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Abstract: This paper contains a study based on the usual cubic FEM by which we extend all results obtained in [3,4] where the case of

Pn (n = 1,2) renormalized FEM is considered to approximate the solution of linear elliptic equation with L∞ (Ω)-coefficients, L1-data

and which generalizes Laplace’s equation.

By introducing a same techniques adopted in [3,4], where the dimension is d = 2,3, the convergence for the unique discrete solution in

W
1,q
0 (Ω) for every q ∈ [1,d/(d −1)[ to the unique renormalized solution of the problem are proved, and the estimates of the error are

derived. Thereby, similarly as the previous studies, in the case of a bounded Radon measure data, a weaker result is obtained. An error

estimate in W
1,q
0 (Ω) for smooth coefficients and Lr (Ω)-data such that Tk ( f ) ∈ H1 (Ω) for all (k,r) in R

+∗×]1,∞[, is given.

Keywords: Cubic FEM, L1-data, renormalized solution, diagonally dominant matrix, error estimate.

1 Introduction

Let Ω be an open bounded domain in R
d , d = 2, 3, with

the boundary ∂Ω . A particular case is where Ω is an open
bounded polyhedron. Let A be a coercive matrix with

L∞ (Ω)-coefficients and f be a given L1 (Ω)-data.

We consider the P3-finite element approximation (for
short, a P3-FEA) of the Dirichlet problem:







−div(A∇u) = f in Ω ,

u = 0 on ∂Ω ,
(1)

which, for a triangulation Th of Ω , the usual P3 -FEA
of (1) is the following:







uh ∈Vh,

∀vh ∈Vh, a(∇vh,∇uh) = ( f ,vh),
(2)

with

Vh =
{

vh ∈ C
0(Ω) : ∀T ∈ Th, vh|T ∈ P3, vh|∂Ω = 0

}

,
(3)

has a unique solution, since the right-hand side of (2)
∫

Ω
f vhdx is well defined for a L1 (Ω)-data. Generally, in

this case, one can’t guarantee that the solution of (1)

belongs to H1
0 (Ω). To overcome this problem, one has to

consider the class of renormalized solution (for short r.s.)
(cf. [1,2]), what gives the well-posedness of (1) in line
with Hadamard.

The convergence of the unique solution uh of (2) to the
unique r.s. u of (1) is proved when n = 1,2, respectively in
[3,4] namely











uh −→
h→0

u strongly in W
1,q
0 (Ω) ,

Πh(Tk (uh))−→
h→0

Tk (u) strongly in H1
0 (Ω) ,

(4)
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for every (k,q) ∈ R
+∗ × [1,d/(d − 1)[, where Πh

stands for the usual Lagrange interpolation operator in Vh

and Tk stands for the usual truncation at height k.
For this purpose, the family of triangulations Th is

assumed to be regular in line with P.G. Ciarlet [5] and
satisfies a similar hypothesis to the one verifying the
discrete maximum principle.

It resulted an O
(

h2(1−r−1)
)

error estimate in W
1,q
0 (Ω)

for a Lr(Ω)-data, r ∈]1,2[ and when the matrix A has a
smooth coefficients.

In the same papers, the authors obtained a weaker
convergence of the unique solution uh (subsequence still
denoted by h) of (2) with data a bounded Radon measure
as follows:











uh ⇀
h→0

u weakly in W
1,q
0 (Ω) ,

Πh(Tk (uh)) ⇀
h→0

Tk (u) weakly in H1
0 (Ω) ,

(5)

for every (k,q) ∈ R
+∗ × [1,d/(d − 1)[, where u is a

solution of







u ∈W
1,q
0 (Ω) ,Tk (u) ∈ H1

0 (Ω) ,

−div(A∇u) = f in D
′ (Ω) .

(6)

This paper is arranged with the same technique
adopted in [3,4] as follows: Section 2 presents
Mathematical preliminaries of r.s., Problem formulation
and Main result of P3-FEA for d ∈ {2,3}. In Section 3, a
various results are proved to be used in the proof of our
Main result seen in Section 4, and this paper is discussed
and concluded in Section 5. Results of FEA case in [3,4]
remain valid in our case, and a 4(1 − r−1)th order

estimation error in W
1,q
0 (Ω) , when the coefficients of the

matrix A are smooth and when f belongs to Lr(Ω)

verifying Tk ( f ) ∈ H1 (Ω) for every (k,r) in R
+∗×]1,2[,

is deduced.

Notations

In the present paper, Axy means the scalar product of the
vector Ax by the vector y.

The measure of a subset S ⊂ Ω is represented by |S|,
its complement by Sc.

We keep the same standard notations of Sobolev
spaces and their norms .

Mb (Ω) represents the space of Radon measures on Ω
with total bounded variation.

For every r in ]1,∞[, Lr,∞ (Ω) designates the
Marcinkiewicz space equipped with the norm

‖v‖Lr,∞(Ω) = sup
µ>0

µ |{x ∈ Ω : |v(x)| ≥ µ}| .

We use the truncation Tk (k > 0), as defined in [3,4],
namely

Tk (s) =

{

s for |s| ≤ k,
sgn(s)k else.

For each d − simplex T in R
d , we use the following

notations:

• ai,T and λi,T refer respectively to a vertex of T and its
barycentric coordinates for every i ∈ J0,dK;

• ai, j,T =
1

3
(2ai,T + a j,T ) for all (i, j) in J0,dK2 s.t i < j;

• ai, j,T =
1

3
(ai,T + 2a j,T ) for all (i, j) in J0,dK2 s.t j < i;

• ai, j,k,T =
1

3

(

ai,T + a j,T + ak,T

)

for all (i, j,k) in J0,dK3

s.t i < j < k;

• ...
T =

⋃

0≤i< j<k≤d

{

ai,T ,ai, j,T ,a j,i,T ,ai, j,k,T

}

represents

the set of all vertices, points on edges and points on
faces of T ;
• the local basis is given by



























































ϕi,T =
1

2
λi,T (3λi,T − 1)(3λi,T − 2) , 0 ≤ i ≤ d,

ϕi, j,T =
9

2
λi,T (3λi,T − 1)λ j,T , 0 ≤ i < j ≤ d,

ϕi, j,T =−9

2
λi,T (3λi,T − 2)λ j,T , 0 ≤ j < i ≤ d,

ϕi, j,k,T = 27λi,T λ j,T λk,T , 0 ≤ i < j < k ≤ d,

(7)
with ϕi,T , ϕi, j,T and ϕi, j,k,T are P3 shape functions
related to T ; and one can easily obtain for every
x ∈ T :

d

∑
i=0

ϕi,T (x)+
d

∑
i, j=0
i6= j

ϕi, j,T (x)+
d

∑
i, j,k=0
i< j<k

ϕi, j,k,T (x) = 1.

