is the recruitment rate into susceptible. Moreover, ε represents the transmission rate between P(t) and control, µ3

represents the rate at which plants die as a result of control, and η represents the rate at which plants change from control
to recover. The system’s other parameters are σ , which indicates the pace at which an infected plant aids in the growth
of a protected one, and γ , which indicates the rate at which an infected plant changes into a recovered one; and ξ and θ
which represent the net decay rate of pathogens and the death rate of P(t), respectively.

Fig. 1: The newly created model is shown in the flow chart.
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As a result, the system with the help of flow chart and our created hypothesis shown below as an epidemic model
using a host vector and nonlinear incidence

DS =Λ −Cβ S− µ1S−φS+ τI+αR;

DC =φS− εCI− (µ3 +η)C;

DI =Cβ S+ εCI− (µ2 + τ + γ)I;

DR =ηC+ γI− (α + µ1)R;

DP =σ I − (ξ +θ )P.

(44)

with the following initial conditions: S0 = S(0), C0 =C(0), I0 = I(0), R0 = R(0) and P0 = P(0).
Now by applying the fractal fractional derivative definition on above system of differential equations, we get

FFM
0 D

ω,ϖ
t S(t) =Λ −β SC− µ1S−φS+ τI+αR;

FFM
0 D

ω,ϖ
t C =φS− εCI− (µ3 +η)C;

FFM
0 D

ω,ϖ
t I =β SC+ εCI− (µ2 + τ + γ)I;

FFM
0 D

ω,ϖ
t R =ηC+ γI− (α + µ1)R;

FFM
0 D

ω,ϖ
t P =σ I− (ξ +θ )P.

(45)

The fractal fractional operator of Mittag-Leffler in this case is FFM
0 D

ω,ϖ
t , where 0 < ω ≤ 1 and 0 < ϖ ≤ 1. The system

under description is associated with the initial conditions S0 = S(0), C0 =C(0), I0 = I(0), R0 = R(0), and P0 = P(0).

5.2 The positive and bounded nature of the solutions

The research assesses the limits and reasonableness of the circumstances guaranteeing the positive solutions of the
suggested model, presuming that they comprise real conditions with pertinent values.

C(t) ≥ C(0)e−(ε‖I‖∞+µ3+η)t , ∀t ≥−ψ

I(t) ≥ I(0)e−(−ε‖C‖∞+µ2+τ+γ)t , ∀t ≥−ψ

R(t) ≥ R(0)e−(α+µ1)t , ∀t ≥−ψ

P(t) ≥ P(0)e−(ξ+θ)t , ∀t ≥−ψ .

Let DX be the domain of X . Define the norm

‖X‖∞ = sup
t∈DX

|X(t)|

. With this norm, the function S(t) has;

FFM
0 D

ω,ϖ
t S(t) = Λ −β SC− µ1S−φS+ τI+αR ≥−β SC− µ1S−φS

≥ −(βC+ µ1 +φ)S ≥−(β sup
t∈DC

C+ µ1 +φ)S =−(β‖C‖∞+ µ1 +φ)S

For ordinary derivative, we have

S(t) = S(0)e−(β‖C‖∞+µ1+φ)t , ∀t ≥−ψ

Positive outcomes utilizing a non-local operator are detailed in the following.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


502 K. S. Nisar et. al.: A review on fractional order plant epidemiological models

5.3 Solutions that work well with a non-local operator

For non-local operators, all outcomes of system (45) are positive if all initial conditions are met.
• With a power law kernel for the Fractal-Fractional operator, we get ∀t ≥−ψ .

S(t) = S(0)Ea

(
−ϕ1−b(β‖C‖∞+ µ1 +φ)ta

)
,

C(t) ≥ C(0)Ea

(
−ϕ1−b(ε‖I‖∞+ µ3 +η)ta

)
,

I(t) ≥ I(0)Ea

(
−ϕ1−b(−ε‖C‖∞ + µ2 + τ + γ)ta

)
,

R(t) ≥ R(0)Ea

(
−ϕ1−b(α + µ1)t

a
)
,

P(t) ≥ P(0)Ea

(
−ϕ1−b(ξ +θ )ta

)
.

where the time component is ϕ .
• We obtain ∀t ≥−ψ for a Fractal-Fractional operator with an exponential kernel.

S(t) = S(0)exp

(
− χ1−ba(β‖C‖∞+ µ1 +φ)t

M (a)− (1− a) [β‖C‖∞+ µ1 +φ ]

)
,

C(t) ≥ C(0)exp

(
− χ1−ba(ε‖I‖∞ + µ3 +η)t

M (a)− (1− a) [ε‖I‖∞ + µ3 +η ]

)
,

I(t) ≥ I(0)exp

(
− χ1−ba(−ε‖C‖∞+ µ2 + τ + γ)t

M (a)− (1− a) [−ε‖C‖∞+ µ2 + τ + γ]

)
,

R(t) ≥ R(0)exp

(
− χ1−ba(α + µ1)t

M (a)− (1− a) [α + µ1]

)
,

P(t) ≥ P(0)exp

(
− χ1−ba(ξ +θ )t

M (a)− (1− a)[ξ +θ ]

)
.

• Utilizing a Mittag-Leffler kernel for the fractal-fractional operator, we get ∀t ≥−ψ .

