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Abstract: This paper investigates the behavior of an incompressible Jeffrey fluid flowing between an inner and an outer tube. The inner

tube represents an endoscope, while the outer tube has a non-uniform shape with a sinusoidal wave on its wall. A radial magnetic field

is present. The analysis utilizes cylindrical coordinates and assumes long wavelength and low Reynolds number approximations. Exact

and approximate solutions are obtained using the regular perturbation method. Numerical calculations are performed to determine the

pressure rise, frictional force, and pressure gradient, which are then compared graphically. The study discusses trapping phenomena

and finds good agreement between the numerical and perturbation results. Overall, the work provides insights into the behavior of the

Jeffrey fluid and its interaction with the non-uniform tube and magnetic field.
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1 Introduction

The functions of the small intestine in human, which is
called gastrointestinal tract, are for digestion and
absorption. It is known that endoscopy can be a powerful
means in diagnosis and management of various types of
intestinal illnesses. A flexible tube called an endoscope is
used to view different parts of the digestive tract. The tube
contains several channels along its length. The different
channels are used to transmit light to the area being
examined, to view the area through a camera lens with a
camera at the tip of the tube, to pump fluids or air in or
out. When passed through the mouth, an endoscope can
be used to examine the esophagus, the stomach, and first
part of the small intestine. When passed through the anus,
an endoscope can be used to examine the rectum and the
entire large intestine [1].

The mechanics of peristalsis has been examined by a
number of investigators. Rao and Mishra [2] investigated
the peristaltic transport of a power-law fluid which
accommodates the study of both shear thinning and shear
thickening fluids in an axisymmetric porous tube under
long wavelength and inertia free approximations. Haroun

[3] investigated the peristaltic flow of a third order fluid in
an asymmetric channel under the assumptions of long
wavelength approximation and the velocity components
and the pressure could be expanded in a regular
perturbation series in a small parameter Deborah number
that contained the non-Newtonian coefficients appropriate
to shear-thinning.

The application of magnets to the human body is
magnetotherapy that is used to treat the diseases. No
drugs are administered under thus therapy.
Magnetohydrodynamics (MHD) is the science which
deals with the motion of a highly conducting fluids in the
presence of a magnetic field. The effect of moving
magnetic field on blood flow was studied by Stud et al.
[4], they observed that the effect of suitable moving
magnetic field accelerates the speed of blood. Srivastava
and Agrawal [5] considered the blood as an electrically
conducting fluid and constitutes a suspension of red cell
in plasma. Agrawal and Anwaruddin [6] studied the effect
of magnetic field on blood flow by taking a simple
mathematical model for blood through an equally
branched channel with flexible walls executing peristaltic

∗ Corresponding author e-mail: eman elhadidy82@yahoo.com

c© 2024 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/180607


1248 E. G. El-Hadidy et al.: Exploring the Impact of Endoscope, Jeffrey Fluid...

waves using long wavelength approximation method and
observed, for the flow blood in arteries with arterial
disease like arterial stenosis or arteriosclerosis, that the
influence of magnetic field may be utilized as a blood
pump in carrying out cardiac operations. Also, Hayat et
al. [7] discussed the peristaltic flow of a MHD fourth
grade fluid in a channel under the consideration of long
wavelength and low Reynolds number, and they
considered the fluid as electrically conducting in the
presence of a uniform transverse magnetic field.
Kothandapani et al. [8] studied the influence of applied
magnetic field on the peristaltic flow of a Jeffrey fluid in
asymmetric channel and different wave forms. Hayat et
al. [9] analyzed the influence of applied magnetic field on
the peristaltic flow of a Jeffrey fluid in a tube. Hayat et al.
[10] analyzed the problem of MHD peristaltic flow of an
incompressible Jeffrey fluid in a tube with an endoscope.
Reddy et al. [11] studied the effects of magnetic field and
slip on the peristaltic flow of a Jeffrey fluid through a
porous medium in an asymmetric channel under the
assumptions of long wavelength and low Reynolds
number.

Nadeem et al. [12] investigated the effects of slip and
induced magnetic field on the peristaltic flow of a Jeffrey
fluid in an asymmetric channel. Reddy et al. [13]
investigated the peristaltic flow of a Jeffrey fluid in a tube
with variable viscosity under the assumption of long
wavelength. Rajanikanth et al. [14] discussed the effects
of partial slip on the peristaltic flow of a Jeffrey fluid in an
asymmetric channel under the assumptions of long
wavelength and low Reynolds number. Kumari et al. [15]
investigated the peristaltic pumping of a Jeffrey fluid in an
inclined channel under long wavelength and low
Reynolds number assumptions,the magnetic field of
uniform strength is applied in the transverse direction to
the flow.

