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Abstract: This paper aims to address the challenges posed by the simultaneous occurrence of numerous empty and many 
non-empty cells in the Location Model (LM). The LM is a classification method used in scenarios with mixed variables to 
distinguish between two groups. However, the classical LM, relying on maximum likelihood estimation (MLE), faces 
challenges when encountering empty cells due to its assumption that all categorical variables are binary. This assumption 
leads to exponentially growing cells with binary variables, increasing the likelihood of encountering empty cells, especially 
with numerous binary variables or small sample sizes. Although the LM applies smoothing techniques to mitigate this issue, 
it has limitations with many binary variables or small samples observed in the study. To tackle these troubles, this paper 
develops a new parameter estimation approach combining MLE and smoothing for tackling empty and non-empty cells. The 
outcome of this new estimation yields a flexible LM, which proficiently manages numerous binaries or limited sample sizes, 
thereby enhancing performance and adaptability across diverse cell scenarios; whether involving many empty or many non-
empty cells. This innovative approach offers a promising solution to longstanding challenges in classification tasks, 
particularly in critical domains like cancer treatment selection, and sets a new standard for precise classification, empowering 
researchers and practitioners with enhanced decision-making tools.  

Keywords: classification, empty cells, many binaries, maximum likelihood estimation, smoothing estimation. 
 

 

1 Introduction  

The location model (LM) generally postulates that the 
continuous variable follows a distinct normal distribution at 
each binary value (0 and 1), employing different population 
means and equal covariance of the continuous variables. A 
study by Olkin and Tate [1] initially proposed LM to 
characterize the distributions of mixed binary and continuous 
variables. Later, the distribution was utilized to solve 
classification issues for binary and continuous variables [2]. 
Meanwhile, Krzanowski [3] expanded the LM to include more 
than two variables for a two-group issue. This model has been 
further generalized to include combinations of categorical and 
continuous variables [4,5]. The binary vector is considered 
nominal data in multivariate scenarios, which is analyzed 
using a contingency table with nominal states. Even though 
several studies have hypothesized that the continuous 
variables follow distinct multivariate normal distributions in 
each multinomial cell with different population mean vectors, 
the two observed groups possess similar covariance matrices. 

Another study by Moussa [6] and Daudin [7] determined that 

the classical LM involving cells without observations (empty 
cells) became exceedingly difficult to design. This limitation 
led to a study by Asparoukhov and Krzanowski [8], which 
introduced a smoothing estimation technique in the LM to 
address the empty cell and over-parameterized issues. The 
smoothing technique in LM was necessary due to the empty 
cells, rendering it nearly impossible to create an LM using the 
maximum likelihood estimation (MLE) technique for 
parameter estimation. Thus, this model was denoted as the 
smoothed LM for effectively addressing empty cell issues. 
This paper builds upon the findings of the authors’ previous 
studies [9,10,11,12,13], which are summarized as follows: 

(1) The MLE technique for estimating unknown parameters 
in the LM with empty cells did not yield satisfactory 
results in classifying. More seriously, the model was 
infeasible. 

(2) The dependability of the model was questionable if a 
future observation corresponded to non-existent cells in 
the sample due to the empty cells condition. 

Despite the enhanced model performance by incorporating the 
smoothing estimation technique, an over-parameterized issue 
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occurred and was ineffective with high amounts of empty 
cells. This outcome remained similar even when variable 
selection or extraction strategies were utilized by Hamid et al. 
[11,12] and Hamid and Ngu [13]. Even though the smoothing 
technique could improve the classical estimation and the 
performance of the developed model, each cell (empty and 
non-empty) was affected by the smoothing technique. This 
implied that all cells underwent smoothing, regardless they 
were empty or not, which could alter the initial data by 
modifying the non-empty cells. Therefore, this process 
potentially leads to crucial information lost during the 
smoothing procedure, and more seriously, the obtained 
estimators are biased. 

