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1 Introduction

In [24] ([25] and [26]) the following fractional derivative
is defined:

Definition 1.If, for a function f : [0,1]−→ R, the limit

Dq f (y) = lim
x→y

dq( f (x)− f (y))

d(x− y)q
, (1)

exists and is finite, then we say that the local fractional

derivative (LFD) of order q, at x = y, exists.

This derivative was used for the study of certain
attractors of dynamic systems, which are examples of the
occurrence of curves and continuous surfaces, but highly
irregular and non-differentiable. Frequently these graphs
are fractal sets and ordinary calculus is inadequate to
characterize them. In this article the notion of “local
fractional derivative” is developed, appropriately
modifying the concepts of fractional calculus.

Additionally, they introduce the concept of local
fractional integral based on the previous one, as we know
today.

In the last three decades we have witnessed the
development of new differential and integral operators,
both fractional and generalized. The latter are generally

defined as local derivatives and generate integral
operators that may or may not be fractional. To date, the
study of this field has attracted the attention of many
researchers, not only in pure mathematics, but also in
various areas of applied sciences. Due to its own
theoretical development and variety of applications, the
field has grown rapidly in recent years, resulting in a
unified definition of “fractional derivatives” not existing,
or at least not unanimously accepted, e.g., one One of the
features that the authors present as typical of a fractional
derivative is the failure to comply with the Leibniz Rule,
however in [14] we build a local differential operator that
also violates it, that is, we still need to clarify some
points.

Although, as we have seen, local derivatives have been
used since the end of the last century, see [3,6,7,8,40,42,
43,46,47,48,49,50], it was not until 2014 when they were
formalized with the work [23], where a local derivative,
called conformable, is defined as follows

Definition 2.Given a function γ : [0,+∞) → R, then the

conformable fractional derivative of γ of order α , with 0<
α ≤ 1, is defined by

Tα γ(t) = lim
ε→0

γ(t + εt1−α)− γ(t)

ε
, t > 0. (2)
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Remark.If γ is α-differentiable in some 0 < α ≤ 1, and
lim

t→0+
Tα γ(t) exists, then define Tα γ(0) = limt→0+ Tα γ(t).

Additionally we have if γ is differentiable then Tα γ(t) =

γ ′(t)t(1−α), of the latter we see that if α → 1 we obtain the
classical derivative.

In 2018 we introduced a new local derivative, named
non conformable ([14]), with a very distinctive property:
when α → 1 we do not get the ordinary derivative. We call
this derivative non-conformable, to distinguish it from the
previous known ones, since when α → 1 the slope of the
tangent line to the curve at the point is not preserved (also
see [30,34], and some applications can be consulted in [17,
15,29,30,44]).

Definition 3.Given a function γ : [t0,+∞) → R, t0 > 0.

Then the 1N-derivative of γ of order α is defined by

1Nα γ(t) = lim
ε→0

γ(t+εet−α
)−γ(t)

ε for all t > 0, α ∈ (0,1). If γ

is α−differentiable in some (0,a), and lim
t→0+

1N(α)γ(t)

exists, then define 1Nα γ(0) = lim
t→0+

1N(α)γ(t).

If the above derivative of the function x(t) of order α
exists and is finite in (t0,∞), we will say that x(t) is N1-
differentiable in I = (t0,∞).

Remark.Other results that illustrate the aforementioned
development can be consulted in [2,4,5,11,19,21,22,52,
45].

In [35] a generalized derivative was defined as follows
(see also [13,51]).

Definition 4.Given a function ψ : [0,+∞) → R. Then the

N-derivative of ψ of order α is defined by

Nα
F ψ(τ) = lim

ε→0

ψ(τ + εF(τ,α))−ψ(τ)

ε
(3)

for all τ > 0, α ∈ (0,1) being F(τ,α) is some function.

If ψ is N-differentiable in some (0,α), and

lim
τ→0+

Nα
F ψ(τ) exists, then define Nα

F ψ(0) = lim
τ→0+

Nα
F ψ(τ),

note that if ψ is differentiable, then

Nα
F ψ(τ) = F(τ,α)ψ ′(τ) where ψ ′(τ) is the ordinary

derivative.

Remark.The generalized derivative defined above is not
fractional (see [35]), but it does have a very desirable
feature in applications, its dual dependency on both α and
the kernel expression itself, with 0 < α ≤ 1 in [23] the
conformal derivative is defined by putting F(t,α) = t1−α ,
while in [14] the nonconforming derivative is obtained

with F(t,α) = et−α
(see also [34]). This generalized

derivative, in addition to the aforementioned cases,
contains as particular cases practically all known local
operators and has proved its utility in various
applications, see, for example, [10,12,16,18,20,27,28,
29,30,31,32,33,36,37,38,39,44].