S(t) = S(0)Ea

(
− χ1−ba(β‖C‖∞ + µ1 +φ)t

A B(a)− (1− a) [β‖C‖∞+ µ1 +φ ]

)
,

C(t) ≥ C(0)Ea

(
− χ1−ba(ε‖I‖∞ + µ3 +η)t

A B(a)− (1− a) [ε‖I‖∞+ µ3 +η ]

)
,

I(t) ≥ I(0)Ea

(
− χ1−ba(−ε‖C‖∞+ µ2 + τ + γ)t

A B(a)− (1− a) [−ε‖C‖∞+ µ2 + τ + γ]

)
,

R(t) ≥ R(0)Ea

(
− χ1−ba(α + µ1)t

A B(a)− (1− a) [α + µ1]

)
,

P(t) ≥ P(0)Ea

(
− χ1−ba(ξ +θ )t

A B(a)− (1− a)[ξ +θ ]

)
.

5.4 Model’s Reproductive Number and Equilibrium Point

The disease-free equilibrium for this model 45 is E1(S,C, I,R,P)., where

S =
Λ(α + µ1)(η + µ3)

αηµ1 +α1µ1µ3 +αµ3φ +ηµ2
1 +ηµ1φ + µ2

1 µ3 + µ1µ3φ

C =
Λφ(α + µ1)

αηµ1 +α1µ1µ3 +αµ3φ +ηµ2
1 +ηµ1φ + µ2

1 µ3 + µ1µ3φ

I = 0

R =
ηΛφ

αηµ1 +α1µ1µ3 +αµ3φ +ηµ2
1 +ηµ1φ + µ2

1 µ3 + µ1µ3φ

P = 0
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together with the pandemic point of equilibrium, which are as follows: E2(S
∗,C∗, I∗,R∗,P∗) and reproductive number is

R0 =
1

2φ(α + µ1)(η + µ3)(θ + ξ )
(
αµ1 + µ2

1 + µ1φ
)
(γ + µ2 + τ)

[
α2β ηΛσφ +α2βΛ µ3σφ

+
√

Λ
√

σφ(α + µ1)
3/2√η + µ3

√
A+ 2αβ ηΛ µ1σφ + 2αβΛ µ1µ3σφ +β ηΛ µ2

1 σφ +βΛ µ2
1 µ3σφ

]
;

where

A= α2β ηΛσφ +α2βΛ µ3σφ +
√

Λ
√

σφ(α + µ1)
3/2√η + µ3

√
A1+ 2αβ ηΛ µ1σφ+

2αβΛ µ1µ3σφ +β ηΛ µ2
1 σφ +βΛ µ2

1 µ3σφ ,

A1 = αβ 2ηΛσ +αβ 2Λ µ3σ + 4αγθ µ1εφ + 4αγµ1ξ εφ + 4αθ µ1µ2εφ + 4αθ µ1τεφ + 4αµ1µ2ξ εφ

+ 4αµ1ξ τεφ +β 2ηΛ µ1σ +β 2Λ µ1µ3σ + 4γθ µ2
1 εφ + 4γθ µ1εφ2 + 4γµ2

1 ξ εφ + 4γµ1ξ εφ2

+ 4θ µ2
1 µ2εφ + 4θ µ2

1 τεφ + 4θ µ1µ2εφ2 + 4θ µ1τεφ2 + 4µ2
1 µ2ξ εφ + 4µ2

1 ξ τεφ + 4µ1µ2ξ εφ2

+ 4µ1ξ τεφ2.

5.5 Solutions of the Model that are Positive and Bounded

We prove the constructed model’s positivity and boundedness in this section.

Theorem 1: In addition to the initial condition, the suggested maize foliar disease model Eqn. 45 in R5
+ is distinct and

confined.

Proof:
We possess

FFM
0 D

ω,ϖ
t S =Λ + τI+αR ≥ 0;

FFM
0 D

ω,ϖ
t C =φS ≥ 0;

FFM
0 D

ω,ϖ
t I =β SC+ εCI ≥ 0;

FFM
0 D

ω,ϖ
t R =ηC+ γI ≥ 0;

FFM
0 D

ω,ϖ
t P =σ I ≥ 0.

(46)

Equation 45 states that our obtained solution cannot escape from the hyperplane if (S(0), C(0), I(0), R(0), P(0)) ∈ R5
+.

This demonstrates that a positive invariant is achieved in the R+
5 domain.

Theorem. 2: For each t > 0, S(0), C(0), I(0), R(0), and P(0) are all positive if the answers to a system of equations
are S, C, I, R, and P.

Proof: To demonstrate why your responses are good—they portray positive values in real-world scenarios—let’s begin
with a fundamental examination. We look at the requirements in this part to make sure the suggested model’s solutions
are positive. Start by using the S class. The first formula provides

S ≥ S(0)e−(βC+µ1+φ)t + e−(βC+µ1+φ)tρ1 ≥ 0.