Hence, to overcome this issue, this paper proposes a flexible 
LM that combines MLE and smoothing techniques to estimate 
the unknown parameters. The combination allowed for the 
simultaneous inclusion of empty and non-empty cells to 
improve classification performance. This strategy effectively 
advanced the construction of the LM by introducing a new 
parameter estimation approach, improving the theoretical and 
methodological features. Specifically, the current LM was 
further examined to address several limitations overlooked in 
past studies.  

To the best of the authors' knowledge, the simultaneous 
presence of both empty and non-empty cells in the LM, based 
on their conditions, has not been previously investigated. 
Therefore, the multivariate MLE and smoothing techniques 
were combined in this study to estimate the unknown 
parameters, enabling the construction of the proposed flexible 
LM involving either many or a few empty and non-empty 
cells. 
 

2 Related Works  

The classification procedure categorizes observations into 
distinct groups following their common characteristics [14]. 
This process has been employed in various sectors, such as 
medicine, finance, education, biological macromolecules, and 
hyperspectral image analysis [15,16,17]. Several methods 
have also been used to address classification issues, including 
quadratic discriminant analysis [18], logistic discrimination 
[19], k-nearest neighbor [20], linear discriminant analysis 
[21], and classical LM [3,6,11].   

Although this study examined statistical methods capable of 
handling multiple variable types concurrently, different 
variable types must be treated in distinct ways. Most statistical 
methods have been built to handle single-type variables with 
a limited number of methods capable of managing mixed 
variables [12,21]. Hence, caution should be exercised when 
choosing the appropriate method for handling mixed-type 
variables. 

Certain studies have examined the influence of various 
variable types inside a single model, including all mixed 
variables in discriminant analysis, which can result in 

complications. Hence, mixed variables can develop 
interactions among variables, and need to estimate many 
parameters when conducting a study [4]. The selection of the 
methods is significantly influenced by the fundamental data 
composition and the nature of the variables being assessed 
[22,23]. Previous studies demonstrated three potential 
methods for constructing the discriminant models with mixed 
variable types as follows: 

(1) Variables were standardized to ensure they were all the 
same data type. A classification model that was 
compatible with this data type was then constructed.  

(2) Distinct classification models were created for each 
variable type. The outcomes were then integrated to form 
the overall classification. 

(3) A model capable of handling various variable types was 
constructed. Subsequently, a classification model was 
generated. 

Nevertheless, multiple limitations are also observed regarding 
these approaches as follows: 

(1) The first approach could reduce data information 
[3,24,25].    

(2) Limited studies were documented for the second 
approach [22,26].  

(3) The third approach acquired only a few studies 
concerning the combination of various variable types due 
to unfavorable outcomes of the first and second 
approaches. 

Therefore, one possible strategy when dealing with mixed-
variables discrimination is to employ the LM suitable for this 
circumstance [1].   

Despite the classical LM remaining a suitable method for 
analyzing mixed data with interaction, the model becomes 
inapplicable when there are empty cells [11,27]. This outcome 
is attributed to the biased introduction of parameter estimation 
in the model, leading to an unreliable classification model. 
Hence, the smoothing technique was utilized in this scenario. 
Although the estimation technique is simple, the complexity 
of the smoothed LM rises as the number of binary variables 
increases [12,13]. This model also becomes impractical when 
confronted with numerous empty cells, resulting from many 
binary variables under consideration, producing sparse data 
within the cells [11,12,28].   

Sparse data inside cells refers to very few data points in most 
of the formed cells. This situation illustrates that most 
generated cells are devoid of any observations (empty). 
Significant cell sparsity also presents a substantial bias in the 
smoothed estimators, resulting in poor model performance. 
This result arose because of either misclassifying observation 
into their appropriate group, or the inability to construct the 
model altogether. Thus, this study investigated the LM in two 
scenarios: non-empty cells and some or many empty cells. The 
proposed model integrated the MLE and the smoothing 
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estimation techniques to resolve the issues deliberated, which 
aim to offer solutions to these situations. 
 