Remark.We must add that this generalized derivative does
not comply with the Semigroup Law, that is,
N2α

F f (t) 6= Nα
F (Nα

F f (t)). To indicate successive
derivatives it is necessary to indicate the order in the
second way. Obviously, if F ≡ 1, the ordinary derivative
is obtained.

Remark.From the above definition, it is not difficult to
extend the order of the derivative for 0 ≤ n− 1 < α ≤ n

by putting

N
n,α
F h(τ) = lim

ε→0

h(n−1)(τ + εF(τ,α))− h(n−1)(τ)

ε
, (4)

denoting N
1,α
F = Nα

F . If h(n) exists on some interval I ⊆

R, then we have N
n,α
F h(τ) = F(τ,α)h(n)(τ), with 0 ≤ n−

1 < α ≤ n.

In this paper, we define a new local differential
operator, which is a natural generalization of the classical
derivative and has very interesting properties. The main
novelty is that this derivative allows us to expand the class
of continuous functions and differentiable functions, one
of the most requested issues in the definition of new
differential operators. The above represents an innovation
compared to other recognized local operators.

2 First Results

Fractional, or Non-integer order calculus, was introduced
over 300 years ago. At that time Leibniz wrote a letter to
L’H’opital in which he raised the possibility of
generalizing the meaning of derivatives of whole orders to
derivatives not of whole orders. L’Hópital wanted to
know the result for the derivative of order n = 1/2.
Leibniz replied that “one day, useful consequences will be
drawn” and, in fact, his vision became a reality ([41]).

Therefore, from its very origins, the notion of
derivative is a “local” notion, opposed to the globality of
the integral, hence they are not inverse operators in the
strict sense. It has always been referred to instants, points,
specific magnitudes and not at intervals. The classical
notions of fractional derivatives “forgot” this fact and
built an operator that is not local, therefore, from its
conception, the classical fractional derivatives are “not
derivatives”, it is an operator of another nature. As we
have said, it is impossible to compare them, so Tarasov’s
statements should be reformulated as follows: “No
nonlocality. No derivative operator”.

We know that the derivative of a function can be
expressed as follows:

γ ′(a) = lim
x→a

γ(x)− γ(a)

x− a
(5)

if the limit exists. In this case it is said that the
function γ is derivable at the point x = a. From a
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geometric perspective, the derivative of a function at the
point x = a is the slope of the tangent line to the curve
y = γ(x) at the point x = a.

Let’s take a closer look at (5). We can consider that
γ(x) is the composition of the function γ with the identity
I, therefore, our idea is to consider a more general
composition (γ ◦ N)(x) thus (γ ◦ N)(x) = γ(N(x,α)),
where N is a real function absolutely continuous over all
R. Thus we have the following definition:

Definition 5.Given a function γ : [0,+∞) → R. Then the

CN-derivative of γ of order α (the composite N derivative)

is defined by

γα
CN(a) = lim

x→a

γ(N(x,α))− γ(N(a,α))

x− a
, α ∈ (0,1].

(6)

Remark.If N(x,1) = 1 then the CN-derivative is a
conformable derivative, in the case that this equality is not
fulfilled, we will say that the CN-derivative is non
conformable.

Remark.Obviously, if N(x,α) = x then from (6) we obtain
the classic derivative of (5). In the case

N(x,α) =

{

xα ,x ≥ 0
−(−x)α ,x < 0

α ∈ (0,1]

then we obtain the α-derivative of [1].

For simplicity, we will denote γN (x) = γ (N (x,α)). So,
we have the following definitions.

Definition 6.A function γ : [0,+∞) → R is called

CN-continuous if |γN (x)− γN (a)| < ε , when |x− a| < δ .

So, we have

lim
x→a

γN (x) = γN (a) . (7)

This implies that the function γN (x) is defined at the

point x = a , that its limit exists at that point and that both

values are equal. The function is continuous on the set D

if it is continuous at every point on the set.

Remark.Let’s see an important detail: a function can be
CN-continuous and not be continuous in the classical
sense. The function f (x) = 1

x−a
is not continuous at x = a,

however we have the following:

fN (x) =
1

xα − a
,

fN (a) =
1

aα − a

limx→a fN(x) = fN(a),

i.e. is CN-continuous at any point x = a.

Let us now consider the function f (x) = x
x−2

, x 6= 2,
as before, this function is not continuous at x = 2. But it is
easy to check that

fN (x) =
xα

xα − 2
,

fN (2) =
2α

2α − 2
,

that is, it is CN-continuous at x = 2. Let us calculate its
CN-derivative in x = 2 since it is clear that it will be CN-
derivative in the other real numbers. Taking into account

that fN (x) = xα

xα−2
and fN (2) = 2α

2α−2
we have

f α
CN(2) = limx→2

f (N(x,α))− f (N (2,α))

x− 2

=
−α

2α − 2

2α

2α−1 − 2
.