The remaining formulas will be

C ≥C(0)e−(εI+µ3+η))t + e−(εI+µ3+η)tρ2 ≥ 0,

I ≥I(0)e−(µ2+τ+γ)t + e−(µ2+τ+γ)tρ3 ≥ 0,

R ≥R(0)e−(α+µ1)t + e−(α+µ1)tρ4 ≥ 0,

P ≥P(0)e−(ξ+θ)t + e−(ξ+θ)tρ5 ≥ 0,
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Where

ρ1 =

∫ t∗

0
[Λ + τI+αR]e(β P+µ1+φ)ψdψ ,

ρ2 =

∫ t∗

0
φSe(εI+µ3+η)ψ dψ ,

ρ3 =

∫ t∗

0
[β SC+ εCI]e(µ2+τ+γ)ψdψ ,

ρ4 =
∫ t∗

0
[ηC+ γI]e(α+µ1)ψ dψ ,

ρ5 =

∫ t∗

0
σ Ie(ξ+θ)ψdψ .

5.6 Effects of Global Derivatives on Solution Uniqueness and Exitance

The most often used integral in the literature is generally acknowledged to be the Riemann-Stieltjes integral. If

Y (a) =

∫
y(a)dx.

Here is an expression for the Riemann-Stieltjes integral.

Yg(a) =
∫

y(a)dgx.

Regarding g(a), the global derivative of y(a) is

Dgy(a) = lim
h→0

y(a+ h)− y(a)

g(a+ h)− g(a)
.

When the numerator and denominator of the aforementioned functions differentiate, we obtain

Dgy(a) = lim
h→0

y′(a)
g′(a)

.

Now that we have assumed that g′(a) 6= 0, we will investigate the impact on the maize foliar virus by using the global
derivative in place of the classical derivative ∀a ∈ D

′
g.

DgS =Λ −β SC− µ1S−φS+ τI+αR;

DgC =φS− εCI− (µ3 +η)C;

DgI =β SC+ εCI− (µ2 + τ + γ)I;

DgR =ηC+ γI− (α + µ1)R;

DgP =σ I− (ξ +θ )P.

Let’s assume for the sake of hygiene that g is differentiable.

S′ =g′[Λ −β SC− µ1S−φS+ τI+αR];

C′ =g′[φS− εCI− (µ3 +η)C];

I′ =g′[β SC+ εCI− (µ2 + τ + γ)I];

R′ =g′[ηC+ γI− (α + µ1)R];

P′ =g′[σ I− (ξ +θ )P].

A particular result will be obtained if the function g is chosen appropriately. Fractal movement will be seen, for

example, if g = tζ , where ζ is a real number. The conditions that required us to act were

‖g′‖∞ = sup
t∈D′

g

g < N.
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The developed system’s unique solution is illustrated in the example below.

S′ =g′[Λ −β SC− µ1S−φS+ τI+αR];

C′ =g′[φS− εCI− (µ3 +η)C];

I′ =g′[β SC+ εCI− (µ2 + τ + γ)I];

R′ =g′[ηC+ γI− (α + µ1)R];

P′ =g′[σ I− (ξ +θ )P].

Where

ξ = S,C, I,R,P

The following two prerequisites need to be confirmed.

1.|J(t,S,C, I,R,P)|< K(1+ |S|2)
2.∀S1,S2, we have

‖J(t,S1,C, I,R,P)− J(t,S2,C, I,R,P)‖ < k‖S1 − S2‖∞.

Initially,

|J1(t,ξ )|2 = |g′[Λ −β SC− µ1S−φS+ τI+αR]|2

= |g′|2 |[Λ −β SC− µ1S−φS+ τI+αR]|2

≤ 2|g′|2[|Λ |2 + |−β SC− µ1S−φS+ τI+αR|2]
≤ 2|g′|2[|Λ |2 + 2|τI|2 + 2|αR−β SC− µ1S−φS|2]
≤ 2|g′|2[|Λ |2 + 2|τI|2 + 4|αR|+ 4|(βC+ µ1 +φ)S|2]
= 2|g′|22|Λ |2 + 4|τI|2 + 8|αR|+ 8|(βC+ µ1 +φ)|2|S|2]

= 2|g′|22|Λ |2 + 4|τI|2 + 8|αR|[1+ (βC+ µ1 +φ)|2
2|Λ |2 + 4|τI|2 + 8|αR| |S|

2]

< k1(1+ |S|2).

Under the conditions

(βC+ µ1 +φ)|2
2|Λ |2 + 4|τI|2 + 8|αR| < 1,

where

k1 = 2|g′|22|Λ |2 + 4|τI|2 + 8|αR|.

|J2(t,ξ )|2 = |g′[φS− εCI− (µ3 +η)C]|2

= |g′|2|[φS− εCI− (µ3 +η)C]|2

≤ 2|g′|2[|φS|2 + |− (εI+(µ3 +η))C|2]
= 2|g′|2[|φS|2 + |(εI+ µ3 +η)C|2]

= 2|g′|2|φS|2[1+ (εI + µ3 +η)2

|φS|2 |C|2]

< k2(1+ |C|2).