3 Materials and Methods  

This study is structured into four primary phases as follows: 

Phase I: Identification of Observation for Cell and Group 
Specifications 

The initial phase involved determining the place and location 
of each observation inside a specific cell and group. This 
process could distinguish between empty cells (lacking any 
observations) and non-empty cells (containing observations 
within them). 

Phase II: Development of A New Parameter Estimation 
Approach 

The second phase presented the development of a new 
parameter estimation approach by combining MLE and 
smoothing estimation techniques to address both cell-based 
scenarios. It was used to compute the unknown parameters for 
empty and non-empty cells accordingly. Consequently, a new 
parameter estimation approach emerged from integrating 
estimation that was generated following the conditions of the 
cells. A flexible LM was created once this new estimation 
approach was applied to calculate the parameters for each cell 
and group. 

Phase III: Construction of A Flexible LM 

The third phase involved creating an R software-based 
algorithm to construct the proposed flexible LM. It utilized a 
new parameter estimation approach incorporating multivariate 
MLE and smoothing techniques. Hence, the LM is formulated 
as follows:    

Consider a vector 𝒛! =  (𝐱!, 𝐲!) for each observation, where 
𝒙! = (𝑥", 𝑥#, ..., 𝑥$) and 𝒚! = (𝑦", 𝑦#, ..., 𝑦%) are vectors of 𝑏 
binary variables and 𝑐 continuous variables, respectively. The 
binary variables are denoted as a single-cell                   𝒎 =
{𝑚", 𝑚#, ..., 𝑚&}, where 𝑠 = 2! and each distinct pattern of 𝒙 
constitutes a distinct unit (with 𝒙 falling in cell              𝑚 =
1+∑ 𝑥'2'("$

')" ). The probability of obtaining an observation 
in cell 𝑚 of group 𝜋"  is 𝑝*+, where 𝑖 = 1, 2. Subsequently, 𝒚 is 
assumed to acquire a multivariate normal distribution with 
mean 𝛍*+ in cell 𝑚 of 𝜋* and a homogeneous covariance 
matrix across cells and populations, 𝚺. Therefore, the 
conditional distribution of 𝒚 given 𝒙 is (𝒚|𝒙) = 𝑚 ~ 
MVN(𝛍*+, 𝚺) for 𝜋*. The optimal function of the LM is 
classified 𝒛, to 𝜋" if 

(𝛍!" -  𝛍#")$𝚺-1 %𝒚 −  
1
2
(𝛍!" +   𝛍#")+   ≥  𝑙𝑜𝑔 0

𝑝#"
𝑝!"

2 + 𝑙𝑜𝑔( 𝑎) 

     (1) 

otherwise, 𝒛, is classified to 𝜋#, where 𝑎 depends on 
classification information (misclassification and prior 
probabilities for the two groups). This 𝑎 value is assumed to 
be zero for equal costs and prior probabilities occurring in the 

two observed groups. 

Typically, the observed parameters are unknown for most of 
the time based on a theoretical perspective. Hence, several 
parameters (𝛍*+, 𝚺, and 𝑝*+ in Equation (1)) can be 
approximated using the gathered sample [3]. After employing 
MLE, all classical mean vectors 𝛍*+ are estimated through  

𝛍:*+ 	= 	
"

(.!")
∑ 𝒚0*+
.!"
0)"                              (2) 

where 
𝑖 = 1, 2 and 𝑚 = 1, 2,… . , 𝑠  
𝑛*+= number of observations in cell 𝑚 of 𝜋* 
𝒚0*+= vector of continuous variables of the rth observation in 
cell 𝑚 of 𝜋* 

These estimated means are then applied to calculate the 
classical homogeneous covariance matrix 𝚺 by using 

     
   (3) 

where 
𝑛* = number of observations in 𝜋* 
𝑠* = number of non-empty cells in the training set of 𝜋* 

The next stage involves computing the classical cell 
probabilities via   

𝑝̂*+ = .!"
.!

       (4) 

Conversely, the deficiency arises when there are empty cells. 
This outcome potentially hinders the performance of the 
classical LM. Therefore, a smoothing estimation technique is 
employed to significantly improve the performance in 
enhancing the classification accuracy of the LM concerning 
empty cells.  