Therefore, there are CN-derivable functions that are
not derivable in the classical sense.

Consider another kernel N. Let’s consider

N (x,α) =

{

x(1+(1−α)x) , x ≥ 0
(−x)(1+(1−α)(−x)) , x < 0

α ∈ (0,1]

and be the function f (x) = 1
x−5

, x 6= 5. This
function is not continuous, nor is it obviously
differentiable, at x = 5 (it is a particular case of the
function f (x) = 1

x−a
studied above). In this case we have

fN (x) = 1
x(1+(1−α)x)−5

and

fN (5) = 1
5(1+(1−α)5)−5

= 1
(1−α)52 , so it is CN-continuous

at x = 5. If we now consider the function f (x) = x
x−2

,
which is neither continuous nor differentiable at x = 2.
However we have to

fN (x) =
x(1+(1−α)x)

x(1+(1−α)x)− 2
,

fN (2) =
2(1+(1−α)2)

2(1+(1−α)2)− 2
=

1+ 2(1−α)

2(1−α)

where do you have to limx→2 fN(x) = fN(2), that is, it is
CN-continuous at x = 2. Let us calculate its CN-derivative
at x = 2.

f α
CN (2) = limx→2

f (N (x,α))− f (N (2,α))

x− 2

= limx→2

x(1+(1−α)x)
x(1+(1−α)x)−2

− 1+2(1−α)
2(1−α)

x− 2

=
−
(

1+ 22 (1−α)
)

16(1−α)
.

These examples demonstrate that there are significant
qualitative differences between classical theory and our
definitions.
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Let’s look at some results on α-continuous functions,
which will be useful in the future.

Definition 7.A function γ : I → R is said to be

CN-bounded, α ∈ (0,1], on I, N(I,α) ⊂ N(I,α), if

γN : I → R, α ∈ (0,1], is bounded on I, i.e., there exists

some K ∈R such that ‖γN(x)‖ ≤ K, for all x ∈ I.

Remark.From the previous examples it is clear that if a
function is bounded on I it is CN-bounded, but the
converse is not true.

Theorem 1.If γ : I → R is CN-continuous, α ∈ (0,1], in

x0 ∈ I then is CN-bounded in some neighborhood of x0,

with α ∈ (0,1].

Proof.It is a direct consequence of the definition of CN-
continuity.

Theorem 2.If γ : [c,d]→ R is CN-continuous, α ∈ (0,1],
and [a,b] is such that N(x,α) ⊂ [c,d], with x ∈ [a,b], then

γ is CN-bounded, with α ∈ (0,1], on [a,b].

Proof.Suppose that γ is not bounded on [a,b]. Let c1 be
the midpoint of [a,b], in one of the intervals [a,c1] or
[c1,b] the function is not bounded (otherwise it would be
bounded in the total). For example, let this interval be
[a,c1]. Let c2 be the midpoint of [a,c1], in one of the
intervals [a,c2] or [c2,c1] the function is not bounded. We
call that interval [a,c2]. We take its midpoint, c3, and
reason again in the same way. Continuing with this
process we obtain a succession of closed, nested intervals,
[a,b]⊃ [a,c1]⊃ [a,c2]⊃ [a,c3]...... such that, in each one,
γ is not bounded. Since each interval of the sequence has
a length half of the previous one, the sequence of its
lengths b−a

2n tends to zero. Now, by Cantor’s Axiom, we
can ensure the existence of a point c common to all of
them. Using the Theorem 1 we have some neighborhood
of c where the function is bounded. As within this
neighborhood there are infinite intervals of the previous
sequence (because their lengths tended to zero and c is in
all of them) in which the function was not bounded, we
arrive at a contradiction, which arises from assuming that
γ is not bounded in [a,b]. Therefore, γ is bounded in
[a,b], as we wanted to prove.

Theorem 3.If γ : [c,d]→ R is CN-continuous, α ∈ (0,1],
and [a,b] is such that N(x,α)⊂ [c,d], with x∈ [a,b], then γ
has an absolute CN-maximum value and an absolute CN-

minimum value, with α ∈ (0,1], on [a,b].

Proof.Let M = supγN(x), on x ∈ [a,b], α ∈ (0,1]. Assume

that γN(x) < M for x ∈ [a,b]. Then γN(x) =
1

M−γN (x)
is

CN-continuous and by Theorem 2, γ is CN-bounded,
α ∈ (0,1], and for some K > 0, γ ≤ K,x ∈ [a,b]. Thus,

γN ≤ M − 1
K

, x ∈ [a,b]. Since M is the supremum of

γN(x), α ∈ (0,1], then M ≤ M − 1
K

< M which is a
contradiction. Thus, there is an x ∈ [a,b] such that
M = γN(x), α ∈ (0,1]. Similarly, we can prove that there
is an x ∈ [a,b] such that γN(x) = γN(x), α ∈ (0,1].