Physiological organs are generally observed to be a
non-uniform duct [16,17]. Hence, peristaltic analysis of a
Newtonian fluid in a uniform geometry cannot be applied
when explaining the mechanism of transport of fluid in
most bio-systems. Srivastava et al. [18] have studied
peristaltic transport of Newtonian and non-Newtonian
fluid in non-uniform geometries. Misra and Pandey [19]
analyzed the axisymmetric flow of a viscous
incompressible Newtonian fluid through a circular tube of
varying cross section when the wave propagating along
the wall of the tube is sinusoidal and the initial flow is
Hagen- Poiseuille. Elshehawey et al. [20] studied the
peristaltic motion of Carreau fluid in a non-uniform
channel, and they developed the solution in a perturbation
series in powers of Weissenberg number using long
wavelength approximation. Mekheimer [21] studied the
effect of a uniform magnetic field on peristaltic transport
of a blood in a non-uniform two-dimensional channels,
when blood is represented by a couple-stress fluid. Also,
Elshehawey et al. [22] studied the axisymmetric
peristaltic motion of a viscous compressible liquid
through a flexible pore of changing cross-section.

Mekheimer [23] studied the peristaltic transport of a
viscous incompressible fluid (creeping flow) through the
gap between coaxial tubes, where the outer tube is
non-uniform and has a sinusoidal wave travelling down
its wall and the inner one is a rigid, uniform tube and
moving with a constant velocity.

There exist several investigators who studied the
separated flow (trapping) phenomenon at the center-line
of the tube in the cartesian and cylindrical coordinates
[24-29]. Abd El Hakeem Abd El Naby et al [30] studied
the flow separation on the wall. Also, they found that the
trapping region at the wall decreases with increasing
volume flow rate and it is observed that the pressure rise
and the friction force at the flow separation points are
independent approximately of Weissenberg number and
power law index at certain values of volume flow rate.
Also, the pressure rise and the friction force at the flow
separation points increase with increases volume flow
rate. Abd El Hakeem Abd El Naby et al [31] investigated
the effects of magnetic field on trapping at the centerline
and at the channel wall for Carreau fluid through uniform
channel using a perturbation method in terms of
Weissenberg number, they noted that the pressure rise and
friction force for Newtonian and Carreau fluids increase
with Hartmann number except at certain values of volume
flow rate. The trapping limit and the trapping occurrence
region at the center-line increase with Hartmann number
but they are independent approximately of Hartmann
number at certain values of amplitude ratio. In addition,
Abd El Hakeem Abd El Naby et al [32] investigated
separation in the flow through peristaltic motion of
Power-law fluid in uniform tube, they found that the
trapping region at the wall decreases with increasing
volume flow rate [36]-[42].

The purpose of this investigation is to study the
peristaltic pumping of MHD non-Newtonian Jeffrey fluid
through the gap between inner and outer tubes where the
inner tube is an endoscope and the outer tube is a
non-uniform tube has a sinusoidal wave travelling down
its wall in the presence of a radial magnetic field. To the
best of our knowledge, this problem has not been
investigated yet. We have shown the effect of magnetic
field and an endoscope on peristaltic motion of a Jeffrey
fluid on peristaltic motion through Non-Uniform
peristalsis tubes. Here, the governing equations are
nonlinear in nature, we have used infinitely long
wave-length assumption to obtain linearized system of
coupled differential equations which are then solved
analytically. Results have been discussed for pressure
rise, friction force on the inner and outer tubes to observe
the effect of magnetic field in the presence an endoscope.
We have shown the effects of an endoscope and Jeffrey
fluid on trapping at boundary of the endoscope and small
intestine. The numerical results displayed by figures and
the physical meaning is explained.
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2 Formulation and analysis

We consider the MHD flow of a Jeffrey fluid through
the gap between the inner tube (endoscope) and the outer
non-uniform tube which has a sinusoidal wave travelling
down its wall. The geometry of the wall surfaces is
described as follows:

R̄
1
= a

1
, (1)

R̄
2
= a(Z̄)+ bsin

2π

λ
(Z̄ − ct̄), (2)

where

a(Z̄) = a
2
+ k

0
Z̄, (3)

where a(Z̄) is the radius of the tube at any axial distance Z̄

from an inlet, a
1

is the radius of endoscope, a
2

is the radius
of the small intestine at the inlet, k

0
<< 1 is a constant

whose magnitude depends on the length of the tube and
exit and inlet dimensions, b is the amplitude of the wave,
λ is the wavelength, t̄ is the time and c is the wave speed.
We choose the cylindrical coordinate system (R̄, Z̄), where
the Z̄-axis lies along the center-line of the inner and outer
tubes and R̄ is the distance measured radially.

In the moving coordinates (r̄, z̄) which travel in the Z̄

−direction with the same speed as the wave, the flow can
be treated as steady, but if we choose the laboratory frame
(R̄, Z̄) , then the flow in the gap between inner and outer
tubes is unsteady. The coordinates frames are related
through:

Z̄ = z̄+ c t̄, r̄ = R̄, (4)

W̄ = w̄+ c, ū = Ū , (5)

where Ū ,W̄ and ū, w̄ are the velocity component in the
radial and axial directions in the laboratory frame and
moving coordinates, respectively.

The constitutive equation for the extra stress tensor S̃

for a Jeffrey fluid is defined by :

S̃ =
µ

1+λ
1

(˜̇γ +λ
2
˜̈γ)

In the above equation, µ is the coefficient of viscosity, λ
1

is

the ratio of relaxation to retardation times, ˜̇γ the shear rate,
λ

2
the retardation time and dots denote the differentiation

with respect to time.