Following the smoothing estimation procedure, the mean 𝛍*+ 
of each cell is determined by calculating a weighted average 
of all continuous variables in the relevant group 𝜋" within the 
data. Hence, the vector of the smoothed mean of the jth 
continuous variable 𝒚 for cell 𝑚 of 𝜋* can be estimated by  

   
                    (5) 

where  
𝑚, 𝑘 = 1, 2,… , 𝑠; 𝑖 = 1, 2 and 𝑗 = 1, 2,… , 𝑐  
𝑛*1= number of observations in cell 𝑘 of 𝜋* 
𝑦0*21= jth continuous variable of the rth observation in cell 𝑘 of 
𝜋* 
𝑤*2(𝑚, 𝑘) =	weights concerning to variables j and cell 𝑚 of all 
observations that fall in cell 𝑘 of 𝜋* 

The smoothing technique requires the value of a smoothing 
parameter (𝜆) for the estimate procedure. A study by 
Asparoukhov and Krzanowski [8] proposed determining the 𝜆 
value that minimized the error rate, which was vital. The study 
suggested the weight [𝑤*2(𝑚, 𝑘)] as follows 
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𝑤ij(𝑚, 𝑘) = 𝜆*2
3(+,1)        (6) 

where 𝜆 is a value between 0 and 1 (0 < 𝜆 < 1) equal for all 
continuous variables, cells, and groups to avoid possessing too 
many parameters to be estimated.  

Meanwhile, 𝑑(𝑚, 𝑘) = 𝑑(𝐱+, 𝒙1) = (𝒙+ − 𝒙1)!(𝒙+ − 𝒙1) is the 
dissimilarity coefficient between the mth cell and the kth cell of 
the binary vectors provided by the number of binary variables 
whose values differ between the two cells. Once the 𝜆 value is 
obtained and the vector of the smoothed cell means 𝛍:"+ and 
𝛍:#+ are estimated, the smoothed pooled covariance matrix is 
defined as  
 

   𝚺H = "
(.#5.$(6#(6$)

∑ ∑ ∑ (𝒚0*+ − 𝛍:*+)
.!"
0)"

&
+)"

#
*)" (𝒚0*+ − 𝛍:*+)!    

                                        (7) 
where 
𝒚0*+ = vector of continuous variables of the rth observation in 
cell 𝑚 of 𝜋* 
𝑔* = number of non-empty cells of 𝜋" 

Lastly, the smoothed cell probabilities can be expressed as  
 

𝑝̂*+(&,3) = 𝑝̂*+/∑ 𝑝̂*+&
+)"              (8) 

 

where 𝑝̂%" = ∑ '(",*)	-!"%
&'#

-!
. 

This smoothing technique effectively addressed the empty cell 
issue (insufficient observations) while producing reliable 
estimators. By estimating parameters based on the cells' 
conditions, using a smoothing technique for empty cells and 
MLE for non-empty cells, a new parameter estimation 
approach is developed. Subsequently, a flexible LM was 
formulated utilizing this estimation approach as depicted in 
Equation (9).  
 

  (𝛍!"
.  -  𝛍#"

. )$ 6𝚺./!7 8𝒚 − !
#
9𝛍!"

.  +  𝛍#"
. :; ≥ 𝑙𝑜𝑔 00$"

(

0#"
( 2 + 𝑙𝑜𝑔( 𝑎)    

                  (9) 
where 
𝛍*+
7  = vectors of flexible mean in cell 𝑚 of 𝜋* 
𝑝*+
7  = flexible probabilities in cell 𝑚 of 𝜋* 
𝚺7= flexible covariance matrix 
 

Phase IV: Assessment and Validation of the Proposed 
Model 

The final phase involved assessing the performance of the 
proposed flexible LM using the leave-one-out error rate, 
which was deemed the most effective by the lowest error 
model [29]. This phase compared the flexible LM to the old 
classification models (classical and smoothed LMs). The 
proposed model was then validated using two medical dataset 
types: full breast cancer and heart disease.  