We will now demonstrate various properties of the CN-
differentiability of functions.

Theorem 4.Let γ , λ : K →R be α-differentiable functions,

α ∈ (0,1], at a ∈ I, where I and K are intervals such that

N(I)⊆ K. Then

1.If γ is differentiable at N, and N is differentiable at a,

then γα
CN(a) = γ ′N(a)N

′(a,α).
2.If γ(x) = c, where c is a constant, for all x ∈ I, then

γα
CN(c) = 0.

3.(cγ)α
CN(a) = cγα

CN(a), where c is a constant.

4.(cγ +dλ )α
CN(a) = cγα

CN(a)+dλ α
CN(a), for all c, d ∈R.

5.(γλ )α
CN(a) = λN(a)γ

α
CN(a)+ γN(a)λ

α
CN(a).

6.
( γ

λ

)α

CN
(a) =

λN(a)γ
α
CN(a)−γN(a)λ

α
CN(a)

λ 2
N(a)

.

Proof.For (1), we have

γα
CN(a) = lim

x→a

γN(x)− γN(a)

x− a

= lim
x→a

γ(N(x,α))− γ(N(a,α))

x− a

= lim
N(x,α)→N(a,α)

γ(N(x,α))− γ(N(a,α))

N(x,α)−N(a,α)

· lim
x→a

N(x,α)−N(a,α)

x− a

= γ ′[N(a,α)]N′(a,α)

= γ ′N(a)N
′(a,α).

The proofs of (2), (3) and (4) follow from the definition 5.
For (5), we have

(γλ )α
CN(a) = lim

x→a

(γλ )CN(x)− (γλ )CN(a)

x− a

= lim
x→a

γN(x)λN(x)− γN(a)λN(a)

x− a

= lim
x→a

γN(x)λN(x)− γN(a)λN(x)+ γN(a)λN(x)− γN(a)λN(a)

x− a

= lim
x→a

λN(x)(γN(x)− γN(a))+ γN(a)(λN(x)−λN(a))

x− a

= lim
x→a

λN(x) lim
x→a

γN(x)− γN(a)

x− a
+ γN(a) lim

x→a

λN(x)−λN(a)

x− a

= λN(a)γ
α
CN(a)+ γN(a)λ

α
CN(a).

To prove (6), we have

( γ

λ

)α

CN
(a) = lim

x→a

γN(x)
λN(x)

− γN (a)
λN(a)

x− a

= lim
x→a

γN(x)λN(a)− γN(a)λN(x)

λN(x)λN(a)(x− a)

= lim
x→a

1

λN(x)
lim
x→a

γN(x)− γN(a)

x− a

− lim
x→a

λN(x)−λN(a)

x− a
lim
x→a

γN(a)

λN(x)λN(a)

=
λN(a)γ

α
N (a)− γN(a)λ

α
N (a)

λ 2
N(a)

.
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Theorem 5.Let γ : K → R is α-differentiable, α ∈ (0,1],
at a ∈ I, where I and K are intervals such that N(I) ⊆ K,

then γ is α-continuous, α ∈ (0,1], at a.

Proof.Since γα
CN(a), α ∈ (0,1], exists and for all x ∈ I, x 6=

a, that

γN(x)− γN(a) =
γN(x)− γN(a)

x− a
(x− a).

Then

lim
x→a

[γN(x)− γN(a)] = lim
x→a

[

γN(x)− γN(a)

x− a

]

lim
x→a

(x− a),

thus

lim
x→a

γN(x) = γN(a).

Theorem 6.(Chain Rule for Fractional Derivative)

Let γ : K1 →R and λ : K2 →R be such that γN(K1)⊆ K2,

where K1 and K2 are intervals. If γ is α-differentiable, α ∈
(0,1], at a ∈ I, N(I)⊆ K1, and λ is differentiable at γN(a),
then (λ ◦ γ)α

CN(a) = λ ′ [γN(a)]γ
α
CN(a).

Proof.Since λ is differentiable at r0 = γN(a), α ∈ (0,1],
there exists λ ′(r0) such that

lim
∆ r→0

λ (r0 +∆r)−λ (r0)

∆r
= λ ′(r0).

Define u by

u(∆r) =
λ (r0 +∆r)−λ (r0)

∆r
−λ ′(r0).

Then

λ (r0 +∆r)−λ (r0) =
(

λ ′(r0)+ u(∆r)
)

∆r.

