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Abstract: In this paper, the standard P1-discontinuous Galerkin method approximation for elliptic PDEs with a weakly regular source

term and L∞ -coefficients is considered. We propose introducing a new truncated interpolation operator Id
h,k to replace the operator Ik

h

used in [1,6]. We prove that it is possible to eliminate a principal constraint imposed on the N ×N stiffness matrix Q.

The statements and proofs of [1,6] remain valid according to the new operator.
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1 Introduction and Preliminaries

We consider the Dirichlet problem in 2D or 3D:

{
−div(A∇u) = f in Ω ,

u = 0 on ∂Ω ,
(1)

on Ω ( open bounded set of Rd ) where f ∈L1 (Ω), and A

is a coercive matrix such that A ∈ L∞ (Ω)d×d
.

The discrete problem considered is

{
uh ∈Vh,

∀vh ∈Vh, a
swip
h (uh,vh) =

∫

Ω
f vh dx.

(2)

with, ∀T ∈Th and ∀F ∈Fh,

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1[T ],

∫

F
JvhK = 0}, (3)

where the symmetric weighted interior penalty (SWIP)

bilinear form a
swip
h is defined as in [1,3].

The goal of this paper is to solve problem (2) using
the P1-discontinuous Galerkin method (cf. [1]) and the

renormalized solution class (cf. [2,4]), without a diagonal
dominance of the stiffness matrix Q as condition (4).

For this purpose, we insert a new truncated

interpolation operator Id
h,k, and prove the following similar

convergence results.

Theorem 1. The unique renormalized solution uh of (2),

satisfies

∀k > 0; ∀q; s.t.; 1 ≤ q < 1+
1

d− 1
:

uh −→ u strongly in Lq (Ω) ,

∇huh −→ ∇u strongly in [Lq(Ω)]d ,

|uh|J,A,q −→ 0,

Id
h,k (uh)−→ Tk (u) strongly in L2 (Ω) ,

∇h(I
d
h,k (uh))−→ ∇Tk (u) strongly in

[
L

2(Ω)
]d
,

∣∣∣Id
h,k(uh)

∣∣∣
J,A

−→ 0,

when h −→ 0.
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916 R. Messaoudi et al.: Discontinuous optimal operator

The idea is based on the new operator Id
h,k by returning

all the data associated with the vertices si,T , at only two

points that represent local extrema of vh ∈ L2(Ω). Thus,

(depending on each vh) we find a new 2× 2 matrix Q̃ that
easily replaces the following condition (see [1],[5],[6])

∀i ∈ {1,2, ...,N} : Qii −
N

∑
j=1
j 6=i

∣∣Qi j

∣∣≥ 0. (4)

Remark. Note that the condition

∀i ∈ {1,2, ...,N} ,∀ j 6= i : Qi j ≤ 0, (5)

is equivalent to (4), if si,T is a strictly interior vertex (cf.
Remark 6.2 in [6]), which is difficult to achieve if the
degree of polynomial approximation exceeds 2. (cf.
example in [5] ).

Notations

N represents the number of all interior centers ci of faces
Fi in any triangulationTh.

For every d-simplex T ∈Th, every vh ∈Vh and every
center ci,T of faces Fi,T ∈ T , we successively set

vi,T = v(ci,T ),

vm,T = min
0≤i≤d

vi,T ,vM,T = max
0≤i≤d

vi,T ,

ϕi,T := 1− dλi,T , i = 0, ...,d, (6)






ψm,T := ∑
α

vh
i,T 6=1

(1−α
vh
i,T )ϕi,T ,

ψM,T := ∑
α

vh
i,T 6=0

α
vh
i,T ϕi,T ,

(7)

where





α
vh
i,T :=

vi,T − vm,T

vM,T − vm,T
, i f vM,T 6= vm,T ,

α
vh
i,T := 0, else.

The truncated interpolation operator Id
h,k is defined by





∀v ∈ L2(Ω ) s.t.
∫

F
JvhK = 0,

Id
h,k(v) := Tk(vm,T )ψm,T +Tk(vM,T )ψM,T .