The full breast cancer dataset contained 19 variables [eight 
continuous variables (𝑐) and eleven binary variables (𝑏)] from 
137 women with breast tumors, of which 78 patients were 

classified as benign (𝜋") and 59 were classified as malignant 
(𝜋#). Alternatively, the heart disease dataset has 16 variables 
[seven 𝑐 variables and nine 𝑏 variables] observed from 270 
patients, of which 120 patients exhibited symptoms of cardiac 
disease (𝜋") and the remaining individuals were unaffected by 
the condition (𝜋#).  
 

4 Results and Analysis 

4.1 Classification Performance of the Proposed  
Flexible LM through Simulation Study 

 
The performance of the proposed classification model was 
cross-validated using the leave-one-out method by measuring 
the misclassification rate. This method excluded one 
observation as a test set for evaluation while using the 
remaining observations as a training set to build the flexible 
LM. The process was iterated until each observation was 
excluded in sequence, and the percentage of misclassified 
observations was noted. This study employed sample sizes (𝑛) 
of 80, 200, and 300 along with a 𝑐 variable of 20. The sizes of 
𝑏 variables ranged from 5 to 10. 

The performance of the proposed flexible LM, which 
incorporates innovative parameter estimation, was evaluated 
using the misclassification rate. Table 1 tabulates the condition 
findings to assess the model created in this study. 
Misclassification was observed for 𝑛 = 80 when 𝑏 = 7, 8, 9, 
and 10. Specifically, the most significant misclassification rate 
was 0.4566 when 𝑏 = 10. Likewise, misclassification also 
occurred for 𝑛 = 200 when 𝑏 ranged from 7 to 10. The highest 
misclassification rates were 0.5567 and 0.5621 when 𝑏 = 9 
and 𝑏 = 10, respectively. For 𝑛 = 300, the proposed model 
incorrectly classified observations when 𝑏 reached 8 to 10, 
with the highest misclassification rate recorded at 0.4251 
when 𝑏 = 10. 

Considering that the KL distance was indirectly linked to the 
empty cells, this distance was highly influenced by the number 
of 𝑏 variables. For example, the KL divergence for data SET 
7 was 462.02 units, of which only 𝑏 = 5 were considered. The 
𝑏 = 5 generated 32 multinomial cells for each group, 
demonstrating no empty cells in this scenario. Thus, the 
flexible LM achieved optimal performance by utilizing MLE 
to estimate parameters for all groups and cells based on their 
original information. Another example involved data SET 11, 
which only recorded 0.31 units of KL distance. Even though 
𝑏 = 9 create 512 cells in each group, only 59 of 𝜋" and 57 of 
𝜋# were non-empty cells. This outcome implied that most of 
the created cells (453 and 455 of 𝜋" and 𝜋#) were empty, 
leading to poor performance of the proposed model. The 
performance deteriorated due to the insufficient information in 
most cells, necessitating smoothing estimation to gather 
information from neighboring cells. This process resulted in 
the model being impaired by numerous empty cells. 
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Table 1: Performance Summary of the Proposed Flexible LM 
across All Conditions 
 

Sample Size 
(𝑛) / 

Number of 
𝑐 and 𝑏 

 
Data 
SET 

 
Misclassification 

Rate 

 
KL 

Distance 

 

Number 
of 

	𝑔# & 𝑔$ 

 
 For n = 80 

c = 20, b = 5 

c = 20, b = 6 

c = 20, b = 7 

c = 20, b = 8 

c = 20, b = 9   c 

= 20, b = 10 

 
 

1 

2 

3 

4 

5 

6 

 
 

0 

0 

0.0293 

0.0955 

0.2823 

0.4566 

 
 

405.82 

18.73 

5.99 

3.57 

0.87 

0.41 

 
 

24, 25 

26, 24 

30, 25 

30, 26 

30, 28 

30, 29 
 

 For n = 200 

c = 20, b = 5 

c = 20, b = 6 

c = 20, b = 7 

c = 20, b = 8 

c = 20, b = 9 

c = 20, b = 10 

 
 