Under the conditions

(εI + µ3 +η)2

|φS|2 < 1,

where

k2 = 2|g′|2|φS|2.
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|J3(t,ξ )|2 = |g′[β SC+ εCI− (µ2 + τ + γ)I]|2

= |g′|2|[β SC+ εCI− (µ2 + τ + γ)I]|2

≤ 2|g′|2[|β SC|2 + |εCI− (µ2 + τ + γ)I|2]
≤ 2|g′|2[|β SC|2 + 2|εCI|2 + 2|(µ2 + τ + γ)I|2]
= 2|g′|2[|β SC|2 + 4|εCI|2 + 4|(µ2 + τ + γ)I|2]

= 2|g′|2[|β SC|2 + 4|εCI|2][1+ 4(µ2 + τ + γ)2

|β SP|2 + 4|εCP|2 |I|
2]

< k3(1+ |I|2)

Under the conditions
4(µ2 + τ + γ)2

|β SC|2 + 4|εCI|2 < 1

where

k3 = 2|g′|2|β SC|2 + 4|εCI|2.

|J4(t,ξ )|2 = |g′[ηC+ γI− (α + µ1)R]|2

= |g′|2[|ηC+ γI− (α + µ1)R|2]
≤ 2|g′|2[|ηC|2 + |γI− (α + µ1)R|2]
≤ 2|g′|2[|ηC|2 + 2|γI|2 + 2|(α + µ1)R|2]
= 2|g′|2[|ηC|2 + 2|γI|2 + 2|(α + µ1)|2|R|2]

= 2|g′|2(|ηC|2 + 2|γI|2)[1+ 2|(α + µ1)|2
|ηC|2 + 2|γI|2 |R|

2]

< k4(1+ |R|2).

Under the conditions
2|(α + µ1)|2
|ηC|2 + 2|γI|2 < 1,

where

k4 = 2|g′|2(|ηC|2 + 2|γI|2).

|J5(t,ξ )|2 = |g′[σ I − (ξ +θ )P]|2

= |g′|2[|σ I− (ξ +θ )P|2]
≤ 2|g′|2[|σ I|2 + |(ξ +θ )P|2]
= 2|g′|2[|σ I|2 + |(ξ +θ )|2|P|2]

= 2|g′|2|σ I|2[1+ |(ξ +θ )|2
|σ I|2 |P|2]

< k5(1+ |P|2).

Under the conditions
|(ξ +θ )|2
|σ I|2 < 1,

where

k5 = 2|g′|2|σ I|2.
The requirements for linear growth are thereby met.
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Furthermore, confirm Lipschitz’s state using the following method. When

|J1(t,S1,C, I,R,P)− J1(t,S2,C, I,R,P|2 = (|− (βC+ µ1 +φ)|2)|S1 − S2|2

= (|(βC+ µ1 +φ)|2)|S1 − S2|2

≤
{

2|βC|2 + 2|(µ1 +φ)|2
}
|S1 − S2|2

=
{

2|β |2|C|2 + 2|(µ1 +φ)|2
}
|S1 − S2|2

≤
{

2|β |2 sup
t∈DC

|C|2 + 2|(µ1 +φ)|2
}

sup
t∈DS

|S1 − S2|2

≤
{

2|β |2‖C‖∞ + 2|(µ1 +φ)|2
}
‖S1 − S2‖∞

≤ k1‖S1 − S2‖∞,

where

k1 = 2|β |2‖C‖∞+ 2|(µ1 +φ)|2.
If

|J2(t,S,C1, I,R,P)− J2(t,S,C2, I,R,P)|2 = |− (εI+ µ3 +η)C1 −C2|2

≤
{

2|εI|2 + 2|(µ3 +η)|2
}
|C1 −C2|2

=
{
|ε|2|I|2 + |(µ3 +η)|2

}
|C1 −C2|2

≤
{
|ε|2 sup

t∈DI

|I|2 + |(µ3 +η)|2
}

sup
t∈DC

|C1 −C2|2

=
{
|ε|2‖I‖∞+ |(µ3 +η)|2

}
‖C1 −C2‖∞

≤ k2‖C1 −C2‖∞,

where

k2 =
{
|ε|2‖I‖∞+ |(µ3 +η)|2

}
.

If

|J3(t,S,C, I1,R,P)− J3(t,S,C, I2,R,P)|2 = |− (µ2 + τ + γ)I1 − I2|2

≤ |(µ2 + τ + γ)|2 sup
t∈DI

|I1 − I2|2

= |(µ2 + τ + γ)|2‖I1 − I2‖∞

≤ k3‖I1 − I2‖∞,

where

k3 = |(µ2 + τ + γ)|2.
If

|J4(t,S,C, I,R1,P)− J4(t,S,C, I,R2,P)|2 = |− (α + µ1)(R1 −R2)|2

= |− (α + µ1)|2|(R1 −R2)|2

≤ |(α + µ1)|2 sup
t∈DR

|(R1 −R2)|2

≤ k4‖R1 −R2‖∞,

where

k4 = |(α + µ1)|2.
If

|J5(t,S,C, I,R,P1)− J5(t,S,C, I,R,P2)|2 = |− (ξ +θ )(P1 −P2)|2

= |− (ξ +θ )|2|(P1 −P2)|2

≤ |(ξ +θ )|2 sup
t∈DP

|(P1 −P2)|2

≤ k5‖P1 −P2‖∞,
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where

k5 = |(ξ +θ )|2.
Then, system 45 has a specific solution given the condition.

max

[
(β P+ µ1 +φ)|2

2|Λ |2 + 4|τI|2 + 8|αR| ,
(εP+ µ3 +η)2

|φS|2 ,
4(µ2 + τ + γ)2

|β SP|2 + 4|εCP|2 ,
2|(α + µ1)|2
|ηC|2 + 2|γI|2 ,

|(ξ +θ )|2
|σ I|2

]
< 1.