(8)

One can easily check that

Id
h,k(vh) =

d

∑
i=0

((1−αvh
i,T )Tk(vm,T )+αvh

i,T Tk(vM,T ))ϕi,T ,

(9)

vh(x) = vm,T ψm,T + vM,T ψM,T , (10)

where

|(1−α
vh
i,T )Tk(vm,T )+α

vh
i,T Tk(vM,T )| ≤ k, (11)

ψm,T +ψM,T = 1, (12)

and

ψa,T (c j,T ) = 1{i/ vi,T =va,T }( j), a ∈ {m,M}. (13)

2 Main results

In this section, we will prove that the main results are
similar to those of [1,6] associated with the new operator

Id
h,k. Our goal is to prove that all the convergence results

remain valid but without needing condition (4).

Proposition 1. If for some vh ∈Vh and k > 0, there exists

z ∈ T s.t. |vh (z)| ≥ k; then,

there exists a d-simplex T ∗ ⊂ T and y ∈ T s.t.

∣∣∣Id
h,k (vh)

∣∣∣≥ k

2
, on T ∗,

where

T ∗ = y− si0,T +

{
x∗ ∈ T, λi0,T (x

∗)≥ 11

12

}
.

Proof. Let vh ∈Vh, k > 0 and T ∈Th.

There exists an element y ∈ T s.t. | Id
h,k(vh)(y) |≥ k;

indeed,
- if | vM,T |< k, then, by (10)

Id
h,k(vh) = vm,T ψm,T + vM,T ψM,T = vh,

so,
y = z,

- if | vM,T |≥ k, it follows that

Id
h,k(vh)(cM,T ) = k,

and one can take

y = cM,T .

On the other hand, it is possible to find i0 ∈ {0,1, ...d}
s.t.

λi0,T (y)≥
1

12
. (14)

Therefore, if we consider the d-simplex contained in T
defined as follows:

T ∗ =

{
x∗ ∈ T,λi0,T (x

∗)≥ 11

12

}
, (15)
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this allows one to see that

∀x∗ ∈ T ∗, ∀x = y− si0,T + x∗ : x ∈ T,

thanks to

y− si0,T + x∗ =
d

∑
i=0
i6=i0

(λi,T (y)+λi,T (x
∗))si,T+

+(λi0,T (y)− 1λi0,T (x
∗))si0,T ,

and to

λi0,T (y)− 1+λi0,T (x
∗)≥ 0,

deducted from (14) and (15).

Then, one can argue that

T ∗ ⊂ T.

Using (9), we can establish the following identity

∇(Id
h,k(vh)) =−d

d

∑
i=0

(
(1−α

vh
i,T )Tk(vm,T )+

+α
vh
i,T Tk(vM,T )

)
∇λi,T

which, together with (11) and the identity

∇λi,T (s j,T − si0,T ) = δi, j(1− δi0, j),

yields

∣∣∣∇(Id
h,k(vh))(s j,T − si0,T )

∣∣∣≤ 2kd ≤ 6k.

Recalling that

x− y =
d

∑
j=0
j 6=i0

(λ j,T (x)−λ j,T (y))
(
s j,T − si0,T

)
,

so, we observe that, ∀x ∈ T ∗

∣∣∣Id
h,k(vh)(x)− Id

h,k(vh)(y)
∣∣∣=
∣∣∣∇(Id

h,k(vh))(x− y)
∣∣∣

≤ 6k
d

∑
j=0
j 6=i0

∣∣λ j,T (x)−λ j,T (y)
∣∣

≤ 6k
d

∑
j=0
j 6=i0

∣∣∇λ j,T (x− y)
∣∣

≤ 6k
d

∑
j=0
j 6=i0

∣∣∇λ j,T (x
∗− si0,T )

∣∣

≤ 6k
d

∑
j=0
j 6=i0

∣∣λ j,T (x
∗)−λi,T (si0,T )

∣∣

≤ 6k
d

∑
j=0
j 6=i0

λ j,T (x
∗)≤ k

2
.

This completes the proof.

Now, we will prove the following proposition without
using condition (4) which is imposed in [1,5,6].

Proposition 2. For every vh ∈Vh and every k > 0,

a
swip
h (vh − Id

h,k(vh), I
d
h,k(vh))≥ 0. (16)

Proof. Since

vh(x) = vm,T ψm,T (x)+ vM,T ψM,T (x),

and

Id
h,k(vh)(x) = Tk(vm,T )ψm,T (x)+Tk(vM,T )ψM,T (x),

it follows that

a
swip
h (vh − Id

h,k(vh), I
d
h,k(vh) 1T ) = ∑

i∈{m,M}
Z

vh
i

where

Z
vh
i :=(vi,T −Tk(vi,T ))

(
Tk(vi,T )Q̃ii,T +Tk(v j,T )Q̃i j,T

)
( j 6= i),

and
Q̃i j,T := a

swip

h (ψi,T ,ψ j,T 1T ).