Taking ∆r = γN(a+∆x)− γN(a) with ∆x 6= 0, we get

λ (γN(a+∆x))−λ (γN(a))

=
(

λ ′ (γN(a))+ u(∆r)
)

(γN(a+∆r)− γN(a)) .

Dividing both sides by ∆x yields

λ (γN(a+∆x))−λ (γN(a))

∆x

=
(

λ ′ (γN(a))+ u(∆r)
)

(

γN(a+∆x)− γN(a)

∆x

)

.

Since γ is α-differentiable, α ∈ (0,1], at a, it is
α-continuous, α ∈ (0,1], at a. Letting ∆x → 0, then
∆r → 0, and consequently that u(∆r)→ 0. Then,

lim
∆x→0

λ (γN(a+∆x))−λ (γN(a))

∆x

= λ ′(γN(a)) lim
∆x→0

(

γN(a+∆x)− γN(a)

∆x

)

,

implies that
(λ ◦ γ)α

CN(a) = λ ′ [γN(a)]γ
α
CN(a).

Definition 8.Let γ : I →R be a function, where I ⊆R is an

interval, and let ω ∈ (n,n+ 1], n ∈N. The ω-derivative of

at a ∈ I, N(K)⊆ I, is defined by

γα
CNω

(a) = lim
x→a

(γ
⌈α⌉−1

CN )(x)− (γ
⌈α⌉−1

CN )(a)

x− a
,

α ∈ (0,1], provided that the limit exists, where γ⌈α⌉−1 is

the (n− 1)th derivative of γ .

Remark.

The ω-derivative in Definition 8 is the fractional
derivative of γ of order ω , ω ∈ (n,n+ 1], n ∈N.

1.2.If γα is differentiable at N(x,α) and N(x,α) is
differentiable at a, then

γα(N(a,ω)) = lim
x→a

(γ
⌈α⌉−1

CN )(x)− (γ
⌈α⌉−1

CN )(a)

x− a

= lim
x→a

(γ⌈α⌉−1)N(x,α)− γ⌈α⌉−1)N(a,α)

x− a

= lim
N(x,α)→N(a,α)

(γ⌈α⌉−1)(N(x))− (γ⌈α⌉−1)(N(a))

N(x,α)−N(a,α)

· lim
x→a

N(x,α)−N(a,α)

x− a

= γα
CN(a)N

′(a,α).

Theorem 7.(Rolle’s Theorem for Fractional Derivative).

If γ : [ j,k] → R, j < k, is α-differentiable, α ∈ (0,1], on

(h, i) and α-continuous, α ∈ (0,1], on [h, i],
N([h, i]) ⊆ [ j,k], with γN(h) = γN(i), then γα

CN(l) = 0 for

some l ∈ (h, i).

Proof.By Theorem 3 γN : [h, i]→R, α ∈ (0,1], has a finite
minimum and maximum value, m and M respectively on
[h, i]. If m =M, then γN is a constant on (h, i) and γα

CN(x) =
0, ∀x ∈ (h, i).If m 6=M, their either γN(l) = m or γN(l) =M

for some l ∈ (h, i) because γN(h) = γN(i). Suposse γN(l) =
m. Then γN(h+ε)− γN(h)≥ 0, ∀ε such that h+ε ∈ (h, i).
Therefore,

lim
ε→0+

γN(h+ ε)− γN(h)

ε
≥ 0,

if ε > 0, and

lim
ε→0−

γN(h+ ε)− γCN(h)

ε
≤ 0,

if ε < 0. Thus,

γα
CN(a) = 0.

Theorem 8.(Mean Value Theorem for Fractional

Derivative) If γ : [ j,k]→R, is α-differentiable, α ∈ (0,1],
on (h, i), N([h, i]) ⊆ [ j,k], and α-continuous, α ∈ (0,1],
on [h, i], then

[N(i,α)−N(h,α)]γα
CN(l) = [γN(i)− γN(h)]N

′(l,α),

for l ∈ (h, i).
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Proof.Let rN : [h, i]→R be defined by

rN(x) = γN(x)−N(x,α)
γN(i)− γN(h)

N(i,α)−N(h,α)
, (8)

α ∈ (0,1]. Then

rα
CN(x) = γα

CN(x)−N′(x,α)
γN(i)− γN(h)

N(i,α)−N(h,α)
. (9)

Note that r is α-continuous, α ∈ (0,1], on [h, i] and α-
differentiable, α ∈ (0,1], on (h, i) with rCN(h) = rCN(i).
By Theorem 7 there is l ∈ (h, i) such that rα

CN(l) = 0 and

γα
CN(l) = Nα (l,α)

γCN(i)− γCN(h)

N(i,α)−N(h,α)
.

Definition 9.Let γ : [ j,k] → R be an α-bounded function,

α ∈ (0,1], on [h, i], N([h, i]) ⊆ [ j,k], and let P = {xd}
n
d=1

be a partition of [h, i] such that h = x0 < x1 < · · ·< xn = i.