5.7 Global Stability for Newly Generated Model

We apply Lyapunov’s technique and LaSalle’s concept of invariance to investigate global stability and determine the
conditions for disease cure.

5.8 Lyapunov’s First Derivative

Theorem. 3: Assuming that R0 < 1, the model’s endemismically stable states are globally asymptotically stable.
Proof: The Lyapunov function is expressed as follows.

L(S∗,C∗, I∗,R∗,P∗) = (S− S∗− S∗log
S∗

S
)+ (C−C∗−C∗log

C∗

C
)+ (I− (1+ log

I∗

I
)I∗)+

(R− (1+ log
R∗

R
)R∗)+ (P−P∗−P∗log

P∗

P
).

We accomplish this by using both sides of the fractal fractional derivative.

FFM
0 D

ω,ϖ
t L =

(
S− S∗

S

)
FFM
0 D

ω,ϖ
t S+

(
C−C∗

C

)
FFM
0 D

ω,ϖ
t C+

(
I− I∗

I

)
FFM
0 D

ω,ϖ
t I

+

(
R−R∗

R

)
FFM
0 D

ω,ϖ
t R+

(
P−P∗

P

)
FFM
0 D

ω,ϖ
t P.

We get

FFM
0 D

ω,ϖ
t L =

(
S− S∗

S

)
(Λ −β SC− µ1S−φS+ τI+αR)+

(
C−C∗

C

)
(φS− εCI− (µ3 +η)C)

+

(
I− I∗

I

)
(β SC+ εCI− (µ2 + τ + γ)I)+

(
R−R∗

R

)
(ηC+ γI− (α + µ1)R)

+

(
P−P∗

P

)
(σ I − (ξ +θ )P).

Putting S = S− S∗, C =C−C∗, I = I− I∗, R = R−R∗, P = P−P∗.

FFM
0 D

ω,ϖ
t L =

(
S− S∗

S

)
(Λ −β (S− S∗)(C−C∗)− µ1(S− S∗)−φ(S− S∗)+ τ(I− I∗)+α(R−R∗))

+

(
C−C∗

C

)
(φ(S− S∗)− ε(C−C∗)(I − I∗)− (µ3 +η)(C−C∗))

+

(
I− I∗

I

)
(β (S− S∗)(C−C∗)ε(C−C∗)(I − I∗)− (µ2 + τ + γ)(I− I∗))

+

(
R−R∗

R

)
(η(C−C∗)+ γ(I− I∗)− (α + µ1)(R−R∗))

+

(
1− P∗

P

)
(σ(I− I∗)− (ξ +θ )(P−P∗)).

It also can be organize that
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FFM
0 D

ω,ϖ
t L =Λ − ΛS∗

S
− β

S
(S− S∗)2C+

β

S
(S− S∗)2C∗− µ1

S
(S− S∗)2 − φ

S
(S− S∗)2 + τI− τI∗

− S∗

S
τI+

S∗

S
τI∗+αR−αR∗− S∗

S
αR+

S∗

S
αR∗+φS−φS∗− C∗

C
φ +

C∗

C
φS∗

− ε

C
(C−C∗)2I +

ε

C
(C−C∗)2I∗− (µ3 +η)

C
(C−C∗)2 +β SC−β S∗C−β SC∗

+β S∗C∗− I∗

I
β SC+

I∗

I
β S∗C+

I∗

I
β SC∗− I∗

I
β S∗C∗+ εCI− εC∗I− εCI∗+ εC∗I∗

− I∗

I
εCI +

I∗

I
εC∗I+

I∗

I
εCI∗− I∗

I
εC∗I∗− (µ2 + τ + γ)

I
(I− I∗)2 +ηC−ηC∗

−η
R∗

R
C+η

R∗

R
C∗+ γI− γI∗− γ

R∗

R
I + γ

R∗

R
I∗− (α + µ1)

R
(R−R∗)2 +σ I−σ I∗

−σ
P∗

P
I +σ

P∗

P
I∗− (ξ +θ )

P
(P−P∗)2.

Which can be written as
FFM
0 D

ω,ϖ
t L = M−N. (47)

Where

M = Λ +
β

S
(S− S∗)2C∗+ τI− τI∗+

S∗

S
τI∗+αR+

S∗

S
αR∗+φS+

C∗

C
φS∗+

ε

C
(C−C∗)2I∗

+β SC+β S∗C∗+
I∗

I
β S∗C+

I∗

I
β SC∗+ εCI+ εC∗I∗+

I∗

I
εC∗I+

I∗

I
εCI∗+ηC+η

R∗

R
C∗

+ γI+ γ
R∗

R
I∗+σ I+σ

P∗

P
I∗,

and

N =
ΛS∗

S
+

β

S
(S− S∗)2C+

µ1

S
(S− S∗)2 +

φ

S
(S− S∗)2 + τI∗+

S∗

S
τI +αR∗+

S∗

S
αR+φS∗+

C∗

C
φ

+
ε

C
(C−C∗)2I+

(µ3 +η)

C
(C−C∗)2 +β S∗C+β SC∗+

I∗

I
β SC+

I∗

I
β S∗C∗+ εC∗C+ εCC∗+

I∗

I
εCI

+
I∗

I
εC∗I∗+

(µ2 + τ + γ)

I
(I − I∗)2 +ηC∗+η

R∗

R
C+ γI∗+ γ

R∗

R
I+

(α + µ1)

R
(R−R∗)2 +σ I∗

+σ
P∗

P
I+

(ξ +θ )

P
(P−P∗)2.