Fixing i ∈ {m,M}, there are two possibilities:
- if |vi,T | ≤ k, then vi,T −Tk(vi,T ) = 0 and,

Z
vh
i = 0,

- if |vi,T |> k, note that vi,T −Tk(vi,T ) has the same sign
as Tk(vi,T ); therefore,

(vi,T −Tk(vi,T ))Tk(vi,T ) = k|vi,T −Tk(vi,T )|.
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The above identity combined with

Q̃ii,T −|Q̃i j,T |= Q̃ii,T + Q̃i j,T = 0, i, j ∈ {m,M} (i 6= j).

leads to

Z
vh
i ≥ k|vi,T −Tk(vi,T )|(Q̃ii,T −|Q̃i j,T |)≥ 0.

Hence, in both cases, we claim that

Z
vh
i ≥ 0, i ∈ {m,M}.

Therefore, the inequality (16) is deduced.

Proposition 3. Let k > 0; the following bound holds for

any vh ∈Vh

||Id
h,k(vh)||∞ ≤ k(d2 − 1). (17)

Proof. Let vh ∈Vh and k > 0, so from (9)

||Id
h,k(vh)||∞ ≤

d

∑
i=0

|(1−α
vh
i,T )Tk(vm,T )+α

vh
i,T Tk(vM,T )|

≤ k(d2 − 1),

since
max

0≤i≤d
|ϕi,T |= d− 1.

Therefore, (17) is obtained.

We now prove the following main result, which is a
piecewise affine variant according to the result of L.
Boccardo & T. Gallouët [4,8].

Theorem 2. For every k > 0 and every h > 0, the unique

renormalized solution uh of (2) satisfies

∫

Ω
| ∇hId

h,k(uh) |2 dx ≤ kC1 || f ||
L

1(Ω) . (18)

where the constant C1 is independent of h.

Proof. The use of Id
h,k(uh) as a test function in (2) combined

with (16) leads us to

a
swip
h (Id

h,k(uh), I
d
h,k(uh)) ≤

∫

Ω
f Id

h,k(uh)dx. (19)

Based on the coercivity hypothesis of A (Theorem 2.2
in [1]), one can write

∫

Ω
| ∇h(I

d
h,k(uh)) |2 dx ≤

≤ α−1

∫

Ω
| A∇h(I

d
h,k(uh))∇h(I

d
h,k(uh)) | dx

≤ α−1 || Id
h,k(uh) ||2swip,

together with (17), (19) and the discrete coercivity of the

SWIP bilinear form a
swip
h (Lemma 4.51 in[3]), we see that

|| Id
h,k(uh) ||2swip ≤ C∗a

swip
h (Id

h,k(uh), I
d
h,k(uh))

≤ C∗ || Id
h,k(uh) ||∞|| f ||

L

1(Ω),

allows us to deduce the estimate (18),

where C∗ :=
η + 1

η − (d+ 1)C2
tr

and C1 := α−1C∗.

Theorem 3. Let vh ∈Vh. For every q s.t. 1≤ q< 1+
1

d− 1
it holds that

‖uh‖swip,q ≤C2 || f ||
L

1(Ω) . (20)

where the constant C2 is independent of h.

Proof. (cf. [1,6])

Let λ > 0 and k > 0. If max |uh|T |< k, then

Ik
h (uh)|T = uh|T .