7 

8 

9 

10 

11 

12 

 
 

0 

0 

0.0183 

0.0199 

0.5567 

0.5621 

 
 

462.02 

46.27 

6.31 

6.51 

0.31 

0.24 

 
 

32, 32 

40, 37 

44, 38 

55, 55 

59, 57 

62, 60 

 
 For n = 300 

c = 20, b = 5 

c = 20, b = 6 

c = 20, b = 7 

c = 20, b = 8 

c = 20, b = 9 

c = 20, b = 10 

 
 

13 

14 

15 

16 

17 

18 

 
 

0 

0 

0 

0.0111 

0.2111 

0.4251 

 
 

2794.91 

995.74 

8.56 

6.99 

0.96 

0.55 

 
 

32, 32 

50, 50 

86, 82 

92, 94 

93, 93 

96, 94 
 

The Kullack-Leibler (KL) distance measured the distance 
(separation) between the two observed groups. The 
misclassification rate was lower when the distance between 
groups was higher. This process indicated a strong inverse 
correlation between the misclassification rate and KL distance. 
The analysis confirmed that the flexible LM presented a 
significant increase in misclassification rate when the KL distance 
was below 1.0 units (see Table 1). Figure 1 portrays the 
correlation between the KL distance (x-axis) and the 
misclassification rate (y-axis). The descending trend indicated 
that the misclassification rate decreased as the distance between 
the two groups increased. 

The analysis in this study confirmed a positive correlation 
between 𝑏 and empty cells. Furthermore, the distance between 
the observed groups decreased as higher 𝑏 variables were 
measured. This outcome demonstrated that the groups 
overlapped when the distance was small and 𝑏 was significant. 
Thus, a worse model performance was observed. Conversely, 
the performance of the proposed flexible LM remained 
reasonable despite encountering too many empty cells (except 
when the group distance was less than 0.50 units). This result 
was attributed to the smoothing and MLE techniques in 

estimating parameters for the empty and non-empty cells, 
respectively. This suggests a significant correlation between 
the misclassification rate and the quantity of 𝑏. 
 

 
Fig. 1: The Relationship between Misclassification Rate and 
KL Distance 

Figure 2 depicts the correlation between the misclassification 
rate and the size of 𝑏. A low rate of misclassification occurred 
when a tiny 𝑏 size was measured. For example, the 
misclassification rate for data SET 3 is 0.0293 when 𝑏 = 7, 
while the misclassification rates for data SET 5 and SET 6 are 
0.2823 and 0.4566 when 𝑏 = 9 and 𝑏 = 10 are used. For each 
sample observed (𝑛 = 80, 𝑛 = 200	and	𝑛 = 300), it revealed a 
similar pattern; a positive correlation between the 
misclassification rate and the size of 𝑏.   
 

 
Fig. 2: The Relationship between Misclassification Rate with 
𝑏 and 𝑛 

Apart from the KL distance and 𝑏 variable size, the 𝑛 was also 
observed to impact the performance of models. Figure 2 and 
Table 2 reveal the correlation between 𝑛 (also 𝑏) and 
misclassification rate. Interestingly, no misclassification rates 
for 𝑏 = 5 and 𝑏 = 6 were recorded in any of the observed 
samples. Meanwhile, the proposed model reported a slight 
error for 𝑏 = 7 and 𝑏 = 8, which decreased as the sample size 
increased. Contradictory results for 𝑏 = 9 and 𝑏 = 10 which 
produced high misclassification rates and started falling as the 
sample size increased. Given that the sample size became 
prominent, the misclassification rate decreased. Overall, the 
highest performance was documented when 𝑛 = 300 for all 𝑏 
sizes considered. This outcome suggested that a greater 𝑛 
could enhance the accuracy of the models and classification 
tasks. The proposed flexible LM in this study acquired a low 
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misclassification rate in three scenarios: higher intergroup 
distance, a smaller 𝑏, and a larger 𝑛.  