In summary, we find that when M < N, this results in FFM
0 D

ω,ϖ
t L < 0; on the other hand, when S = S∗, C = C∗, I = I∗,

R = R∗, P = P∗, then

0 = M−N ⇒ FFM
0 D

ω,ϖ
t L = 0.

We can see that {(S∗,C∗, I∗,R∗,P∗, I∗v ) ∈ R
+
5 : FFM

0 D
ω,ϖ
t L = 0}.

The model is globally uniformly stable in accordance with Lasalles’ concept of invariance.

5.9 Numerical Algorithm with Fractal Fractional Operator

We will now use the numerical approach to find a solution for our newly developed model, which is represented by
equation 45. In the present case, we substitute the ML kernel for the classical derivative operator. We’ll also employ the
version with a flexible order. We state the equation 45 as follows for clarity:
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FFM
0 D

ω,ϖ
t S = Λ −β SC− µ1S−φS+ τI+αR = S1(t,π);

FFM
0 D

ω,ϖ
t C = φS− εCI− (µ3 +η)C =C1(t,π);

FFM
0 D

ω,ϖ
t I = β SC+ εCI− (µ2 + τ + γ)I = I1(t,π);

FFM
0 D

ω,ϖ
t R = ηC+ γI− (α + µ1)R = R1(t,π);

FFM
0 D

ω,ϖ
t P = σ I− (ξ +θ )P = P1(t,π).

Following the application of the ML kernel and the fractal-fractional integral, we find the following outcomes.

S(tk+1) = S0 +
1−ω

AB(ω)
t1−ϖ
k S1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

∫ ti+1

ti

S1(t,π)ς
1−ϖ(tk+1 − ς)ω−1dς ,

C(tk+1) = C0 +
1−ω

AB(ω)
t1−ϖ
k C1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

∫ ti+1

ti

C1(t,π)ς
1−ϖ (tk+1 − ς)ω−1dς ,

I(tk+1) = I0 +
1−ω

AB(ω)
t1−ϖ
k I1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

∫ ti+1

ti

I1(t,π)ς
1−ϖ(tk+1 − ς)ω−1dς ,

R(tk+1) = R0 +
1−ω

AB(ω)
t1−ϖ
k R1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

∫ ti+1

ti

R1(t,π)ς
1−ϖ (tk+1 − ς)ω−1dς ,

P(tk+1) = P0 +
1−ω

AB(ω)
t1−ϖ
k P1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

∫ ti+1

ti

P1(t,π)ς
1−ϖ(tk+1 − ς)ω−1dς .

where π = S,C, I,R,P and ℏ= ω
AB(ω)Γ (ω) . Here, we recall the Newton polynomial:

A (t,π) (48)

≃ A (tk−2,Sk−2,Ck−2, Ik−2,Rk−2,Ak−2)+
1

△t

{
P(tk−1,Sk−1,Ck−1, Ik−21,Rk−1,Pk−1) (49)

−A (tk−2,Sk−2,Ck−2, Ik−2,Rk−2,Pk−2)
}
× (ς − tk−2)

+
1

2△t2

{
A (t,Sk,Ck, Ik,Rk,Pk)− 2A (tk−1,Sk−1,Ck−1, Ik−21,Rk−1,Pk−1)

−A (tk−2,Sk−2,Ck−2, Ik−2,Rk−2,Pk−2)
}
× (ς − tk−2)(ς − tk−1) .

Substituting (48) into above equations, we find

Sk+1 = S0 +
1−ω

AB(ω)
t1−ϖ
k S1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

S1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2

×
∫ ti+1

ti

(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 S1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 S1[ti−2,S

i−2,Ci−2,

Ii−2,Ri−2,Pi−2]
}
×

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i S1[ti,S

i,Ci, Ii,Ri,Pi]−

2t1−ϖ
i−1 S1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)+ t1−ϖ
i−2 S1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}

×
∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς
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Ck+1 = C0 +
1−ω

AB(ω)
t1−ϖ
k C1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

C1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2

×
∫ ti+1

ti

(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 C1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 C1[ti−2,S

i−2,Ci−2,

Ii−2,Ri−2,Pi−2]
}
×

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i C1[ti,S

i,Ci, Ii,Ri,Pi]−

2t1−ϖ
i−1 C1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)+ t1−ϖ
i−2 C1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}

×
∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς

Ik+1 = I0 +
1−ω

AB(ω)
t1−ϖ
k I1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

I1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2

×
∫ ti+1

ti

(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 I1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 I1[ti−2,S

i−2,Ci−2,

Ii−2,Ri−2,Pi−2]
}
×

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i I1[ti,S

i,Ci, Ii,Ri,Pi]−

2t1−ϖ
i−1 I1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)+ t1−ϖ
i−2 I1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}