The CN-Riemann sum, α ∈ (0,1], of γ over P is defined by

SCN(γ,P) =
n

∑
i=1

γCN(x
∗
i )N

′(x∗i ,α)(xi − xi−1),

for any x∗i ∈ [xi−1,xi].

Definition 10.We sat that γ : [ j,k]→R is an CN-Riemann

integrable function, α ∈ (0,1], on [h, i], N([h, i]) ⊆ [ j,k],
and a real number Rα is the ′a-definite integral, α ∈ (0,1],
of γ over [h, i] if for any ε > 0, there exists δ = δ (ε) such

that for every partition P = {xd}
n
d=1 of [h, i] with ‖P‖ =

max1≤i≤n{xi − xi−1}< δ and for any x∗i ∈ [xi−1,xi], then

‖SCN(γ,P)−Rα‖< ε

and we write it as

α −

∫ i

h
γ(x)dx = Rα =

∫ i

h
γCN(x)N

′(x,α)dx. (10)

And we will denote to the set of all α−Riemann integrable

functions on [h, i], N([h, i])⊆ [ j,k], by RRC.

Remark.The α-integral α −
∫ i

h γ(x)dx, α ∈ (0,1], in
Definition 10 is the fractional Riemann integral of γ of
order α .

Proposition 1.Every Riemann integrable function is

α−Riemann integrable of order α = 1 but no every

α−Riemann integrable function is Riemann integrable.

Proposition 2.Suppose that γ : [ j,k]→R is αp-continuous

and αp-Riemann integrable, αp ∈ (0,1], p ∈ N, on [h, i],
N([h, i])⊆ [ j,k]. If αp converges to α , then γ is α-Riemann

integrable on [h, i].

Theorem 9.Let γp : A → R, p ∈ N, be a sequence of α-

continuous, α-Riemann integrable functions, α ∈ (0,1], on

[h, i], N([h, i]) ⊆ [ j,k]. If γp : A → R, converges uniformly

to γ : [ j,k]→R then γ is α−integrable on [h, i].

Theorem 10.If γ ∈RRC[h, i], then the α-Riemann integral,

α ∈ (0,1], of γ is unique.

Proof.Assume that Jα
1 and Jα

2 are α-Riemann integrals,
α ∈ (0,1], of γ and let ε > 0 be given. Then for j = 1,2,
there exists δ j = δ j

(

ε
2

)

> 0 such that

‖P‖< δ j =⇒‖Sα(γ, p)− Jα
1 ‖<

ε

2
,

where P is any partition of [h, i]. Letting δ = min{δ1,δ2},
we get

0 ≤ ‖Jα
1 − Jα

2 ‖ = ‖Jα
1 − Sα(γ, p)+ Sα(γ, p)− Jα

2 ‖

= ‖Jα
1 − Sα(γ, p)‖+ ‖Sα(γ, p)− Jα

2 ‖

<
ε

2
+

ε

2
= ε.

Since ε was arbitrary, then

0 ≤ ‖Jα
1 − Jα

2 ‖< ε

holds for all ε > 0. Thus,

‖Jα
1 − Jα

2 ‖= 0,

and Jα
1 = Jα

2 .

Proposition 3.The α−definite integral, α ∈ (0,1], in (10)

can be written as follows

α −
∫ i

h
γ(x)dx =

∫ N(i,α)

N(h,α)
γ(µ)dµ . (11)

Proof.The proof is directly from the Theorem (Change of
Variables for Continuous Integrands).

Now we use the formula (11) of the fractional integral to
introduce the following theorems.

Theorem 11.Let γ,λ ∈ RRC[h, i]. Then, for α ∈ (0,1],

1.
∫ N(i,α)

N(h,α)
γ(µ)dµ =−

∫ N(h,α)
N(i,α)

γ(µ)dµ .

2.
∫ N(h,α)

N(h,α)
γ(µ)dµ = 0.

3.
∫ N(i,α)

N(h,α)
rγ(µ)dµ = r

∫ N(i,α)
N(h,α)

γ(µ)dµ .

4.
∫ N(i,α)

N(h,α)
(γ(µ)±λ (µ)) dµ =

∫ N(i,α)
N(h,α)

γ(µ)dµ ±
∫ N(i,α)

N(h,α)
λ (µ)dµ .

5.
∫ N(i,α)

N(h,α) γ(µ)dµ +
∫ N( j,α)

N(i,α) γ(µ)dµ =
∫ N( j,α)

N(h,α) γ(µ)dµ .

6.If γ is α−continuous on [h, i], then

min
x

γCN(x) ≤
1

N(i,α)−N(h,α)

∫ N(i,α)

N(h,α)
γ(µ)dµ

≤ max
x

γCN(x).