Combined with (18), this implies∣∣ ⋃

T∈Th
max |uh|T |<k

{x ∈ T : |∇huh| ≥ λ}
∣∣≤

≤
∣∣ ⋃

T∈Th
max |uh|T |<k

{
x ∈ T : |∇h(I

k
h(uh))| ≥ λ

}∣∣

≤ 1

λ 2

∫

Ω
| ∇h(I

k
h(uh)) |2 dx

≤ C1k

λ 2
|| f ||

L

1(Ω)

≤
(
|| f ||

L

1(Ω)

λ

) 22∗
2+2∗

,

for

k =
1

C1

2∗+2

√
λ 4|| f ||2∗−2

L

1(Ω)
. (21)

Hence,

∑
T∈Th

max |uh|T |≥k

|T |= ∑
T∈Th

max |uh|T |≥k

1

C0

|T ∗|

≤ ∑
T∈Th

max |uh|T |≥k

1

C0

(
2

k

)2∗ ∫

T ∗

∣∣∣Ik
h (uh (x))

∣∣∣
2∗

dx

≤ 1

C0

(
2

k

)2∗ ∫

Ω

∣∣∣Ik
h (uh (x))

∣∣∣
2∗

dx

≤ 1

C0

[
2σ2,2∗

√
1+C3

k

]2∗

||| ∇h(I
k
h (uh (x))) |||2

∗
L

2(Ω),

where C3 :=C(σ ,d) (see Lemma 3.2 [1]).
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So, by (18), one can see that

∑
T∈Th

max |uh|T |≥k

|T | ≤

[
2σ2,2∗

√
C1(1+C3)

]2∗

C0

[
|| f ||

L

1(Ω)

k

] 2∗
2

.

(22)
Combining the above result with (21) yields

∑
T∈Th

max |uh|T |≥k

|T | ≤ 1

C0

[
2σ2,2∗C1

√
1+C3

]2∗
[
|| f ||

L

1(Ω)

λ

] 22∗
2∗+2

,

it follows that

‖|∇uh|‖
L

22∗
2∗+2

,∞
(Ω)

≤ C4|| f ||
L

1(Ω),

where

C4 =

[(
2σ2,2∗C1

√
1+C3

)2∗

C0

+ 1

] 1
2+

1
2∗

.

using Lemma 3.2 (in [1]) and the embedding inequality

‖|∇hvh|‖
L

q(Ω) ≤C (q,r, |Ω |)‖|∇vh|‖
L

r,∞(Ω) .

We infer

‖uh‖swip,q ≤C
(
q,σ ,d,‖A‖

L

∞(Ω)d×d

)
||∇huh||

L

22∗
2∗+2 (Ω)

,

whence the assertion (20).

Theorem 4. Under the assumptions of (Theorem 2.2 in

[1]), the solution uh of (2) satisfies for every q with

1 ≤ q < 1+
1

d− 1

uh −→ u strongly in Lq (Ω) ,

∇huh −→ ∇u strongly in [Lq(Ω)]d ,

|uh|J,A,q −→ 0,

when h tends to zero, where u is the unique

renormalized solution of (1).

Proof. Let n ∈ N, ρ > 0 and fρ = T1
ρ
( f ). If uh,ρ denotes

the unique solution of the problem

{
uh,ρ ∈Vh,

∀vh ∈Vh, a
swip

h (uh,ρ ,vh) =

∫

Ω
fρ vh dx.

(23)

So, one can see that

∀vh ∈Vh, a
swip
h (uh − uh,ρ ,vh) =

∫

Ω
( f − fρ)vh dx.

It is known (see [9]) that

uh,ρ −→ uρ strongly in L2 (Ω) , (24)

∇huh,ρ −→ ∇uρ strongly in
[
L

2(Ω)
]d
, (25)

∣∣uh,ρ

∣∣
J,A

−→ 0, (26)

when h tends to zero, where uρ is the unique
renormalized solution of the problem






−div(A∇uρ) = fρ in Ω ,

uρ = 0 on ∂Ω .
(27)

The estimate (see Theorem 2.1 in [1])

α
∥∥uρ − u

∥∥
W

1,q
0 (Ω)

≤C (d, |Ω | ,q)
∥∥ fρ − f

∥∥
L

1(Ω)
,

yields

‖ uρ −u ‖swip,q≤
‖A‖

L

∞(Ω)d×d C
(
d, | Ω |,q

)

α
‖ fρ − f ‖

L

1(Ω) .

(28)
Therefore, from the inequality (20) together with (25),

(26) and (28), we see that

limsup
h→0

‖ uh − u ‖swip,q≤C5 ‖ f − fρ ‖
L

1(Ω),

for every ρ > 0 and every q s.t. 1 ≤ q < 1+
1

d− 1
, with

C5 := α−1C∗C
(
d, | Ω |,q,σ ,‖A‖

L

∞(Ω)d×d

)
.