2 Statement of the main result

Consider the following hypothesis:

A(.) ∈ L∞ (Ω)d×d , (8)

α > 0,∀y ∈R
d , α |y|2 ≤ A(x)yy, a.e x ∈ Ω , (9)

f ∈ L1 (Ω) , (10)

and a function u is the r.s. of the problem (1), i.e. u satisfies
the four following hypothesis, namely

u ∈ L1 (Ω) , (11)
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∀k > 0,Tk (u) ∈ H1
0 (Ω) , (12)

lim
k→∞

1

k

∫

Ω
|∇Tk (u)|2 dx = 0, (13)

and























∀k > 0,∀S ∈ C
1
c (R) with supp(S)⊂ [−k,k] ,

∀v ∈ H1
0 (Ω)∩L∞ (Ω) ,

a
(

∇Tk (u) ,∇vS (u)+∇Tk (u)S′ (u)v) = (S (u) ,v
)

,
(14)

for each h > 0 a family of triangulation Th is a finite
collection of d-simplices T (triangles if d = 2, tetrahedra
if d = 3) s.t.:























(i) Ωh =
⋃

{T : T ∈ Th} ⊂ Ω ,

(ii) for every compact set E ⊂ Ω , ∃h0,E > 0 s.t.
E ⊂ Ωh for every h < h0,E ,
(iii) for (T,T ′) ∈ T

2
h with T 6= T ′:

∣

∣T ∩T ′∣
∣= 0,

(iv) if F is a face of T ∈ Th: F ⊂ ∂Ωh , or F ⊂ T ′ ∈ Th.
(15)

The conformity of this triangulation is ensured by (iv). It
could be taken as a particular case, when Ω is a polyhedron

of Rd , and where Ωh coincides with Ω for every h,

h = sup
T∈Th

hT decreases to zero, (16)

where hT denotes the diameter of T ,

we also assume the regularity of the family of
triangulations Th in the sense of ciarlet namely,

∀h, ∀T ∈ Th,
hT

ρT

≤ σ . (17)

where σ is a positive constant and ρT denotes the diameter
of the ball inscribed in T.

When f ∈ H−1 (Ω)∩L1 (Ω), as known in [1,2], one
can confirm that the usual weak solution of (1), namely







u ∈ H1
0 (Ω) ,

∀v ∈ H1
0 (Ω) , a(∇u,∇v) = ( f ,v),

(18)

is also a r.s. of (1) and conversely. The purpose of
inserting this class of r.s. is to ensure the following
existence, uniqueness and continuity theorem ([1,3,4]).

Theorem 1. If A and f satisfy (8), (9) and (10), the

problem (1) admits a unique r.s. u ∈ W
1,q
0 (Ω) for every

q ∈ [1,d/(d − 1)[ with continued dependency on the data

f in the following sense: let f ε be a sequence s.t.

f ε −→
ε→0

f strongly in L1 (Ω) ,

then, the sequence uε of the r.s. of (1) for the data f ε

satisfies for every (k,q) ∈ R
+∗× [1,d/(d− 1)[,

Tk (u
ε)−→

ε→0
Tk (u) strongly in H1

0 (Ω) ,

uε −→
ε→0

u strongly in W
1,q
0 (Ω) .

Finally, for i= 1,2, if fi ∈ L1 (Ω), and if ui are the r.s. of (1)

for the data fi, then, for every (k,q) inR+∗× [1,d/(d−1)[,
one has

Tk (u1 − u2) ∈ H1
0 (Ω) ,

α ‖Tk (u1 − u2)‖2
H1

0 (Ω) ≤ k‖ f1 − f2‖L1(Ω) ,

α ‖u1 − u2‖W
1,q
0 (Ω)

≤C (d, |Ω | ,q)‖ f1 − f2‖L1(Ω) , (19)

where the constant C (d, |Ω | ,q) 6=C(h).

On every triangulation Th , we define the space Vh of

H1
0 (Ω) by

Vh =

{

vh∈C
0
(

Ω
)

: vh = 0 in Ω r
◦
Ω h,∀T ∈ Th,vh |T∈ P3

}

.

(20)

For every h, we denote by Γh the set of all vertices and

midpoints of the d-simplices T of Th, and by
◦
Γ h the set of

all interior vertices and midpoints of the d-simplices T of
Th, namely

Γh =
⋃

{ ...
T : T ∈ Th} and

◦
Γ h = Γh ∩

◦
Ω h. (21)

It is known that

dim(Vh) = card(
◦
Γ h).

For reasons of simplification in terms of notation we
put

◦
Γ h =

{

a1,a2, ...,aNh

}

,

and
Γh =

{

a1,a2, ...,aNh
,aNh+1, ...,aNh+bh

}

.

The Lagrange basis
(

ϕ1,ϕ2, ...,ϕNh

)

of Vh related to
◦
Γ h is

defined as follows























ϕi ∈ C
0 (Ωh) , ϕi |T∈ P3 (T ) for every T ∈ Th ,

ϕi (ai) = 1 and ϕi (a j) = 0 for every a j ∈ Γh, a j 6= ai ,

ϕi |
Ωr

◦
Ωh

= 0,

(22)
for every i ∈ J1,NhK.
Using the notations of the previous section, we can

explicit the ϕi’s; for every ak ∈
◦
Γ h and for every T ∈ Th,
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if ak /∈ ...
T , then, ϕk |T= 0 else ϕk |T= ϕi,T in the case

ak = ai,T and ϕk |T= ϕi, j,T in the case ak = ai, j,T .
We define the interpolation operator Πh by



















∀v∈C
0
(

Ω
)

with v = 0 in Ω r
◦

Ω h,

Πh (v) =
Nh

∑
i=1

v(ai)ϕi .

Finally, we define the Nh ×Nh stiffness matrix Q = (Qi j) ,
namely

Qi j = a(∇ϕi,∇ϕ j) for i, j ∈ J1,NhK. (23)

As in [3], the main assumption of the present paper is that
Q is a diagonally dominant matrix, namely

∀i ∈ J1,NhK : Qii −
Nh

∑
j=1
j 6=i

∣

∣Qi j

∣

∣≥ 0. (24)

For the P1 finite elements approximation, this
assumption is close to the usual assumption which
ensures that the discrete maximum principle holds true
(see [3] for more details).