7.If γCN(x)≤ λCN(x) on [h, i], then

∫ N(i,α)

N(h,α)
γ(µ)dµ ≤

∫ N(i,α)

N(h,α)
λ (µ)dµ .

Theorem 12.(Mean Value Theorem for Fractional

Definite Integrals)
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1.If γ : [ j,k] → R is α−continuous, α ∈ (0,1], on [h, i],
N([h, i]) ⊆ [ j,k], and N is continuously differentiable

on [h, i], then

d

dN(x,α)

[

∫ N(x,α)

N(h,α)
γ(µ)dµ

]

= γRC(x),

for each x ∈ [h, i].
2.If γ : [ j,k]→R is α−differentiable, α ∈ (0,1], on [h, i],

N([h, i]) ⊆ [ j,k], γ ′ is α−continuous on [h, i] and N is

continuously differentiable on [h, i], then

∫ N(i,α)

N(h,α)
γ ′(µ)dµ = γRC(i)− γRC(h).

Proof.To prove part (1), for any x, x+∆x ∈ [h, i], assume
that N(x,∆x,α) = N(x,α)+∆N(x,α) and let

ΓCN(x) =

∫ N(x,α)

N(h,α)
γ(µ)dµ

and

ΓCN(x+∆x) =
∫ N(x,α)+∆N(x,α)

N(h,α)
γ(µ)dµ ,

for γCN : [h, i] → R, α ∈ (0,1]. Substracting the last two
equalities gives

ΓCN(x+∆x)−ΓCN(x) =
∫ N(x,α)+∆N(x,α)

N(h,α)
γ(µ)dµ

−
∫ N(x,α)

N(h,α)
γ(µ)dµ

=
∫ N(x,α)+∆N(x,α)

N(x,α)
γ(µ)dµ .

By Theorem 12, we have

ΓCN(x+∆x)−ΓCN(x) = γCN(a)∆N(x,α),

for some point a ∈ [h, i]. Dividing both sides by ∆N(x,α)
gives

ΓCN(x+∆x)−ΓCN(x)

∆N(x,α)
= γCN(a).

Letting ∆N(x,α) → 0 (∆x → 0) on both sides of the
equation, we get

d

dN(x,α)
Γ (N(x,α)) = lim

∆N(x,α)→0

ΓCN(x+∆x)−ΓCN(x)

∆N(x,α)

= lim
∆N(x,α)→0

γCN(a) = γCN(x),

where lim∆x→0 a = x for the Squeeze Theorem. For part
(2), let

λCN(x) =

∫ N(i,α)

N(h,α)
γ ′(µ)dµ ,

for γCN : [h, i] → R. By part (1), we have that
λ ′

CN(x) = γ ′CN(x). Thus, there is a constant z such that
λCN(x)− γCN(x) = z for all x ∈ [h, i]. Since

λCN(h) =
∫ N(h,α)

N(h,α)
γ ′(µ)dµ = 0,

and λCN(h) − γCN(h) = z, then z = −γCN(h) and
λCN(x)− γCN(x) = −γCN(h) for all x ∈ [h, i]. Moreover,
since λCN(i) − γCN(i) = −γCN(h), then
λCN(i) = γCN(i)− γCN(h).

3 Complements

Theorem 13.Fractional Derivative of Certain Functions

of Order α , α ∈ (0,1].

a)[xn]αCN = n [N (x,α)]n−1
N′ (x,α) .

b)[ecx]αCN = cecN(x,α)N′ (x,α) .

c)[ln(x)]αCN =
N′(x,α)
N(x,α) .

d)[ax]αCN = aN(x,α)ln(a)N′ (x,α) .
e)[sin(x)]αCN = cos [N (x,α)]N′ (x,α) .
f)[cos(x)]αCN =−sin [N (x,α)]N′ (x,α) .

Proof.They are obtained directly from the Definition 5 and
Theorem 4.

Below we illustrate the Chain Rule, presented in
Theorem 6.

Example 1.Let f (x) = sin2x.

Let’s calculate the derivative by two paths:

i)By the Chain Rule

[

sin2x
]α

CN
= λ ′ [γN(x)]γ

α
CN(x)

= 2sin [N (x,α)]cos [N (x,α)]N′ (x,α) .

ii)From Theorem 13

[

sin2x
]α

CN
=

[

(

eix −e−ix

2i

)2
]α

CN

=

[

e2ix +e−2ix −2

−4

]α

CN

= −
1

4

[(

e2ix
)α

CN
+
(

e−2ix
)α

CN
+(−2)α

CN

]

= −
1

4

[

2ie2iN(x,α)N′ (x,α)−2ie−2iN(x,α)N′ (x,α)
]

= −
i

2
N′ (x,α)

[

e2iN(x,α)−e−2iN(x,α)
]

= N′ (x,α)

[

e2iN(x,α)−e−2iN(x,α)

2i

]

= N′ (x,α) sin(2N (x,α))

= 2sin [N (x,α)]cos [N (x,α)]N′ (x,α) .
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Analogously, we have

[

cos2x
]α

CN
= −2cos [N (x,α)]sin [N (x,α)]N′ (x,α) .