The fluid is electrically conducting in the presence of
a uniform magnetic field B̄ applied transversely to the
flow. Under the assumption of low Reynolds number the
magnetic body force j̄× B̄ = −σB2

0
V̄ , where V̄ is the

fluid velocity vector. By applying these assumptions, the
continuity equation and the Navier-Stokes equations

Fig. 1: Effects of endoscope on peristaltic motion

which govern the flow in the stationary coordinates are:

1

R̄

∂ (R̄Ū)

∂ R̄
+

∂W̄

∂ Z̄
= 0, (6)

ρ

(
∂Ū

∂ t̄
+Ū

∂Ū

∂ R̄
+W̄

∂Ū

∂ Z̄

)
= −∂ P̄

∂ R̄
+

∂

∂ R̄

[
R̄ S̃

11

]

+
∂ S̃

31

∂ Z̄
− S̃

22

R̄
, (7)

ρ

(
∂W̄

∂ t̄
+Ū

∂W̄

∂ R̄
+W̄

∂W̄

∂ Z̄

)
= −∂ P̄

∂ Z̄
+

1

R̄

∂

∂ R̄

[
R̄ S̃

13

]

+
∂ S̃

33

∂ Z̄
−σB2

0
W̄ , (8)

where ρ is the density, P̄ the pressure. The geometry of
the wall surfaces are described as Figure(1).

The boundary conditions in the stationary coordinates
are:

W̄ = 0 ,Ū = 0 at R̄ = R̄
1
, (9)

W̄ = 0,Ū =
∂ R̄

2

∂ t̄
at R̄ = R̄

2
. (10)

Using the following non-dimensional variables appearing
in above eqs. Introducing Reynolds number (Re) and the
wave number (δ ) as follows:

r =
r̄

a
2

, R =
R̄

a
2

, r
1
=

r̄
1

a
2

=
a

1

a
2

= ε < 1,

z =
z̄

λ
, Z =

Z̄

λ
,S

i j
=

a
2
S̃

i j

µc

u =
λ ū

a
2
c
, U =

λŪ

a
2
c
, w =

w̄

c
, W =

W̄

c
,

δ =
a2

λ
< 1, Re =

ca2ρ

µ
,

P =
P̄a2

2

cλ µ
, t =

c t̄

λ
, φ =

b

a
2

< 1,

R
2
=

R̄
2

a
2

= 1+
λ k

0
Z

a
2

+φ sin2π(Z− t), (11)

where ε is the radius ratio, φ is the amplitude ratio and
µ

0
is the viscosity on the endoscope.
The equations of motion, extra stress components and

the boundary conditions in the dimensionless form
become:

1

R

∂ (RU)

∂R
+

∂W

∂Z
= 0, (12)
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Reδ 3

(
∂U

∂ t
+U

∂U

∂R
+W

∂W

∂Z

)
=−∂P

∂R
+

δ 2

R

∂ (RS11)

∂R

+δ 2 ∂S31

∂Z
− δ 2 S22

R
(13)

Reδ

(
∂W

∂ t
+U

∂W

∂R
+W

∂W

∂Z

)
=−∂P

∂Z
+

1

R

∂ (RS13)

∂R

+δ
∂S33

∂Z
−M2W (14)

where M =
√

σ
µ B

0
a

2
. The extra stress components of

Jeffrey fluid are:

S
11

= 2δ
1+λ

1

[
1+

cλ
2

δ

a
2

(
∂
∂ t
+U ∂

∂R
+W ∂

∂Z

)]
∂U
∂R

S
13

= 1
1+λ

1

[
1+

cλ
2

δ

a
2

(
∂
∂ t
+U ∂

∂R
+W ∂

∂Z

)]

(
∂W
∂R

+ δ 2 ∂U
∂Z

)

S
22

= 2δ
1+λ

1

[
1+

cλ
2

δ

a
2

(
∂
∂ t
+U ∂

∂R
+W ∂

∂Z

)]
U
R

S
33
= 2δ

1+λ
1

[
1+

cλ
2

δ

a
2

(
∂
∂ t
+U ∂

∂R
+W ∂

∂Z

)]
∂W
∂Z

(15)

with the dimensionless boundary conditions:

W = 0,U = 0 at R = R
1
, (16)

W = 0,U =
∂R

2

∂ t
at R = R

2
. (17)

Using the long wavelength approximation (δ = 0), then
the Navier-Stokes equations and extra-stress components
reduce to:

∂P

∂R
= 0, (18)

∂P

∂Z
=

1

R

∂ (RS
13
)

∂R
−M2W, (19)

S
13

=
1

1+λ
1

∂W

∂R
, (20)

substituting from eq. (20) into eq. (19) we obtained:

∂P

∂Z
=

κ2

R

∂

∂R

(
R

∂W

∂R

)
−M2W (21)

where κ = 1√
1+λ

1

. The solution of eq. (21) subject to

conditions (16) and (17) is :

W (R,Z, t) =A
1
(Z, t) I

0

(
M R

κ

)