Table 2: Performance Summary of the Proposed Flexible LM 
across Various Sizes of 𝑏 and 𝑛  
 

Binary 
Size (𝑏) 

Misclassification Rate 
𝑛 = 80 𝑛 = 200 𝑛 = 300 

 

b = 5 

b = 6 

b = 7 

b = 8 

b = 9 

b =10 
 

 
0 

0 

  0.0293 

  0.0955 

  0.2823 

  0.4566 
 

 
0 

0 

 0.0183 

0.0199 

0.5567 

0.5621 
 

 
0 

0 

0 

0.0111 

0.2111 

0.4251 
 

 

4.2 Classification Performance of the Proposed  
Flexible LM in Real Applications 

 
Table 3 summarizes the performances of the discriminant 
models using real applications involving the full breast cancer 
dataset. This study applied three models for analysis and 
comparison purposes: classical LM (based on MLE), 
smoothed LM (by smoothing technique) and flexible LM (via 
a newly developed parameter estimation). The full breast 
cancer data comprised 137 patients, including 8 𝑐 and 11 𝑏 
variables. Notably, the 𝑐 variables included patients’ age 
(years), age of menarche, self-criticism, direction of hostility, 
guilt, criticism of others, acting out hostility, and paranoid 
hostility.   

The classical LM could not be applied due to the 11 𝑏 variables 
in the breast cancer data have generated 2048 cells for each 
group (4096 cells for both groups) based on the structure of 
𝑠 = 2##. These created cells highlighted that 2003 of 𝜋" and 
2001 of 𝜋# were empty cells. Considering as high as 97.80% 
of 𝜋" and 97.70% of 𝜋# did not possess any observations, the 
parameters were impossible to estimate using MLE for those 
4004 empty cells. This result rendered the classical LM 
unfeasible. Alternatively, the smoothed LM could effectively 
present results and enhance performance. This outcome 
demonstrated that the smoothing estimator could calculate 
parameters under numerous empty cells. Intriguingly, the 
proposed flexible LM in this study outperformed the 
traditional models (classical and smoothed LMs). This new 
parameter estimation approach was confirmed to improve the 
drawbacks of the previous models. 

 

 

 

 

Table 3: Performance Summary of Few LMs based on Full 
Breast Cancer Data 
 

 
Discrimination 
Model 

Embedded 
Parameter 
Estimation 
Method 

 
Misclassification 

Rate 

 
Classical LM 
 
Smoothed LM 
 
 
Flexible LM 
(proposed 
model) 

 
MLE 
 
Smoothing 
estimation 
 
MLE + 
smoothing 
estimation 
(newly 
developed 
parameter 
estimation) 

 
No result 

 
0.3252 

 
 

0.2987 

 

The second dataset is from the StatLog project (Cleveland 
Clinic Foundation) and is widely used in evaluating machine 
learning, neural networks, and statistical classification 
algorithms. Groups 𝜋# and 𝜋$ consisting of 120 and 150 heart 
disease patients and individuals without the ailment, 
respectively. This data included 7 𝑐 and 9 𝑏 variables. 
Particularly, the 𝑐 variables contained age (years), maximum 
heart rate achieved, serum cholesterol (mg/dl), the slope of the 
peak exercise ST segment, ST depression induced by exercise 
relative to rest, number of major vessels coloured by 
fluoroscopy (0-3), and resting blood pressure. Table 4 
tabulates the performances of the investigated discriminating 
models based on the heart disease dataset. 