Again, from Theorem 2.1 in [1],

lim
ρ→0

‖ f − fρ ‖
L

1(Ω)= 0.

This completes the proof.

Proposition 4. Under the assumptions of (Theorem 2.2 in

[1]), the solution uh of (2) satisfies

|Ik
h(uh)−Tk (uh) |= O(h). (29)

Proof. Let us consider the set Bk,s (v) defined by

Bk,s (v) =
⋃
{T ∈Th : min

T
|v| ≤ s,max

T
|v| ≥ k}. (30)

Using Lemma 3.5 in [1], one can write

∣∣Bk,s (v)
∣∣≤ h2

(k− s)2

∫

Ω
|∇h (v)|2 dx, (31)

combining (31) with (18), yields

|Bk,s(I
d

h, 1
h

(uh))|= O(h). (32)
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Furthermore, from (22), we observe that

∑
T∈Th

max |uh|T |≥ 1
h

|T |= O(h
2∗
2 ). (33)

Finally, since

⋃
{T ∈ Bk,s(uh), max |uh|T | ≥

1

h
} ⊂ Bk,s(I

d

h, 1
h

(uh)),

it follows that

|Bk,s(uh)| ≤ |Bk,s(I
d

h, 1
h

(uh))|+ ∑
T∈Bk,s(uh)

max |uh|T |< 1
h

|T | .

Therefore, through (32) and (33), we can see that

|Bk,s(uh)|= O(h),

where
2∗

2
> 2.

This allows us to deduce that

∣∣Bk,s (uh)
∣∣−→

h→0
0. (34)

Fix k > 0 and ε > 0 such that ε < k and let us consider

Eε =
{

x ∈ Ω :

∣∣∣Id
h,k (uh (x))−Tk (uh (x))

∣∣∣ ≥ ε
}
.

Let x ∈Iε and T ∈Th with x ∈ T. It is easily checked that

Id
h,k (uh)|T 6= Tk (uh)|T ,

what implies that max
T

|vh| > k. So there are four possible

cases.
i) min(uh|T ) = 0 or min(Id

h,k(uh)|T ) = 0: then,

Eε ⊂ Bk,s (uh)∪Bk,s

(
Id
h,k(uh)

)
,

for every s ∈ ]0,k[ .
(ii) 0 ≤ um,T ≤ uM,T ≤ k or −k ≤ um,T ≤ uM,T ≤ 0, so

Id
h,k (uh)|T = uh|T ,

then
Eε ⊂ Bk+ε,k(I

d
h,k(uh)).

(iii) 0 ≤ um,T < k < uM,T or um,T <−k < uM,T ≤ 0, so

- If

∣∣∣Id
h,k (uh (x))

∣∣∣− |Tk (uh (x))| ≥ ε , we distinguish 3
cases:

1st case : |uh (x)| ≥ k so,

Eε ⊂ Bk+ε,k

(
Id
h,k (uh)

)
,

2nd case : |uh (x)|< k− ε

2
, then

Eε ⊂ Bk,k− ε
2
(uh) ,

3th case : k− ε

2
≤ |uh (x)|< k, so

∣∣∣Id
h,k (uh (x))

∣∣∣≥ k+
ε

2
,

then,

Eε ⊂ Bk+ ε
2 ,k

(uh) ,

- If |Tk (uh (x))|−
∣∣∣Id

h,k (uh (x))
∣∣∣≥ ε , so

∣∣∣Id
h,k (uh (x))

∣∣∣≤ k− ε,

therefore,

Eε ⊂ Bk,k−ε

(
Id
h,k (uh)

)
.

(29) is then a consequence of (18), (31) and (34).

Theorem 5. Under the assumptions of (Theorem 2.2 in

[1]), the solution uh of (2) satisfies

Id
h,k(uh)−→

h→0
Tk(u) strongly in L2(Ω), (35)

∇h(I
d
h,k(uh))−→

h→0
∇Tk(u) strongly in

[
L

2(Ω)
]d
, (36)

∣∣∣Id
h,k(uh)

∣∣∣
J,A

−→
h→0

0, (37)

for every k > 0.