+A
2
(Z, t) K

0

(
M R

κ

)
−

∂P
∂Z

M2
,

(22)

where

A
1
(Z, t) =

−
(

∂ P
∂ Z

M2

)(
K

0

(
M R

2
κ

)
− K

0

(
M R

1
κ

))

(
K

0

(
M R

1
κ

)
I

0

(
M R

2
κ

)
−K

0

(
M R

2
κ

)
I

0

(
M R

1
κ

)) ,

(23)

A
2
(Z, t) =

(
∂ P
∂ Z

M2

)(
I

0

(
M R

1
κ

)
− I

0

(
M R

2
κ

))

(
K

0

(
M R

1
κ

)
I

0

(
M R

2
κ

)
−K

0

(
M R

2
κ

)
I

0

(
M R

1
κ

))

, (24)

where I
0

(
M R

2
k

)
and K

0

(
M R

2
k

)
are the modified Bessel’s

functions of first and second kind of order zero
respectively. Integrating equation (12) with using
equation (22), we get:

U(R,Z, t) =
1

R




κ Á
1
(Z, t)

(
R

1
I

1

(
M R

1
κ

)
−RI

1

(
M R

κ

))

M

+
κ Á

2
(Z, t)

(
RK

0

(
M R

κ

)
−R

1
K

0

(
M R

1
κ

))

M

+
∂ 2P
∂Z2

2M2
(R2 −R2

1
)

]
, (25)

where I
1

(
M R

2
k

)
and K

1

(
M R

2
k

)
are the modified Bessel’s

functions of first and second kind of order one
respectively. The rate of volume flow in the stationary and
moving coordinates are given by:

Q̄(Z̄, t̄) = 2π

∫ R̄
2
(Z̄,t̄)

R̄
1

W̄ R̄ dR̄, (26)

q̄(z̄) = 2π

∫ r̄
2
(z̄)

r̄
1

w̄ r̄dr̄. (27)

Substituting from eqs. (4) and (5) into eq. (26) and making
use of eq. (27) we get:

Q̄ = q̄+πc ( R̄2
2
− R̄2

1
). (28)

The time-mean flow over a period T = λ
c

at a fixed
Z−position is defined as:

Q̂ =
1

T

∫ T

0
Q̄(Z̄, t̄)dt̄. (29)

Substituting from eq. (28) in eq. (29) and using eqs. (1)
and (2) we obtain:

Q̂ = Q̄− (2πcba
2
+ 2πbk

0
cZ̄)sin

2π

λ
(Z̄ − ct̄)

− πcb2 sin2 2π

λ
(Z̄ − ct̄)+

πcb2

2
. (30)

On defining the dimensionless time- mean flow Θ and the
rate of volume flow F in the stationary coordinates as
follows:

Θ =
Q̂

2πca2
2

and F =
Q̄

2πca2
2

,

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 6, 1247-1259 (2024) / www.naturalspublishing.com/Journals.asp 1251

we obtain:

F(Z, t) =Θ +(1+
λ k

0
Z

a
2

)φ sin2π(Z− ct)

+
φ2

2
sin2 2π(Z− ct)− φ2

4
,

(31)

where

F(Z, t) =

∫ R
2

R
1

RWdR. (32)

Integrating equation (32), with using equation (22), we
obtain

∂P

∂Z
=

1

C

[
2M4F

(
K0

(
MR1

κ

)
I0

(
MR2

κ

)

−K0

(
MR2

κ

)
I0

(
MR1

κ

))]
,

(33)

where

C = −4κ2 +M2

[
R2

1

(
K2

(
MR1

κ

)
I0

(
MR2

κ

)

− I2

(
MR1

κ

)
K0

(
MR2

κ

))

+ R2
2

(
K2

(
MR2

κ

)
I0

(
MR1

κ

)

− I2

(
MR2

κ

)
K0

(
MR1

κ

))]
, (34)

where I
2

(
M R

2
k

)
and K

2

(
M R

2
k

)
are the modified Bessel’s

functions of first and second kind of order two
respectively. The pressure rise ∆P

λ
and the friction force

on inner and outer tubes F (i)

λ
and F (o)

λ
, in their

non-dimensional forms, are given by:

∆P
λ
=

∫ 1

0

(
∂P

∂Z

)
dZ, (35)

F (i)

λ
=

∫ 1

0
R2

1

(
−∂P

∂Z

)
dZ, (36)

F (o)

λ
=
∫ 1

0
R2

2

(
−∂P

∂Z

)
dZ. (37)

3 Perturbation solution

We look for a regular perturbation solution in powers of
the small parameter M2 as follows:

W = W0 +M2W
1
+O(M4), (38)

U = U0 +M2U
1
+O(M4), (39)

P = P
0
+M2P

1
+O(M4), (40)

F = F
0
+M2F

1
+O(M4). (41)

Substituting from equation (38-41) in equation (12), (18)
and (21) we get

System of order zero:

1

R

∂ (RU
0
)

∂R
+

∂W
0

∂Z
= 0, (42)

∂P
0

∂R
= 0, (43)

∂P
0

∂Z
=

κ2

R

∂

∂R

(
R

∂W
0

∂R

)
. (44)

with the dimensionless boundary conditions:

W
0
= 0,U

0
= 0 at R = R

1
, (45)

W
0
= 0,U

0
=

∂R
2

∂ t
at R = R

2
. (46)

System of order one:

1

R

∂ (RU
1
)

∂R
+

∂W
1

∂Z
= 0, (47)

∂P
1

∂R
= 0, (48)

∂P
1

∂Z
=

κ2

R

∂

∂R

(
R

∂W
1

∂R

)
−W

0
. (49)

with the dimensionless boundary conditions:

W
1
= 0,U

1
= 0 at R = R

1
, (50)

W
1
= 0,U

1
= 0 at R = R

2
. (51)

Zero order solution
Solving equation (44) using boundary conditions (45)

and (46), yields:

W0 =
1

4κ2

∂P0

∂Z


R2 −


(R2

2 −R2
1)

log
(

R2
R1

)


 logR

− (R2
1 logR2 −R2

2 logR1)

log
(

R2
R1

)




(52)

The volume flow rate in the stationary coordinates is
given by:

F
0
=
∫ R

2

R
1

RW
0
dR. (53)

Integrating equation (53), with using equation (52),

solving the result for
∂P

0

∂Z
, we obtain

∂P
0

∂Z
=

−16κ2F
0

log
(

R
2

R
1

)

B
, (54)

where

B = (R4
2
−R4

1
) log

(
R

2

R
1

)
− (R2

2
−R2

1
)2
. (55)
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First order solution
Solving equation (49) using equation (52) and

boundary conditions (50), and (51) yields:

W
1
=

1

64κ4

∂P
0

∂Z
R4 +

[
R2

4κ2

∂P
1

∂Z
+

R2

16κ4

∂P
0

∂Z

×


−S logR−

(R2
1

logR
2
−R2

2
logR

1
)

log
(

R
2

R
1

) − S






+C
1

logR+C
2
, (56)

where:

C
1
=

(R2
2
−R2

1
)

4
(

log
(

R
2

R
1

))2

κ4

[(
3(R2

2
+R2

1
)

16
log

(
R

2

R
1

)

−
(R2

2
−R2

1
)

4

)
∂P

0

∂Z
−κ2 log

(
R

2

R
1

)
∂P

1

∂Z

]
,

C
2
=

−1

64
(

log
(

R
1

R
2

))2

κ4

{−3(R4
1
(logR

2
)2 +R4

2
(logR

1
)2)

+ 4(R2
1
−R2

2
)(R2

1
logR

2
−R2

2
logR

1
)+ 3(R4

2
+R4

1
) logR

1

logR
2
)

∂P
0

∂Z
− 16κ2 log

(
R

1

R
2

)
(R2

1
logR

2

− R2
2

logR
1
)

∂P
1

∂Z
},

S =
(R2

2
−R2

1
)

log
(

R
2

R
1

) .

The volume flow rate in the stationary coordinates is given
by:

F
1
=

∫ R
2

R
1

RW
1
dR. (57)

Integrating equation (57) with using equation (56), solving

the result for
∂P

1
∂Z

, we obtain

∂P
1

∂Z
=

1

C
3

[
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2
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1
)F
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log
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1
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2

)(
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2
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1
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2
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logR
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R
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3
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+48F
1
B κ2

(
log

(
R

1

R
2
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, (58)

where

C
3
= 3B

[
(R4

1 −R4
2
)

(
log

(
R

1

R
2

))2

− (R2
1
−R2

2
) log

(
R

1

R
2

)]
.

Substituting from equations (54) and (58) in equation (40),
then substituting

F
0
= F −M2F

1

and neglecting the terms greater than O(M4), we get:

∂P

∂Z
=

1

C3

[
18(R2

2 −R2
1)FM2 log

(
R1

R2

)

(
1

9
(R4

1 −R4
2 −R2

1R2
2)

(
log

(
R1

R2

))2

+
1

3
(R2

1 −R2
2) log

(
R1

R2

)
((R2

1 + 2R2
2) logR1

+ (R2
2 + 2R2

1) logR2 +R2
1 +R2

2)−R4
1(logR2)

2

− R4
2(logR1)

2 +(R4
2 +R4

1) logR1 logR2

+
4

3
(R4

2 −R4
1) log

(
R2

R1

)
− 2

3
(R2

1 −R2
2)

2
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+
16Fκ2 log

(
R1
R2

)

B
. (59)

The pressure rise ∆P
λ

and the friction force on inner and

outer tubes F (i)

λ
and F(o)

λ
, in their non-dimensional forms

, are given by:

∆P
λ
=

∫ 1

0

(
∂P

∂Z

)
dZ, (60)

F(i)

λ
=

∫ 1

0
R2

1

(
−∂P

∂Z

)
dZ, (61)

F (o)

λ
=

∫ 1

0
R2

2

(
−∂P

∂Z

)
dZ. (62)

4 Separated flow (trapping at the boundary)

A condition frequently used to predict separation in
boundary layer theory is to set the vorticity equal to zero
on the boundary, setting

ξ =
∂U

∂Z
− ∂W

∂R
= 0 on R = R

1
,R = R

2
(63)
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Substituting from equations (22) and (25) into equations
(63), we get:

M A
1
(Z, t)I

1

(
M R

1
κ

)

κ
−

M A
2
(Z, t)K

1

(
M R

1
κ

)

κ
= 0,(64)

1

R
2
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2
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2
K
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(
M R

2
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−R

1
K

0

(
M R

1
κ

))
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+

∂ 3 p

∂ z3

2M2
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2
−R2

1
)


−

M A
1
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1

(
M R

2
κ

)

κ

+
M A

2
(Z, t)K

1

(
M R

2
κ

)

κ
= 0. (65)

Solving equations (64) and (65) numerically using
Newton Raphson method to get separated flow points Zs

on the inner and outer tubes respectively. The normal
component of separation points, is given by:

R
2s
= 1+

λ k
0

Zs

a
2

+φ sin2π(Zs − t). (66)

From equation (25), the vertical velocity component at
separation points on the small intestine wall is given by :

Us =−2πφ cos2π(Zs − t). (67)

5 Numerical results and discussion

To discuss the results obtained above quantitatively,
we shall compute the dimensionless pressure rise ∆P

λ
(t),

and friction force on the inner and outer tubes for
different given values of the dimensionless time-mean
flow Θ , Jeffrey parameter λ

1
, and radius ratio ε . The

average rise in pressure ∆ P̄
λ

is then evaluated by
averaging ∆P

λ
(t) over one period of the wave. As the

integrals in eqs.(35)-(37) are not integrable in the closed
form, they are evaluated numerically using a digital
computer. Following Srivastava et al. [18], we use the
values of various parameters as:. a

2
= 1.25 cm.,

λ = 8.01cm., k
0
=

3a
2

λ . It may be noted that the theory of
wavelength and zero Reynolds number of the present
investigation remains applicable here as the radius of the
small intestine a

2
= 1.25 cm., is small compared with the

wavelength λ = 8.01cm. Furthermore, since most routine
upper gastrointestinal endoscopes are between 8 and 11
mm. in diameter, as reported in Cotton and Williams [33]
and the radius of the small intestine is 1.25 cm., as
reported in Srivastava et al. [18] then the radius ratio ε
takes 0.32,0.38,0.44. Equation (35) is plotted in Figures
(2-4), and the average rise in pressure is plotted in Figures

(5) and (6), eq.(36) is plotted in Figures (7-9) and eq.(37)
is plotted in Figures (10-12). Figures (2-4) show that the
pressure rise in the case of non - uniform tube increases
with increasing radius ratio and it is independent of radius
ratio at a certain value of time parameter at
φ = 0.2,Θ = 0.05,λ

1
= 0.1, M = 0.05 for

ε = 0.32,0.38,0.44 respectively. Moreover, the pressure
rise increases with increasing flow rate at 0 ≤ t ≤ 0.08
and 0.58 ≤ t ≤ 1, but it decreases with increasing flow
rate at 0.08 < t < 0.58 for
φ = 0.2,λ

1
= 0.1,ε = 0.32,M = 0.05 and

Θ = 0,0.03,0.05 respectively. On the other hand, the
pressure rise decreases with increasing Jeffrey parameter.
Also, the pressure rise is independent of Jeffrey parameter
at a certain value of time parameter at
φ = 0.2,Θ = 0.05,ε = 0.32 and M = 0.05 for
λ

1
= 0,0.1,0.3 respectively. Figures (2-4) show that the

pressure rise in the case of the non-uniform tube is
smaller than the corresponding value in the case of the
uniform tube. This happens due to the fact that the
complete occlusion occurs only at the entry in a diverging
tube,whereas in uniform tube, it occurs at all points along
the tube. Figures (5) and (6) show that the average of
pressure rise increases with increasing radius ratio and it
is independent of radius ratio at a certain value of flow
rate, the peristaltic pumping, where Θ > 0 (positive
pumping) and ∆ P̄

λ
> 0 occurs at 0 ≤ Θ < 0.1, but

augmented pumping, where Θ > 0 and ∆ P̄
λ

< 0
(favorable pressure gradient) occurs at 0.1 ≤ Θ ≤ 0.5 for
φ = 0.2,λ

1
= 0.1, M = 0.05 and ε = 0.32,0.38,0.44

respectively. Also, it decreases with increasing Jeffrey
parameter and it is independent of Jeffrey parameter at a
certain value of flow rate, the peristaltic pumping, occurs
at 0 ≤ Θ < 0.1, but augmented pumping, occurs at
0.1 ≤ Θ ≤ 0.5 for φ = 0.2,ε = 0.32, M = 0.05 and
λ

1
= 0,0.1,0.3 respectively. As well as, the average of

pressure rise decreases with increasing flow rate where
the peristaltic pumping occurs, but it increases with
increasing flow rate where augmented pumping occurs for
different values of ε and λ