For every triangulation Th, we consider the solution uh

of






uh ∈Vh,

∀vh ∈Vh : a(∇uh,∇vh) = ( f ,vh).
(25)

Note that the right-hand side of (25) makes sense since
Vh ⊂ L∞ (Ω). The solution uh of (25) exists and is unique.

As in [3], the main result of this paper is the following.

Theorem 2. Assume that A, f and Th satisfy (8), (9), (10),

(15), (16), (17) and (24). Then, the unique solution uh of

(25) satisfies for every (k,q) in R
+∗× [1,d/(d− 1)[,

uh −→
h→0

u strongly in W
1,q
0 (Ω) ,

Πh(Tk (uh))−→
h→0

Tk (u) strongly in H1
0 (Ω) ,

where u is the unique r.s. of (1).

We will follow the same approach as that adopted by
the authors in [3]. Whenever deemed necessary, and for
the reader’s convenience, we reproduce the adaptation of
the proofs given in [3] even when only small changes are
needed.

This Theorem will be proved in Section 4, using the
tools that we will prepare in Section 3. In Section 5, we
will explain why the results of [3] about error estimate
and the case where f is a bounded Radon measure,
remain valid in our case. We also show that we obtain an

O
(

h4(1−r−1)
)

error estimate in W
1,q
0 (Ω) , if we assume

in addition that Tk ( f ) ∈ H1 (Ω) for every k > 0.

3 Tools

To prove the theorem 2, we begin by proving the following
result which is a piecewise P3 variant of a result of ([2,3,
4,8]).

Theorem 3. Assume that vh ∈Vh satisfies

∀k > 0,

∫

Ω
|∇Πh(Tk (vh))|2 dx ≤ kM (26)

for some M > 0. Then, for every q ∈ [1,d/(d− 1)[

‖vh‖W
1,q
0 (Ω)

≤ c(d, |Ω | ,q)M (27)

where the constant c(d, |Ω | ,q) 6= c(h).

The proof of this theorem, as in [3,4], needs the
following lemmas.

Lemma 1. Let vh ∈ Vh and let k > 0. If for some T ∈ Th

there exists y ∈ T with |vh (y)| ≥ k, then, there exists a d-

simplex S ⊂ T with |S|= c(d) |T | such that

∀x ∈ S : |Πh(Tk (vh (x)))| ≥
k

2
,

where the strictly positive constant c(d) 6= c(h).

Proof. By applying Mean Value Theorem to the

polynomial function v in P3

(

R
d
)

, one have

v(x)− v(y) = ∇v(θ )(x− y), (28)

for all x, y in R
d , where θ = x+ t(x− y) with t ∈]0,1[.

Consider now,

wh,k = Πh(Tk (vh)) ∈ P3 (T ) ,

where T ∈ Th,vh ∈Vh and k > 0, s.t.

sup
T

|vh| ≥ k.

At first, one can confirm that |wh,k| ≤ k on
...
T , but

contrary to its property of being bounded on T by k in the
affine case [3], the present cubic case, imposes the
existence of some y ∈ T s.t.

∣

∣wh,k (y)
∣

∣≥ k. Indeed, and as
[4], this can be justified by the fact that

{

wh,k = vh, if |vh|< k on
...
T ,else

|wh,k(y)|= k, for some y ∈ ...
T .

Now on, without any confusion, one can assume that
the inequality

λ0,T (y)≥
1

128
,

holds for d ∈ {2;3}.
Since

x− y =
d

∑
i=1

(λi,T (x)−λi,T (y))(ai,T − a0,T ) ,
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and from (28), we obtain for all x ∈ T :

wh,k (x)−wh,k (y) =

=
d

∑
i=1

(λi,T (x)−λi,T (y))∇wh,k (θ ) (ai,T − a0,T )
(29)

Moreover, for all x ∈ T , (see (7)):

wh,k (x) =
d

∑
i=0

wh,k (ai,T )ϕi,T (x)+

+
d

∑
i, j=0
i6= j

wh,k (ai, j,T )ϕi, j,T (x)+

+
d

∑
i, j,k=0
i< j<k

wh,k

(

ai, j,k,T

)

ϕi, j,k,T (x) .

Since λi,T ∈ P1

(

R
d
)

, ∇λi,T is a constant vector in R
d

and
λi,T (a)−λi,T (b) = ∇λi,T (a− b)

for all a, b in R
d .

So for all i 6= j 6= k in J0,dK

{

∇λi,T (ai,T − a j,T ) = 1,
∇λi,T

(

a j,T − ak,T

)

= 0,
(30)

From (7), one can compute the gradient vector of basis
related on each T as follows:



































∇ϕi,T =
1

2

(

27λ 2
i,T − 18λi,T + 2

)

∇λi,T ,

∇ϕi, j,T =
9

2

[(

6λi,T − 1
)

λ j,T ∇λi,T+

+(3λi,T − 1)λi,T ∇λ j,T

]

,

∇ϕi, j,k,T = 27λi,T λ j,T ∇λk,T .

(31)

Therefore,







































































∇wh,k =
1

2

d

∑
i=0

wh,k (ai,T )
(

27λ 2
i,T − 18λi,T + 2

)

∇λi,T+

+
9

2

d

∑
i, j=0
i6= j

wh,k (ai, j,T )
[(

6λi,T − 1
)

λ j,T ∇λi,T+

+(3λi,T − 1)λi,T ∇λ j,T

]

+

+ 27
d

∑
i, j,k=0
i6= j 6=k

wh,k

(

bi, j,k,T

)

λi,T λ j,T ∇λk,T ,

(32)
where, for i1 < i2 < i3 and {i1, i2, i3}= {i, j,k} :

bi, j,k = ai1,i2,i3,T .

Taking into account (30), one can have, for all x ∈ T

and m ∈ J0,dK,

∇wh,k (x)(am,T − a0,T ) =

=
1

2
wh,k (am,T )

[

λm,T (x) (27λm,T (x)− 18)+ 2
]

+

−1

2
wh,k (a0,T )

[

λ0,T (x) (27λ0,T (x)− 18)+ 2
]

+

+
9

2

[

d

∑
j=0
j 6=m

wh,k (am, j,T )λ j,T (x) (6λm,T − 1)+

+
d

∑
i=0
i6=m

wh,k (ai,m,T )λi,T (x)(3λi,T − 1)

]

+

−9

2

[

d

∑
j=1

wh,k

(

a0, j,T

)

λ j,T (x)(6λ0,T − 1)+

+
d

∑
i=1

wh,k (ai,0,T )λi,T (x) (3λi,T − 1)

]

+

+27

[

d

∑
i, j,m=0
i6= j 6=m

wh,k (bi, j,m,T )λi,T (x)λ j,T (x)+

−
d

∑
i, j,=1

i6= j

wh,k

(

bi, j,0,T

)

λi,T (x)λ j,T (x)

]

.