Example 2.Let f (x) = sinnx.
Let’s calculate the derivative by two paths:

i)By the Chain Rule

[sinnx]αCN = λ ′ [γN(x)]γ
α
CN(x)

= n · sinn−1 [N (x,α)]cos [N (x,α)]N′ (x,α) .

ii)From Theorem 4

[sinnx]αCN =
[

sin(x)sinn−1x
]α

CN

= sinn−1 [N (x,α)]

· cos [N (x,α)]N′ (x,α)

+ sin [N (x,α)]
[

sinn−1x
]α

CN

sin [N (x,α)]
[

sinn−1x
]α

CN
= sinn−1 [N (x,α)]

· cos [N (x,α)]N′ (x,α)

+ sin2 [N (x,α)]
[

sinn−2x
]α

CN

sin2 [N (x,α)]
[

sinn−2x
]α

CN
= sinn−1 [N (x,α)]

· cos [N (x,α)]N′ (x,α)

+ sin3 [N (x,α)]
[

sinn−3x
]α

CN

...

sinn−1 [N (x,α)] [sin(x)]αCN = sinn−1 [N (x,α)]

· cos [N (x,α)]N′ (x,α)

+ sinn [N (x,α)]
[

sinn−nx
]α

CN
.

Adding member by member, we obtain

[sinnx]αCN = n · sinn−1 [N (x,α)]cos [N (x,α)]N′ (x,α) .

Example 3.Let f (x) = sin(x2), this is a differentiable
function. So, from Theorem 4, we have
[

sin(x2)
]α

CN
= 2N (x,α) ·N′ (x,α)cos

[

N2 (x,α)
]

.

By the Chain Rule we obtain,
[

sin(x2)
]α

CN
= λ ′ [γN(x)]γ

α
CN(x)

= cos
[

N2 (x,α)
]

2N (x,α) ·N′ (x,α) .

4 Final Remarks

The essential question that can be derived from this work
is the following: is the development of new local
differential operators really important? Before providing
our answer, we believe it is appropriate to point out a
detail: in the Analysis of Several Variables, different
notions of derivability and differentiability coexist,
although the strongest notion is the latter. Why not accept
that other notions of derivability can coexist?

The development of new local differential operators is
important for several reasons:

–**Solving complex problems**: Differential
operators are fundamental in the formulation and
resolution of partial differential equations (PDEs),
which model a wide variety of physical, chemical,
biological and engineering phenomena. New
operators may offer more precise or efficient ways to
address these problems.

–**Improvement in numerical techniques**: In many
cases, the problems described by EDPs do not have
analytical solutions and must be solved numerically.
New differential operators can improve the precision
and stability of numerical methods, such as finite
element or finite difference methods.

–**Advances in mathematical theory**: The
development of new operators can lead to theoretical
advances in mathematics, providing new tools and
perspectives for research in functional analysis,
distribution theory, and other related fields.

–**Interdisciplinary applications**: New differential
operators can open opportunities in emerging fields
and interdisciplinary applications. For example, in
computational biology, advanced materials, image
processing, and data sciences.

–**Optimization and control**: In engineering and
applied sciences, differential operators are key in
optimal control and optimization problems. New
operators can improve optimization techniques,
making them more robust and efficient.

–**Nonlinear and complex phenomena**: Many
natural phenomena are inherently nonlinear and
complex. New differential operators can be
specifically designed to better capture these
characteristics and provide more realistic models.

–**Technological innovation**: The development of
new operators can lead to technological advances and
new practical applications, from improvements in
engineering designs to new techniques in medical
diagnosis and treatment.

In summary, the new local differential operators are
essential to advance both mathematical theory and its
numerous practical applications, allowing increasingly
complex and diverse problems to be addressed in a more
effective and precise way.
Also, the authors are grateful to the anonymous referee for
a careful checking of the details and for helpful comments
that improved this paper.
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Nápoles Valdés, A new definition of a fractional derivative of

local type. J. Math. Anal., 9:2 (2018) 88-98.

[15] P. M. Guzmán, J. E. Nápoles Valdés, A NOTE ON
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ON THE ASYMPTOTIC BEHAVIOR OF A GENERALIZED

NONLINEAR EQUATION, Sigma J Eng & Nat Sci 38(4),

2020, 2109-2121
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