1
. Figures (7) and (10) show

that the friction forces on the endoscope and on the outer
tube has the same direction of wave velocity at
0 ≤ t < 0.13 and 0.6 < t ≤ 1, but it has the opposite
direction of the velocity wave at 0.13 < t ≤ 0.6 for
Θ = 0,0.03,0.05 respectively. Figures (8) and (11) show
that the friction forces on the endoscope and on the outer
tube increase with increasing radius ratio and they are
independent of radius ratio at a certain value of time
parameter. Also, the friction force on the endoscope has
the same direction of wave velocity at 0 ≤ t < 0.13 and
0.6 < t ≤ 1 , but it has the opposite direction of wave
velocity at 0.13 < t ≤ 0.6 for ε = 0.32,0.38,0.44
respectively. Also, Figures (9) and (12) show that the
friction force on outer tube has the same direction of
wave velocity at 0 ≤ t < 0.13 and 0.6 < t ≤ 1, but it has
the opposite direction of wave velocity at 0.13 < t ≤ 0.6
for λ

1
= 0,0.3,0.5 respectively. Moreover, the friction
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forces on the endoscope and the outer tube which have
the same direction of wave velocity decrease with
increasing flow rate, but the friction forces on the
endoscope and on the outer tube which have the opposite
direction of wave velocity increase with increasing flow
rate. Figures (7-12) show that the friction force on the
endoscope is less than that on the outer tube for different
values of amplitude ratio, radius ratio and Jeffrey
parameter since, there exist degree of occlusion on outer
tube, but there is no degree of occlusion on inner tube
(endoscope). The friction forces on the endoscope and on
the outer tube over uniform tube with the dimensionless
time given by equations (36) and (37) are obtained when
we put k

0
= 0. Figures (7-12) show that the friction forces

on the endoscope and on the outer tube in the case of the
non-uniform tube is smaller than the corresponding value
in the case of the uniform tube [47]-[51].

The numerical results for pressure rise ∆P
λ
(t), friction

forces on the endoscope and on the outer tube F i
λ
(t) and

Fo
λ
(t) is compared with the perturbation results, and both

results reveal a very good agreement with each other, as
demonstrated in Table 1, Table 2 and Table 3, Figure 2,
Figure 3 and Figure 4.

Table 1: Numerical and perturbation solutions for

axial pressure rise ∆P
λ
(t) for φ = 0.2,λ

1
= 0.1,ε = 0.32

, M = 0.05 and Θ = 0.05.
t Numerical solution ∆P

λ
(t) Perturbation solution ∆P

λ
(t) Error

0 -0.4536349587 -0.4538104934 0.000176

0.25 1.238917493 1.238355137 0.000562

0.5 0.5332983587 0.5333956773 0.000097

0.75 -0.3648230757 -0.365001627 0.000179

1 -0.4536349506 -0.4538104927 0.000176

Table 2: Numerical and perturbation solutions for
inner friction force F i

λ
(t) for φ = 0.2,λ

1
= 0.1,ε = 0.32

, M = 0.05 and Θ = 0.05.
t Numerical solution Fi

λ
(t) Perturbation solution Fi

λ
(t) Error

0 0.04645221978 0.0464701945 0.000018

0.25 -0.1268651514 -0.126807566 0.00006

0.5 -0.05460975191 -0.05461971732 0.000009

0.75 0.03735788293 0.0373761666 -0.00001

1 0.04645221894 0.04647019442 0.000018

Table 3: Numerical and perturbation solutions for
friction force Fo

λ
(t) for φ = 0.2,λ

1
= 0.1,ε = 0.32 , M =

0.05 and Θ = 0.05.
t Numerical solution Fo

λ
(t) Perturbation solution Fo

λ
(t) Error

0 0.8330581003 0.8333358492 0.000278

0.25 -0.7428535314 -0.7429485104 0.000095

0.5 -0.7257503481 -0.7259327379 0.00018

0.75 0.46397148 0.4642582664 0.000287

1 0.8330580632 0.8333358473 0.000278

To discuss the phenomenon of flow separation
(trapping) at walls that bound the gap between the
endoscope and the small intestine, we have been
calculated numerically longitudinal component of
separation points on the walls of endoscope and small
intestine from equations (64) and (65) respectively by
using Mathematica software. Trapping means that a bolus
(defined as a volume of fluid bounded by closed
streamlines in the wave frame) is transported at the wave
speed. The longitudinal component of separation points
on the walls versus amplitude ratio are plotted in Figures
(13) and (14). To get the normal component of separation
points, we have been substituted by the values of
longitudinal component at separation points in equation

(66). The normal component of separation points versus
amplitude ratio are plotted in Figure (15). Also, we have
been substituted by the values of longitudinal component
at separation points in equation (67) to obtain the normal
velocity component of the fluid on the small intestine wall
at separation points. The normal velocity component of
the fluid at separation points versus amplitude ratio is
plotted in Figure (16). The above analysis can be applied
in different models such as dynamics of classical and
quantum information [50,?].