×
∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς

Rk+1 = R0 +
1−ω

AB(ω)
t1−ϖ
k R1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

R1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2

×
∫ ti+1

ti

(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 R1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 R1[ti−2,S

i−2,Ci−2,

Ii−2,Ri−2,Pi−2]
}
×

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i S1[ti,S

i,Ci, Ii,Ri,Pi]−

2t1−ϖ
i−1 R1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)+ t1−ϖ
i−2 R1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}

×
∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς

Pk+1 = P0 +
1−ω

AB(ω)
t1−ϖ
k P1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))+ℏ

k

∑
i=2

P1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2

×
∫ ti+1

ti

(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 P1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 P1[ti−2,S

i−2,Ci−2,

Ii−2,Ri−2,Pi−2]
}
×

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς +ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i S1[ti,S

i,Ci, Ii,Ri,Pi]−

2t1−ϖ
i−1 P1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)+ t1−ϖ
i−2 P1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}

×
∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς
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We have

∫ ti+1

ti

(tk+1 − ς)ω−1dς =
(△t)ω

ω
[(k− i+ 1)ω − (k− i)ω ]

∫ ti+1

ti

(ς − ti−2)(tk+1 − ς)ω−1dς =
(△t)ω+1

ω(ω + 1)
[(k− i+ 1)ω(k− i+ 3+ 2ω)− (k− i)ω(k− i+ 3+ 3ω)]

∫ ti+1

ti

(ς − ti−2)(ς − ti−1)(tk+1 − ς)ω−1dς =
(△t)ω+2

ω(ω + 1)(ω + 2)

[
(k− i+ 1)ω

×
{

2(k− i)2 +(3ω + 10)(k− i)+ 2ω2+ 9ω + 12
}

− (k− i)ω
{

2(k− i)2 +(5ω + 10)(k− i)+ 6ω2+ 18ω + 12
}]

Therefore, we obtain

Sk+1 = S0 +
1−ω

AB(ω)
t1−ϖ
k S1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))

+ ℏ

k

∑
i=2

S1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2 ×Q1

+ ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 S1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 S1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q2

+ ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i S1[ti,S

i,Ci, Ii,Ri,Pi]− 2t1−ϖ
i−1 S1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)

+t1−ϖ
i−2 S1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q3,

where

Q1 =
(△t)ω

ω
[(k− i+ 1)ω − (k− i)ω ]

Q2 =
(△t)ω+1

ω(ω + 1)
[(k− i+ 1)ω(k− i+ 3+ 2ω)− (k− i)ω(k− i+ 3+ 3ω)]

Q3 =
(△t)ω+2

ω(ω + 1)(ω + 2)

[
(k− i+ 1)ω

{
2(k− i)2 +(3ω + 10)(k− i)+ 2ω2+

9ω + 12
}
− (k− i)ω

{
2(k− i)2 +(5ω + 10)(k− i)+ 6ω2+ 18ω + 12

}

Ck+1 = C0 +
1−ω

AB(ω)
t1−ϖ
k C1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))

+ ℏ

k

∑
i=2

C1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2 ×Q1

+ ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 C1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 C1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q2

+ ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i C1[ti,S

i,Ci, Ii,Ri,Pi]− 2t1−ϖ
i−1 C1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)

+t1−ϖ
i−2 C1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q3,
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Ik+1 = I0 +
1−ω

AB(ω)
t1−ϖ
k I1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))

+ ℏ

k

∑
i=2

I1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2 ×Q1

+ ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 I1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 I1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q2

+ ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i I1[ti,S

i,Ci, Ii,Ri,Pi]− 2t1−ϖ
i−1 I1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)

+t1−ϖ
i−2 I1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q3,

Rk+1 = R0 +
1−ω

AB(ω)
t1−ϖ
k R1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))

+ ℏ

k

∑
i=2

R1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2 ×Q1

+ ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 R1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 R1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q2

+ ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i R1[ti,S

i,Ci, Ii,Ri,Pi]− 2t1−ϖ
i−1 R1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)

+t1−ϖ
i−2 R1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q3,

Pk+1 = P0 +
1−ω

AB(ω)
t1−ϖ
k P1(tk,S(tk),C(tk), I(tk),R(tk),P(tk))

+ ℏ

k

∑
i=2

P1[ti−2,S
i−2,Ci−2, Ii−2,Ri−2,Pi−2]t1−ϖ

i−2 ×Q1

+ ℏ

k

∑
i=2

1

△t

{
t1−ϖ
i−1 P1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)− t1−ϖ
i−2 P1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q2

+ ℏ

k

∑
i=2

1

2△t2

{
t1−ϖ
i P1[ti,S

i,Ci, Ii,Ri,Pi]− 2t1−ϖ
i−1 P1(ti−1,S

i−1,Ci−1, Ii−1,Ri−1,Pi−1)