Thus, since
∣

∣wh,k

∣

∣≤ k in
...
T , one can obtain:

∣

∣∇wh,k (x) (am,T − a0,T )
∣

∣≤ (11+ 45+ 18+54)k≤ 128 k,
(33)

Back to (29) and with (33), one can deduce for all x ∈ T :

∣

∣wh,k (y)−wh,k (x)
∣

∣≤ 128 k
d

∑
i=1

|λi,T (y)−λi,T (x)| .

Finally, in order to have
∣

∣wh,k (x)
∣

∣≥ k

2
it suffices to have

d

∑
i=1

|λi,T (x)−λi,T (y)| ≤
1

256
.

Let S be the d−simplex contained in T and similar to T

defined as follows:

S = (y− a0,T )+ S0,

where

S0 =

{

x ∈ T : λ0,T (x)≥ 1− 1

256
=

255

256

}

,

so, one can claim that

|S|= |S0| .

Furthermore, if we consider the invertible affine
application ΦT s.t.
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ΦT (T̂ ) = T,

where T̂ is the reference unit d−simplex, then

Φ−1
T (S0) =

{

x ∈ T̂ : Φ−1
T ◦λ0,T (x)≥

255

256

}

,

which allows one to claim that

C (d) =

∣

∣Φ−1
T (S0)

∣

∣

∣

∣Φ−1
T (T )

∣

∣

6=C(h).

This proves the result.

Lemma 2. Assume that vh ∈Vh satisfies (26), then,

|Bk (vh)| ≤C (d, |Ω | ,2∗)
(

M

k

)

2∗
2

, (34)

for every k > 0, where 2∗ =
2d

d− 2
= 6 if d = 3 and 2∗ is

any real number with 2∗ ≥ 1 if d = 2 ; Bk (vh) is defined by

Bk (vh) =
⋃

{

T ∈ Th : max
T

|vh| ≥ k

}

, (35)

c(d, |Ω | ,2∗) 6= c(h).

Proof. Sobolev’s theorem asserts that,

∀v ∈ H1
0 (Ω) , ‖v‖L2∗ (Ω) ≤ µS ‖∇v‖

L2(Ω)d , (36)

here d = 2 or d = 3 so 2∗ =
2d

d− 2
= 6 if d = 3 and 2∗ can

be any real number with 1 ≤ 2∗.
Fix k > 0. If T ⊂ Bk (vh) , from lemma 1, we know that

there exists S ⊂ T, with |S|= c(d) |T | and

∀x ∈ S, |Πh(Tk (vh (x)))| ≥
k

2
.

Therefore
∫

T
|Πh(Tk (vh (x)))|2

∗
dx ≥

∫

S
|Πh(Tk (vh (x)))|2

∗
dx

≥ c(d) |T |
(

k

2

)2∗

.

Hence,

|Bk (vh)|= ∑
T⊂Bk(vh)

|T |

≤ 1

c(d)

(

2

k

)2∗ ∫

Ω
|Πh(Tk (vh (x)))|2

∗
dx.

This combined with (36) yields

|Bk (vh)| ≤
1

c(d)

(

2µS

k

)2∗ (∫

Ω
|∇Πh(Tk (vh (x)))|2 dx

) 2∗
2

.

So, from (26), one can observe that

|Bk (vh)| ≤
(2µS)

2∗

c(d)

(

M

k

)
2∗
2

,

which is (34) with c(d, |Ω | ,2∗) = (2µS)
2∗

c(d)
6= c(h).

Proof. [Proof of Theorem 3 see [3]]

Fix q ∈ [1,
d

d − 1
[. Taking r =

2× 2∗

2+ 2∗
=

3

2
if d = 3, and

verifying
2× 2∗

2+ 2∗
> q, in the case d = 2.

To prove Theorem 3, it is sufficient to estimate

‖|∇vh|‖Lr,∞(Ω) = sup
µ>0

µ |{x ∈ Ω : |∇vh (x)| ≥ µ}|r−1

,

and use the following embedding inequality

‖|∇vh|‖Lq(Ω) ≤C (q,r, |Ω |)‖|∇vh|‖Lr,∞(Ω) .

So, let µ > 0. For every k > 0, we can write

|{x ∈ Ω : |∇vh (x)| ≥ µ}| ≤ |Bk (vh)|+ ̂|Bk (vh)|,

where,

B̂k (vh) := {x ∈ Ω : |∇vh (x)| ≥ µ}∩ [Bk (vh)]
c .

But B̂k (vh) coincides, up to a set of measure zero, with

{x ∈ Ω : |∇vh (x)| ≥ µ}∩
⋃

{

T ∈ Th : max
T

|vh|< k

}

.

Furthermore, under the hypothesis max
T

|vh| < k, one

have

Πh(Tk (vh)) |T= vh |T ,
so

̂|Bk (vh)| ≤ |{x ∈ Ω : |∇Πh(Tk (vh (x)))| ≥ µ}|

≤ 1

µ2

∫

Ω
|∇ΠhTk (vh (x))|2 dx,

and by (26),

̂|Bk (vh)| ≤
kM

µ2
.

We now fix k = µ2−rMr−1, s.t.

kM

µ2
=

(

M

µ

)r

,

using (34), it follows that
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|{x ∈ Ω : |∇vh (x)| ≥ µ}| ≤ (C (d, |Ω | ,2∗)+ 1)

(

M

µ

)r

,

for d ∈ {2,3},
which implies, for some fixed r and for every µ > 0;

µ |{x ∈ Ω : |∇vh (x)| ≥ µ}|r−1 ≤C (d, |Ω | ,q)M.

This finishes the proof.

Lemma 3. Let T be a d−simplex in R
d and v ∈ P3 (T ) .

For every s, k with 0 ≤ s < k, if there exist a, b in T s.t.

|v(a)| ≥ k and |v(b)| ≤ s,

then,

|T | ≤ 8× 92

5

|a− b|2

(k− s)2

∫

T
|∇v|2 dx, for d = 2 (37)

|T | ≤ 8× 212

9

|a− b|2

(k− s)2

∫

T
|∇v|2 dx, for d = 3 (38)

Proof. In this proof, without loss of generality,
{ϕi,T ,ϕi, j,T}0≤i< j≤d represents the local basis of P2 (T ).

For every w∈P3 (T ) and every x in R
d , ∇w ∈P2 (T )

d ,
so

∇w(x) =
d

∑
i=0

∇w(ai,T )ϕi,T (x)+

+
d

∑
i, j=0
i< j

∇w(ai, j,T )ϕi, j,T (x) .