Proof. From the assertion (18 together with (29) and
(Theorem 5.7 in [3]) it follows that

Id
h,k (uh)−→

h→0
Tk (u) strongly in L2 (Ω) , (38)

Gl
h(I

d
h,k (uh)) ⇁

h→0
∇Tk (u) Weakly in

[
L

2(Ω)
]d
, (39)

for every k > 0.

On the other hand, following (17), discrete
Rellich-Kondrachov’s compactness theorem (theorem 5.6
in [3]) and Lebesgue’s dominated convergence theorem,
we observe that,

∫

Ω
f Id

h,k (uh)dx −→
h→0

∫

Ω
f Tk (u)dx.

Combining the above result with (19) yields

limsup
h→0

a
swip

h (Id
h,k(uh), I

d
h,k(uh)) ≤

∫

Ω
f Tk(u)dx.

Furthermore, according to Proposition 4.36 in [3] (take

vh = Id
h,k(uh)), it follows that

∫

Ω
A Gl

h(I
d
h,k(uh)) Gl

h(I
d
h,k(uh)) ≤ a

swip
h (Id

h,k(uh), I
d
h,k(uh)).
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Hence,

limsup
h→0

∫

Ω
A Gl

h(I
k
h(uh)) Gl

h(I
k
h(uh)) ≤

∫

Ω
f Tk(u)dx.

(40)
Therefore, owing to Definition 1.1 in [6] for the

renormalized solution u, of (1), we see that

∫

Ω
A ∇Tk(u)∇Tk(u) =

∫

Ω
f Tk(u)dx, (41)

which, combined with (40), leads us to claim that

limsup
h→0

∫

Ω
A Gl

h(I
d
h,k(uh)) Gl

h(I
d
h,k(uh)) ≤

∫

Ω
A ∇Tk(u)∇Tk(u),

and using (39)

Gl
h(I

d
h,k (uh))−→

h→0
∇Tk (u) strongly in

[
L

2(Ω)
]d
. (42)

We also claim by (Proposition 4.36 in [3]), that

for all vh ∈Vh and all η > (d + 1)C2
tr:

∣∣∣Id
h,k(uh)

∣∣∣
2

J,A
≤ 1

η − (d+ 1)C2
tr

[
a

swip
h (Id

h,k(uh), I
d
h,k(uh))+

−
∥∥∥A

1
2 Gl

h(I
d
h,k(uh))

∥∥∥
2

[L2(Ω)]
d

]
. (43)

Since the right-hand side tends to zero, the assertion
(37) follows.

Finally, combining (Proposition 4.34 in [3]) with the
triangle inequality yields

∥∥∥∇hId
h,k(uh)−∇Tk(u)

∥∥∥
[L2(Ω)]

d ≤
√

d+ 1 Ctr

∣∣∣Id
h,k(uh)

∣∣∣
J,A

+

+
∥∥∥Gl

h(I
d
h,k(uh))−∇Tk(u)

∥∥∥
[L2(Ω)]

d .

The proof of (36) is then completed.

3 Example

Let us consider Poisson’s equation:

−∆u = f ,

with Ω = [−1,1]d (d=2 or 3), where f is a point source
according to the Dirac delta distribution.

From Proposition 4 and (Proposition 3.2 in [1]), we
observe that

|Id
h,k(uh)− Ik

h(uh)|= O(h)

where Ik
h(uh) is the usual operator used in [1].

In particular, the solution uh in this example, is
symmetrical with respect to the zero center of Ω .

Indeed, this symmetry results from the following
factors:

• a uniform triangulation which is symmetrical with
respect to the center o,
• the symmetry of the Dirac distribution. It can be
approximated for example by using Gaussian
functions,
• the stiffness matrix Q is symmetrical by construction,
• the set Ω is symmetrical with respect to its center o,
• the Dirichlet conditions are also symmetrical with
respect to the point o,
• and the matrix A is symmetrical since A = id for a
Poisson’s equation.

Then, one can easily see that on the 2d−1 diagonals

Id
h,k(uh) = Ik

h(uh).

4 Conclusion and perspectives

The advantage of this work is that it approaches the

solution of linear elliptic problems with L

1 data by
searching for the optimal unconstrained triangulation in
our discontinuous affine case [1]. We try to increase the
degree of approximation in this same case. However, the
constraint (4) for the conformal quadratic approximation
[5] is difficult, and it is necessary to look for an
alternative in parallel to make examples for an analysis of
the convergence rate and error.
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