+t1−ϖ
i−2 P1[ti−2,S

i−2,Ci−2, Ii−2,Ri−2,Pi−2]
}
×Q3,

5.10 Simulation Explanation

The following examples demonstrate the efficacy of the obtained theoretical consequences. A mathematical analysis of
maize foliar disease is presented, and by using non-integer parametric parameters, compelling results are obtained. By
reducing the fractional values and the dimension, the answer for S,C, I,R, and P in Figure 2-6 approaches the desired
value. The numerical simulation for the fractional order Maize foliar disease model is found using MATLAB code. The
system’s initial values are S(0) = 1,C(0) = 0.8, I(0) = 0.750,R(0) = 0.50, and P(0) = 0.350 for each of the
sub-compartments. We show the graphical representation of the maize foliar disease model using the suggested
numerical method in Figures 2-6, and we compare the integer order result with the fractal-fractional order result. The
dynamics of susceptible S, recovered R and P maize foliar of pathogens are shown in Figures 2, 5 and 6, respectively. In
these scenarios, all of the compartments had a sloped upward inclination, and after some time, as the recovered situation
increased, the compartments approached a stable state. The dynamics of control C and infected I are shown in Figures 3
and 4, respectively. In these scenarios, all of the compartments rigidly sloped downward, and after a while, they
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approached a steady position because to a rise in recovered. Figures 2a-6a and 2b-6b, respectively, show that while
behaviors are comparable when using dimensions of 0.8 and 0.9 with small impacts, decreasing dimensions yields more
acceptable results. Additionally, as shown in Figures 5a and 5b, respectively, recovered trees with and without medicine
grow by decreasing the fractional values and dimension. It makes predictions on what this research will lead to in the
future and how we will be able to lower the number of sick trees and infected vectors that spread throughout the
environment. When compared to traditional derivatives, the FFM technique yields better results for all sub-compartments
at fractional derivatives. It is also suggested that as fractional values and dimensions are reduced, the solutions for all
compartments become more reliable and accurate.
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Fig. 2: Simulation of S(t) compartment of the system under different fractal dimension ϖ and fractional order ω .
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Fig. 3: Simulation of C(t) compartment of the system under different fractal dimension ϖ and fractional order ω .
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Fig. 4: Simulation of I(t) compartment of the system under different fractal dimension ϖ and fractional order ω .

0 50 100 150
0

5

10

15
Proposed Method

t

R
(t

)

 

 

ω=1.0

ω=0.95

ω=0.90

ω=0.85

ϖ = 0.8

0 50 100 150
0

5

10

15

20

25
Proposed Method

t

R
(t

)

 

 

ω=1.0

ω=0.95

ω=0.90

ω=0.85

ϖ = 0.9

Fig. 5: Simulation of R(t) compartment of the system under different fractal dimension ϖ and fractional order ω .
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Fig. 6: Simulation of P(t) compartment of the system under different fractal dimension ϖ and fractional order ω .
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6 Conclusions

Planning, controlling, and eradicating the negative effects of communicable illnesses from their early stages are the main
goals of mathematical modeling. Because fractional order models have a different memory impact than classical models,
they are helpful tools for assigning control actions wisely and optimizing resource consumption. Using the
fractal-fractional operator to get dependable findings, the study generated a mathematical structural model for maize
foliar disease that recovered without the need for medication. It recommends adding immune-system-strong
compartments to stop the spread of disease. The study also looks at how the illness affects the population, with particular
attention to the structure of vector-borne plant epidemics and the Beddington-DeAngelis functional response type
infection rate. This research investigates a continuous dynamical system and verifies its stability as well as its ability to
provide distinct answers for the fractional order maize foliar disease model. The disease is verified to exist, and its
impact on global endeavors is evaluated. The research guarantees the validity and applicability of its conclusions by
examining changes in infection rates following asymptomatic intervention. Plants with the disease show signs of rapid
recovery when the fractal-fractional operator is used to monitor the disease’s spread. The spread of the illness within the
community is monitored through numerical simulations. In order to emphasize historical changes in epidemic models,
this study ties together existing literature with unique fractional derivatives, a mixture of existing fractional operators. It
also implies that authorities can make good use of several numerical techniques in addition to fractional epidemic
models. When it comes to modeling some phenomena, fractional operators perform better than traditional derivatives
and integrals. Unlike integer order derivatives, which only concentrate on one unique place, they take into account both
previous data and current conditions, making them a better description of complicated nonlinear processes and
high-order dynamics. Numerical results across a variety of fractional values demonstrate stable behavior of the two-step
Lagrange polynomial approach in the equilibrium site for maize foliar disease. A potential approach to comprehending
and forecasting the dynamics of infectious diseases is the use of fractional epidemic models. However, obstacles in
research and real-world applications prevent their wider implementation. It can be challenging to obtain real-time data
for parameter estimation and validation in environments with limited resources, especially during rapidly spreading
epidemics. Another obstacle may be explaining the advantages to public health and policymakers. It is crucial to close
the gap between mathematical intricacy and real-world application in order to overcome these obstacles. The models
have proven to be accurate and reliable in a variety of epidemiological settings, underscoring their potential as useful
tools for disease control initiatives. Future research can foresee patterns based on validated findings, which can aid in
early identification and better comprehend the dynamics and behavior of maize foliar disease outbreaks. Future research
could benefit from new understandings gained from this data. The mathematical model can be altered by examining
various dynamic structures and using different derivatives. Real data for numerical simulations can assess model
behavior for each class over time, validating the model for agreeing engineering and plant life improvement that play an
important role for the economy of any country in terms of food and some other life materials.
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