Therefore,

|∇w|2 =
d

∑
i=0

|∇w(ai,T ) |2ϕ2
i,T+

+
d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2ϕ2
i, j,T+

+2
[ d

∑
i, j=0
i6= j

∇w(ai,T )∇w(a j,T )ϕi,T ϕ j,T+

+
d

∑
i, j,k,l=0

i< j,k<l,(i, j) 6=(k,l)

∇w(ai, j,T )∇w
(

ak,l,T

)

ϕi, j,T ϕk,l,T+

+
d

∑
i, j,k=0

i< j

∇w(ai, j,T )∇w
(

ak,T

)

ϕi, j,T ϕk,T

]

≤ 2
[ d

∑
i=0

|∇w(ai,T ) |2ϕ2
i,T+

+
d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2ϕ2
i, j,T

]

.

In the otherwise, for d = 2:

∫

T
|∇w(z) |2dz = |T |

[ 1

30

d

∑
i=0

|∇w(ai,T ) |2+

+
8

45

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

+

+2|T |
[

− 1

180

d

∑
i, j=0
i6= j

∇w(ai,T )∇w(a j,T )+

+
4

45

d

∑
i, j,k,l=0

i< j,k<l,(i, j) 6=(k,l)

∇w(ai, j,T )∇w
(

ak,l,T

)

+

− 1

45

d

∑
i, j,k=0

i< j, k/∈{i, j}

∇w(ai, j,T )∇w
(

ak,T

)

]

≥ |T |
[ 1

30

d

∑
i=0

|∇w(ai,T ) |2+

+
8

45

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

+

−|T |
[ 1

180

d

∑
i=0

|∇w(ai,T ) |2+

+
4

45

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2+

− 1

25

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2 −
1

81

d

∑
i=0

|∇w(ai,T ) |2
]

≥ |T |
[( 1

30
− 1

180
− 1

81

) d

∑
i=0

|∇w(ai,T ) |2+

+
( 8

45
− 4

45
− 1

25

) d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

≥ |T |
[ 5

4× 81

d

∑
i=0

|∇w(ai,T ) |2+

+
11

9× 25

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

.

Therefore,

∫

T
|∇w(z) |2dz ≥ 5|T |

8× 81
|∇w(x) |2.

In the case d = 3, we obtain

∫

T
|∇w(z) |2dz = |T |

[ 1

70

d

∑
i=0

|∇w(ai,T ) |2+
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+
8

105

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

+

+2|T |
[ 1

420

d

∑
i, j=0
i6= j

∇w(ai,T )∇w(a j,T )+

+
2

105

d

∑
i, j,k,l=0

i< j,k<l,k,l /∈{i, j}

∇w(ai, j,T )∇w
(

ak,l,T

)

+

+
4

105

d

∑
i, j,k,l=0

i< j,k<l,k,l∈{i, j}
(k,l) 6=(i, j)

∇w(ai, j,T )∇w
(

ak,l,T

)

+

− 1

105

d

∑
i, j,k=0

i< j, k∈{i, j}

∇w(ai, j,T )∇w
(

ak,T

)

+

− 1

70

d

∑
i, j,k=0

i< j, k/∈{i, j}

∇w(ai, j,T )∇w
(

ak,T

)

]

= |T |
[ 1

70

d

∑
i=0

|∇w(ai,T ) |2+

+
8

105

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

+

+2|T |
[ 1

420

d

∑
i, j=0
i6= j

∇w(ai,T )∇w(a j,T )+

+
2

105

d

∑
i, j,k,l=0

i< j,k<l,(k,l) 6=(i, j)

∇w(ai, j,T )∇w
(

ak,l,T

)

+

+
2

105

d

∑
i, j,k,l=0

i< j,k<l,k,l∈{i, j}
(k,l) 6=(i, j)

∇w(ai, j,T )∇w
(

ak,l,T

)

+

− 2

210

d

∑
i, j,k=0

i< j

∇w(ai, j,T )∇w
(

ak,T

)

+

− 1

210

d

∑
i, j,k=0

i< j, k/∈{i, j}

∇w(ai, j,T )∇w
(

ak,T

)

]

≥ |T |
[ 1

70

d

∑
i=0

|∇w(ai,T ) |2+

+
8

105

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

+

−|T |
[ 1

420

d

∑
i=0

|∇w(ai,T ) |2+

+
4

105

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2+

+
3

100

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2+

+
3

(21)2

d

∑
i=0

|∇w(ai,T ) |2
]

≥ |T |
[( 1

70
− 1

420
− 3

(21)2

) d

∑
i=0

|∇w(ai,T ) |2+

+
( 8

105
− 4

105
− 3

100

) d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

≥ |T |
[ 9

4× (21)2

d

∑
i=0

|∇w(ai,T ) |2+

+
17

100× 21

d

∑
i, j=0
i< j

|∇w(ai, j,T ) |2
]

.

Therefore,

∫

T
|∇w(z) |2dz ≥ 9|T |

8× (21)2
|∇w(x) |2.

Using (28), one can observe that

k− s ≤ |w(a)|− |w(b)| ≤ |∇w(x)| |a− b| . (39)

Combining with (39), we get

(k− s)2 ≤ |∇w(x)|2 |a− b|2 . (40)

Therefore,

∫

T
|∇w(z) |2dz ≥ (k− s)2

|a− b|2
|T |

C(d)

where C(2) =
8× 81

5
and C(3) =

8× (21)2

9
, and this

implies (38).

The following lemma is then, obvious.

Lemma 4. Let v ∈Vh. For every s, k with 0 ≤ s < k, the set

Bk,s (v) defined by

Bk,s (v) =
⋃

{

T ∈ Th : min
T

|v| ≤ s,max
T

|v| ≥ k

}

, (41)

satisfies

∣

∣Bk,s (v)
∣

∣≤C (d)
h2

(k− s)2

∫

Ω
|∇(v)|2 dx. (42)

We can also derive the following lemma.
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Lemma 5. Let vh ∈ Vh and 0 ≤ s < k, the set B̃k,s (vh)
defined by

B̃k,s (vh) =
⋃

{

T ∈ Th : max
T

|vh| ≥ k,min...
T

|vh| ≤ s

}

,

(43)
satisfies

∣

∣B̃k,s (vh)
∣

∣≤C (d)
h2

(k− s)2

∫

Ω
|∇Πh(Tk (vh))|2 dx. (44)

Proof. In deed, if T ⊂ B̃k,s (vh), then, there are two
possibilities: max...