It is clear from Figures (13) and (14) that the
longitudinal component of flow separation points on the
endoscope and small intestine wall bifurcate into two
branches one of them approaches to outlet of contraction
region (upper branches) and the other approaches to inlet
of contraction region (lower branches) with different
values of critical amplitude ratio given as follow: for
Θ = 0.3, ε = 0.38,λ

1
= 0.3 and M = 0.05, critical values

of amplitude ratio are φ
c
= 0.1,0.08 ( uniform tube),

φ
c
= 0.22,0.18 ( non-uniform tube), for Θ = 0.35,

ε = 0.38,λ
1
= 0.3 and M = 0.05, critical values of

amplitude ratio are φ
c
= 0.14, 0.09( uniform tube),

φ
c
= 0.28,0.22 ( non-uniform tube), and for Θ = 0.4,

ε = 0.38,λ
1
= 0.3 and M = 0.05, critical values of

amplitude ratio are φ
c
= 0.18, 0.14 ( uniform tube),

φ
c
= 0.34,0.32 ( non-uniform tube)on the endoscope wall

and the small intestine wall respectively. Furthermore,
Figures(13) and (14) show that an increasing of volume
flow rate increases the critical value of amplitude ratio,
but it decreases trapping region. The region of flow
separation for Zs increases with increasing volume flow
rate for upper branches, but it decreases with increasing
volume flow rate for lower branches. In general, from
Figures (13) and (14) we can conclude that, trapping
region on the endoscope decreases more rapidly than on
the small intestine. In addition, the longitudinal
component of flow separation points on the endoscope
and the small intestine are independent of Hartmann
number M, radius ratio ε , and ratio of relaxation time to
retardation time λ

1
. Figure (15) presents the effects of

volume flow rate on the normal component of flow
separation points on the small intestine wall at
Θ = 0.25,M = 0.05 and λ

1
= 0.3. It is noted that, normal

component of flow separation points on the small
intestine wall bifurcate into two branches one of them
approaches to outlet of contraction region (upper
branches) and the other approaches to inlet of contraction
region (lower branches) with different values of critical
amplitude ratio given as follow: for Θ = 0.3,
ε = 0.38,λ

1
= 0.3 and M = 0.05, critical values of

amplitude ratio are φ
c

= 0.09, for Θ = 0.35,
ε = 0.38,λ

1
= 0.3 and M = 0.05, critical values of

amplitude ratio are φ
c
= 0.19, and for Θ = 0.4,

ε = 0.38,λ
1
= 0.3 and M = 0.05, critical values of

amplitude ratio are φc = 0.24 on the small intestine wall.
The influence of the volume flow rate on the normal
velocity component is illustrated in Figure (16) at
ε = 0.38,M = 0.05 and λ

1
= 0.3. From this figure we can
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Fig. 2: The pressure rise versus time for φ = 0.2,Θ = 0.05,λ1 =
0.1 and M = 0.05

Fig. 3: The pressure rise versus time for φ = 0.2,λ1 = 0.1,ε =
0.32 and M = 0.05

Fig. 4: The pressure rise versus time for φ = 0.2,ε = 0.32,Θ =
0.05 and M = 0.05

see that, the magnitude of normal velocity component
decreases with increasing volume flow rate in contraction
region and it increases with increasing amplitude ratio. It
is observed that, separation points of the flow in figure
(15-16) occur at φ = 0.09,0.19,0.24 for
Θ = 0.3,0.35,0.4 respectively. Also, the positive and
negative values of normal velocity component of the fluid
show that there exist a portion of fluid towards to forward
of contraction region and the other towards to backward
of contraction region. Our results agree with these in
Srivastava et al.[18] when the radius ratio tends to zero.

Fig. 5: Effect of radius ratio on average pressure rise for φ =
0.2,λ1 = 0.1 and M = 0.05

Fig. 6: Effect of Jeffrey parameter on average pressure rise for

φ = 0.2,ε = 0.32 and M = 0.05

Fig. 7: The friction force on the inner tube (endoscope) versus

time for φ = 0.2,ε = 0.32,λ1 = 0.1 and M = 0.05

Fig. 8: The friction force on the inner tube (endoscope) versus

time for φ = 0.2,λ1 = 0.1,Θ = 0.05 and M = 0.05
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Fig. 9: The friction force on the inner tube (endoscope) versus

time for φ = 0.2,ε = 0.32,Θ = 0.05 and M = 0.05

Fig. 10: The friction force on the outer tube versus time for φ =
0.2,ε = 0.32,λ1 = 0.1 and M = 0.05

Fig. 11: The friction force on the outer tube versus time for φ =
0.2,λ1 = 0.1,Θ = 0.05 and M = 0.05

Fig. 12: The friction force on the outer tube versus time for φ =
0.2,ε = 0.32,Θ = 0.05 and M = 0.05

Fig. 13: The longitudinal component of flow separation points on

the endoscope versus amplitude ratio for λ1 = 0.3,ε = 0.38, t =
0.5 and M = 0.05

Fig. 14: The longitudinal component of flow separation points on

the small intestine wall versus amplitude ratio for λ1 = 0.3,ε =
0.38, t = 0.5 and M = 0.05

Fig. 15: The vertical component of flow separation points on

the small intestine wall versus amplitude ratio for λ1 = 0.3,ε =
0.38, t = 0.5 and M = 0.05
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Fig. 16: The radial velocity of flow separation points on the small

intestine wall versus amplitude ratio for λ1 = 0.3,ε = 0.38, t =
0.5 and M = 0.05
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