The classical LM encountered a similar issue that became 
impractical due to 512 cells being created from 9 𝑏 variables. 
Nevertheless, only 54 cells of 𝜋" and 43 cells of 𝜋# were non-
empty, suggesting that most cells (89.45% for 𝜋" and 91.60% 
and 𝜋#) were empty cells. This finding presented that the MLE 
technique was not favourable for the parameter estimation of 
the empty cells. Meanwhile, the proposed flexible LM was the 
superior model, with the smoothed LM following closely 
behind. Overall, the proposed model in this study contained an 
effective parameter estimation approach for scenarios with 
numerous empty cells, many non-empty cells, or even full 
cells.  
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Table 4: Performance Summary of Few LMs based on Heart 
Disease Data 
 

 
Discrimination 
Model 

Embedded 
Parameter 
Estimation 
Method 

 
Misclassification 
          Rate 

 
Classical LM 
 
Smoothed LM 
 
 
Flexible LM 
(proposed 
model) 

 
MLE 
 
Smoothing 
estimation 
 
MLE + 
smoothing 
estimation 
(newly developed 
parameter 
estimation) 

 
No result 

 
0.2202 

 
 

0.2035 
 

 

5 Discussion 

The proposed flexible LM represents a significant 
advancement in the field of classification methods, 
particularly for scenarios involving mixed-variable 
discrimination. The classical LM, although effective in many 
cases, faces challenges, notably bias and infeasibility, when 
encountering empty cells, which commonly occur with a high 
number of binary variables or small sample sizes. The LM's 
reliance on maximum likelihood estimation (MLE), coupled 
with the assumption of binary variables, exacerbates this issue, 
resulting in limitations to its applicability. 

The paper introduces a new parameter estimation approach 
that combines MLE and smoothing techniques to address the 
limitations of the classical LM. By adopting this approach, the 
flexible LM demonstrated better performance in handling 
numerous binary variables and small sample sizes. The 
amalgamation of smoothing for empty cells ensures minimal 
information loss and mitigates bias during parameter 
estimation, leading to more accurate classification results. 

Moreover, the proposed flexible LM served as a versatile 
framework that deviates from strict adherence to classical 
assumptions, making it adaptable to various classification 
tasks, including critical decision-making processes such as 
cancer treatment choices. Its ability to manage different cell 
conditions, including those with and without observations, 
further enhances its utility in real-world applications. 

The study's success in constructing a flexible LM represents a 
significant step forward in classification methodology. By 
addressing existing challenges and weaknesses while 
improving upon previous models, the proposed approach sets 
a benchmark for precise and reliable classification, 
particularly in scenarios where accurate decision-making is 

paramount, such as in medical contexts. 

The new parameter estimation approach and the resulting 
flexible LM offer a promising solution to the limitations of 
traditional classification methods. Their ability to handle 
complex scenarios and improve classification accuracy makes 
them valuable tools for researchers and practitioners alike, 
paving the way for more informed decision-making across 
various fields. 
 

6 Conclusion and Future Works  

This study successfully proposed a flexible LM combining 
smoothing and MLE techniques for parameter estimation. 
This proposed model could manage a few challenges such as 
small sample size, examination of many binary variables, and 
various cell conditions (with and without observations, and 
high amounts of empty with non-empty cells). The flexible 
LM with the new parameter estimation concept could be a 
benchmark for improved and precise classification, 
particularly in critical situations; for life-threatening illness, 
cancer treatment for instance. This model could also address 
existing weaknesses and constraints while enhancing previous 
models. Overall, the new parameter estimation approach and 
the proposed flexible LM effectively minimized information 
loss and bias, while exhibiting enhanced performance 
compared to its predecessors. 

Future studies should explore better classification models 
concerning the development and theoretical expansion. The 
concept of classified observations into two groups can be 
expanded to multiclass classification to address the 
complexity of dealing with multiple groups [26,30,31] in real-
life applications. A beneficial finding can also be obtained by 
investigating the behavior of the LM when the covariance 
matrices are heterogeneous. Likewise, another option is to 
create non-normal mixed data throughout the simulation to 
explore the LM from several perspectives. Therefore, the 
performances of classification models under normal and non-
normal data conditions should be examined in future studies. 
Further applications of the proposed model with real datasets 
can also be pursued. The proposed flexible LM can be 
expanded by utilizing different parameter estimation methods 
as alternatives to the smoothing methodology for managing 
excessive or insufficient empty and non-empty cells. 
Consequently, a thorough inspection of classification models 
is necessary for handling many variables and small sample 
sizes, with the key focus should be on enhancing the 
performance of current classification methods. 
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