T
|vh| ≤ k and so Πh(Tk (vh)) = vh, or

max...
T

|vh| > k and so max
T

|Πh(Tk (vh))| ≥ k and obviously

min
T

|Πh(Tk (vh))| ≤ s. in the two cases

T ⊂ Bk,s (Πh(Tk (vh))).

The estimate (44) follows.

Remark.It is clear that, under hypothesis (26),
∣

∣B̃k,s (vh)
∣

∣−→
h→0

0 and
∣

∣Bk,s (Πh(Tk (vh)))
∣

∣−→
h→0

0 . (45)

In addition, one has:

Proposition 1. Let vh ∈ Vh and 0 ≤ s < k. If vh satisfies

(26), then,
∣

∣Bk,s (vh)
∣

∣−→
h→0

0. (46)

Proof. Fix k> 0 and s> 0, s< k. For h> 0 such that
1

h
≥ k,

we can write

Bk,s (vh)=
(

Bk,s (vh)∩B 1
h
(vh)

)

∪
(

Bk,s (vh)∩
[

B 1
h
(vh)

]c)

.

On the one hand, with 2∗ = 6 in (34), one has
∣

∣

∣
Bk,s (vh)∩B 1

h
(vh)

∣

∣

∣
≤
∣

∣

∣
B 1

h
(vh)

∣

∣

∣
≤C (|Ω |)h3. (47)

On the other hand,

Bk,s (vh)∩
[

B 1
h
(vh)

]c

⊂ Bk,s

(

Πh(T1
h
(vh)

)

).

Indeed; if x ∈ Bk,s (vh)∩
[

B 1
h
(vh)

]c

and T ∈ Th such that

x ∈ T, then, max
T

|vh| ≥ k, min
T

|vh| ≤ s and, for every y in

T, |vh (y)| ≤
1

h
, what means ΠhT1

h
(vh) |T= vh |T , so

T ⊂ Bk,s

(

Πh(T1
h
(vh)

)

).

Therefore, with lemma 4, and (26), one has
∣

∣

∣
Bk,s (vh)∩Bc

1
h

(vh)
∣

∣

∣
≤
∣

∣

∣
Bk,s

(

Πh(T1
h
(vh)

)

)
∣

∣

∣

≤C (d)
h2

(k− s)2

∫

Ω

∣

∣

∣
∇Πh(T1

h
(vh))

∣

∣

∣

2

dx

≤C (d)
h

(k− s)2
M. (48)

The convergence (46) is then a consequence of (47)
and (48).

Lemma 6. Let vh ∈Vh. For every s,k s.t 0 < s < k, one has

{x ∈ Ω : Ts (Πh(Tk (vh))) 6= Ts (vh)}⊂Bk,s (vh,Πh(Tk (vh))),
(49)

where,

Bk,s (vh,Πh(Tk (vh))) := Bk,s (vh)∪Bk,s (Πh(Tk (vh))).

Proof. LetT ∈ Th with x ∈ T. s.t.

Ts (Πh(Tk (vh))) 6= Ts (vh) .

One can easily see that

Πh(Tk (vh)) |T 6= vh |T ,

max...
T

|vh| ≥ k,

and
max...

T
|Πh(Tk (vh))| ≥ k.

This gives the three following possibilities to be
discussed (i) |Πh(Tk (vh (x)))| ≥ s and |vh (x)|< s, then,

T ⊂ Bk,s (vh) .

(ii) |Πh(Tk (vh (x)))|< s and |vh (x)| ≥ s, then,

T ⊂ Bk,s (Πh(Tk (vh))).

(iii) |Πh(Tk (vh (x)))|< s and |vh (x)|< s, then,

T ⊂ Bk,s (Πh(Tk (vh)))∩Bk,s (vh) .

In all cases x ∈ T ⊂ Bk,s (vh,Πh(Tk (vh))), and (49)
follows.

Using (45) and (46), we are now in measure to have the
result of Proposition 2.6 in [3], but we are going to state a
result more precise, useful to prove Theorem 2 in our case
(P3 -FEA; the assumption |Πh(Tk (vh))| ≤ k does not hold
in this case).

Proposition 2. Assume that vh ∈Vh satisfies (26). Then, for

every k > 0, one has

Πh(Tk (vh))−Tk (vh)−→
h→0

0 in measure. (50)

Proof. Let k > 0, η s.t. 0 < η < k and consider

Eη = {x ∈ Ω : |Πh(Tk (vh (x)))−Tk (vh (x))| ≥ η} .

Let x ∈ Eη and T ∈Th with x ∈ T. It is easily checked that

Πh(Tk (vh))|T 6= Tk (vh)|T ,

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


942 R. Messaoudi et al.: Cubic FEM for Elliptic Equations with L1-Data

what implies that

max
T

|vh|> k.

So there are four possibilities.
(i) vh changes sign in T , then, by continuity,

T ⊂ Bk,s (vh) for every s ∈ ]0,k[ .

(ii) Πh(Tk (vh)) changes sign in T , then,

T ⊂ Bk,s (Πh(Tk (vh))) for every s ∈ ]0,k[ .

(iii) |vh||...T
≤ k and vh|T ≥ 0 (or vh|T ≤ 0), so

Πh(Tk (vh))|T = vh|T .

- If vh|T ≥ 0, then, vh (x)≥ k+η and

T ⊂ Bk+η,k (Πh(Tk (vh))).

- If vh|T ≤ 0, then, vh (x)≤−k−η and

T ⊂ Bk+η,k (Πh(Tk (vh))).

(iv) max...
T

|vh|> k and vh|T ≥ 0 (or vh|T ≤ 0). So

|ΠhTk (vh (x))−Tk (vh (x))|= ||ΠhTk (vh (x))|− |Tk (vh (x))|| .

- If |Πh(Tk (vh (x)))|− |Tk (vh (x))| ≥ η . There are
three possibilities :

case 1 : |vh (x)| ≥ k, so

|Πh(Tk (vh (x)))| ≥ k+η ,

and
T ⊂ Bk+η,k (Πh(Tk (vh))),

case 2 : |vh (x)|< k− η

2
, so

T ⊂ Bk,k− η
2
(vh) ,

case 3 : k− η

2
≤ |vh (x)|< k, so

|Πh(Tk (vh (x)))| ≥ k+
η

2
,

and
T ⊂ Bk+ η

2 ,k
(Πh(Tk (vh))).

- If |Tk (vh (x))|− |Πh(Tk (vh (x)))| ≥ η , then,

|Πh(Tk (vh (x)))| ≤ |Tk (vh (x))|−η ,

so
T ⊂ Bk,k−η (Πh(Tk (vh))) .

We can then, conclude that

Eη ⊂Bk+ η
2 ,k

(Πh(Tk (vh)))∪Bk,k−η (Πh(Tk (vh)))∪Bk,k− η
2
(vh) .

Convergence (50) is then, consequence of (45) and (46).

The result and the proof of the proposition (2.7) in [3],
can be conserved without changes.

Proposition 3. Under assumption (24), one has for every

vh ∈Vh and every k > 0

a(∇(vh −Πh(Tk (vh))) ,∇Πh(Tk (vh)))≥ 0. (51)

Proof. [Proof of Proposition 2.7 in [3]] Since

vh =
Nh

∑
i=1

vh (ai)ϕi and Πh(Tk (vh)) =
Nh

∑
i=1

Tk (vh (ai))ϕi ,

using the definition of Qi, j , we have

a(∇(vh −Πh(Tk (vh))),∇Πh(Tk (vh))) =

= a
( Nh

∑
i=1

(vh (ai)−Tk (vh (ai)))∇ϕi,
Nh

∑
j=1

Tk (vh (a j))∇ϕ j

)

= a
( Nh

∑
i=1

(vh (ai)−Tk (vh (ai)))∇ϕi,
Nh

∑
j=1

Tk (vh (a j))∇ϕ j

)

=
Nh

∑
i=1

(vh (ai)−Tk (vh (ai)))
Nh

∑
j=1

Tk (vh (a j))a(∇ϕi,∇ϕ j)

=
Nh

∑
i=1

(vh (ai)−Tk (vh (ai)))
Nh

∑
j=1

Tk (vh (a j))Qi, j

=
Nh

∑
i=1

Si,

where

Si = (vh (ai)−Tk (vh (ai)))Tk (vh (ai))Qi,i+

+(vh (ai)−Tk (vh (ai)))
Nh

∑
j=1
j 6=i

Tk (vh (a j))Qi, j.

Fix i ∈ J1,NhK. If |vh (ai)| ≤ k, then,

vh (ai)−Tk (vh (ai)) = 0,

and
Si = 0.

If |vh (ai)|> k, then,

(vh (ai)−Tk (vh (ai)))Tk (vh (ai))= k |vh (ai)−Tk (vh (ai))| .
Since

∣

∣Tk (vh (a j))
∣

∣≤ k for every j, one has

Si ≥ k |vh (ai)−Tk (vh (ai))|Qi,i+

− k |vh (ai)−Tk (vh (ai))|
Nh

∑
j=1
j 6=i

∣

∣Qi, j

∣

∣

= k |vh (ai)−Tk (vh (ai))|
(

Qi,i −
Nh

∑
j=1
j 6=i

∣

∣Qi, j

∣

∣

)

≥ 0,
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in the light of the assumption (24).
This proves that Si ≥ 0 for every i ∈ J1,NhK; and so

(51).

4 Proof of the main theorem

We first show an a priori estimate (compare with (26) on
the solution uh of (25).

Proposition 4. Under the assumption of Theorem 2, the

solution uh of (25) satisfies for every k > 0 and every h > 0

a(∇Πh(Tk (uh)),∇Πh(Tk (uh)))≤ ( f ,Πh(Tk (uh))), (52)

in particular, uh satisfies

∫

Ω
|∇Πh(Tk (uh))|2 dx≤ k

5d2 + 6(d+ 1)

5α
‖ f‖L1(Ω) . (53)

Proof. Using Πh(Tk (uh)) as a test function in (25) and (51),
we can have (52).

To prove (53), we need the following lemma.

Lemma 7. Let vh ∈Vh , T ∈ Th and k > 0 s.t.

max...
T

|vh| ≤ k.

Then,

max
T

|vh| ≤ k
5d2 + 6(d+ 1)

5
. (54)

Proof. Let vh ∈Vh , T ∈ Th and k > 0 s.t.

max...
T

|vh| ≤ k.

For every x ∈ T,

d

∑
i=0

vh (ai,T )ϕi,T (x) =
d

∑
i=0

λi,T (x)∈] 1
3 ,

2
3 [

vh (ai,T )ϕi,T (x)+

+
d

∑
i=0

λi,T (x)/∈] 1
3 ,

2
3 [

vh (ai,T )ϕi,T (x) ,

and,

d

∑
i, j=0
i6= j

vh (ai, j,T )ϕi, j,T (x) =
d

∑
i, j=0

λi,T (x)<
1
3

vh (ai, j,T )ϕi, j,T (x)+

+
d

∑
i, j=0

λi,T (x)≥ 1
3

vh (ai, j,T )ϕi, j,T (x) .

Therefore,

|vh (x)| ≤
d

∑
i=0

|vh (ai,T )| |ϕi,T (x)|+

+
d

∑
i, j=0
i6= j

∣

∣vh (ai, j,T )
∣

∣

∣

∣ϕi, j,T (x)
∣

∣+

+
d

∑
i, j,k=0
i< j<k

∣

∣vh

(

ai, j,k,T

)∣

∣ϕi, j,k,T (x)

≤−k
( d

∑
i=0

λi,T (x)∈] 1
3 ,

2
3 [

ϕi,T (x)+
d

∑
i, j=0, i6= j

λi,T (x)<
1
3

ϕi, j,T (x)
)

+

+ k

(

d

∑
i=0

λi,T (x)/∈] 1
3 ,

2
3 [

ϕi,T (x)+
d

∑
i, j=0, i6= j

λi,T (x)≥ 1
3

ϕi, j,T (x)+

+
d

∑
i, j,k=0
i< j<k

ϕi, j,k,T (x)

)

≤ k
(

1− 2
( d

∑
i=0

λi,T (x)∈] 1
3 ,

2
3 [

ϕi,T (x)+
d

∑
i, j=0, i6= j

λi,T (x)<
1
3

ϕi, j,T (x)
)

)

≤ k

(

1+ 2

(
√

3

27
(d + 1)+

7
3
2 − 10

27
d(d + 1)

))

≤ k

(

1+ 2(d+ 1)

(

1

15
+

d

3

))

≤ k

(

1+
2(d+ 1)(5d+ 1)

15

)

.

The inequality (54) is then, proved.

As in [3], the main estimate (53) together with

Theorem 3 implies the boundless of uh in W
1,q
0 (Ω) for

every q ∈ [1,d/(d − 1)[, and the following result remains
valid.

Theorem 4. Under the assumptions of Theorem 2, the

solution uh of (25) satisfies for every q ∈ [1,d/(d− 1)[

uh −→
h→0

u strongly in W
1,q
0 (Ω) , (55)

where u is the unique r.s. of (1).

Proof. [Proof of Theorem 3.2 in [3]] Consider a
sequence f ε in L2 (Ω) , converging strongly in L1 (Ω) to
f (for example f ε = Tε−1 ( f )). Let uε

h to be the unique
solution of (25) for the right-hand side f ε . Then, uh − uε

h

satisfies






uh − uε
h ∈Vh,

∀vh ∈Vh : a(∇vh,∇(uh − uε
h)) = ( f − f ε ,vh).
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Applying estimate (53) to this problem, we obtain for
every k > 0, every h > 0 and every ε > 0

∫

Ω
|∇ΠhTk (uh − uε

h)|
2

dx≤ k
5d2 + 6(d+ 1)

5α
‖ f − f ε‖L1(Ω) ,

which implies by Theorem 3 that

‖uh − uε
h‖W

1,q
0 (Ω)

≤C (d, |Ω | ,q) 1

α
‖ f − f ε‖L1(Ω) , (56)

for every q ∈ [1,d/(d− 1)[, every h > 0 and every ε > 0.

On the other hand, since f ε ∈ L2 (Ω) and Th satisfies
(15), (16) and (17), it is known (see [5]) that for every fixed
ε

uε
h −→

h→0
uε strongly in H1

0 (Ω) , (57)

where uε is the unique solution of

{

uε ∈ H1
0 (Ω) ,

−div(A∇uε) = f ε in D
′ (Ω) .

(58)

Finally, the function uε is also the unique renormalized
solution of the problem

{

−div(A∇uε) = f ε in Ω ,
uε = 0 on ∂Ω .

(59)

By the estimate (19) we have

‖uε − u‖
W

1,q
0 (Ω)

≤C (d, |Ω | ,q) 1

α
‖ f − f ε‖L1(Ω) , (60)

for every q ∈ [1,d/(d − 1)[, where u is the unique r.s. of
(1).

Writing now

‖uh − u‖
W

1,q
0 (Ω)

≤ ‖uh − uε
h‖W

1,q
0 (Ω)

+ ‖uε
h − uε‖

W
1,q
0 (Ω)

+

+‖uε − u‖
W

1,q
0 (Ω)

. (61)

Using (56), (57) and (60), we get for every ε > 0 and every
q ∈ [1,d/(d− 1)[

limsup
h−→0

‖uh − u‖
W

1,q
0 (Ω)

≤C (d, |Ω | ,q) 1

α
‖ f − f ε‖L1(Ω) ,

passing to the limit when ε tends to zero proves (55).

To complete the proof of Theorem 2, it remains to
prove that Πh(Tk (uh)) converges strongly to Tk (u) in

H1
0 (Ω) .

Proposition 5. Under the assumptions of Theorem 2, the

solution uh of (25) satisfies

Πh(Tk (uh))−→
h→0

Tk (u) strongly in H1
0 (Ω) , (62)

for every k > 0.

Proof. [Proof of Proposition 3.3 in [3]] First by result of
Proposition 2 and the estimate (53) one can have

Πh(Tk (uh)) ⇀
h→0

Tk (u) weakly in H1
0 (Ω) , (63)

for every k > 0.
On the other hand, using (54) one has

| f Πh(Tk (uh))| ≤ k
5d2 + 6(d+ 1)

5α
| f | ∈ L1 (Ω) ,

so, by Lebesgue’s dominated convergence theorem
combined with Rellich-Kondrashov’s compactness
theorem one has

( f ,ΠhTk (uh))−→
h→0

( f ,Tk (u)).

Therefore passing to the limit with respect to h in (52)
yields

limsup
h−→0

a(∇ΠhTk (uh) ,∇Πh(Tk (uh)))≤ ( f ,Tk (u)). (64)

And since u is the r.s. of (1), it is known that (see [3])

a(∇Tk (u) ,∇Tk (u)) = ( f ,Tk (u)). (65)

Finally, from (64) and (65), we deduce that

limsup
h−→0

a(∇ΠhTk (uh) ,∇Πh(Tk (uh)))≤ a(∇Tk (uh) ,∇Tk (uh)) ,

which combined with the weak convergence (63) implies
the strong convergence (62).

5 Some remarks

5.1 The case where f ∈ Mb (Ω)

The proof of Proposition 2 needs only properties of vh. So,
(63) remain valid when f ∈ Mb (Ω) which is stated in the
following convergence result.

Theorem 5. [Theorem 4.1 in [3]] Under the assumptions

(8), (9),(15), (16), (17) and (24), if f ∈Mb (Ω), there exist

a subsequence uh and a function u s.t. for every (k,q) ∈
R
+∗× [1,d/(d− 1)[

Π (Tk (uh)) ⇀
h→0

Tk (u) weakly in H1
0 (Ω) ,

uh ⇀
h→0

u weakly in W
1,q
0 (Ω) ,

along this subsequence, where u satisfies

Tk (u) ∈ H1
0 (Ω) ,

u ∈W
1,q
0 (Ω) ,

and

∀v ∈ C
∞
c (Ω) , a(∇u,∇v) =

∫

Ω
vd f .
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5.2 Error estimate

For r ∈]1,2[, if f ∈ Lr,∞ (Ω), under suitable hypotheses on
Ω , Th and A together with (61), the unique solution uε

h of

(25) with f ε = Tε−1 ( f ) ∈ L2 (Ω) satisfies

‖uε
h − uε‖H1

0 (Ω) ≤Ch‖ f ε‖L2(Ω) . (66)

So, in our case, for q ∈ [1,d/(d − 1)[, one can obtain an

O

(

h2(1−r−1)
)

error estimate in W
1,q
0 (Ω) (see [3]).

And if in addition,

∀k > 0 : Tk ( f ) ∈ H1 (Ω) , (67)

then, it is known ([5]) that

‖uε
h − uε‖H1

0 (Ω) ≤Ch2 ‖ f ε‖L2(Ω)

for some constant C 6=C(h).
Therefore, one can under a suitable modification of

the proof given in [3] provides an O
(

h4(1−r−1)
)

error

estimate in W
1,q
0 (Ω) .

5.3 Conclusion and future aims

This work is based on the main hypothesis (24) imposed
on the stiffness matrix Q. To guarantee this, it will be
necessary to seek an appropriate triangulation. Which
turns out to be difficult in our case of cubic approximation
(see [4]). But faced with this difficulty, we hope to
improve the convergence approximation rate. Our future
work will focus on the search for an alternative to
hypothesis (24) accompanied by an illustration of our
studies by intervening an example of numerical
approximation treating an elliptic partial differential
equation with Dirichlet boundary conditions involving
measure data. This type of problem is part of the
applications to turbulence and heat transfer modeling.
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