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Abstract: In this paper, the standard P;-discontinuous Galerkin method approximation for elliptic PDEs with a weakly regular source
term and IL™ -coefficients is considered. We propose introducing a new truncated interpolation operator I;‘ik to replace the operator I;f
used in [1,6]. We prove that it is possible to eliminate a principal constraint imposed on the N x N stiffness matrix Q.

The statements and proofs of [1,6] remain valid according to the new operator.
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1 Introduction and Preliminaries
We consider the Dirichlet problem in 2D or 3D:

—div(AVu) = f in Q, |
u=0 on dQ, 1)

on £ ( open bounded set of R? ) where f € IL! (), and A

is a coercive matrix such that A € IL” (.Q)dXd.
The discrete problem considered is

up € Vp,
Vv, € Vy, ai,Wip(uh,Vh) = /vah dx. @)
with, VT € Th and VF € ]Fh,
Vi= {m €TQ): wlr €PlT), [l =0}, G
where the symmetric weighted interior penalty (SWIP)
bilinear form a,""” is defined as in [1,3].

The goal of this paper is to solve problem (2) using
the IP;-discontinuous Galerkin method (cf. [1]) and the

renormalized solution class (cf. [2,4]), without a diagonal
dominance of the stiffness matrix Q as condition (4).
For this purpose, we insert a new truncated

interpolation operator I,”,l «» and prove the following similar
convergence results.

Theorem 1. The unique renormalized solution uy, of (2),
satisfies

1
Vk > 0; Vg; s.t.; 1§q<1+d—:

up, —u  stronglyin 14 (Q),

Vuu, — Vu  strongly in [I[ﬂ(_())]d7
|”h|J,A,q —0,
IZ{k (up) — Ty (u)  strongly in T.2(Q),
Vh(l,‘fk (up)) — VT (u)  strongly in [ILZ(_Q)]d,
‘If,k(uh)‘m —0,

y

when h — 0.
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The idea is based on the new operator If,l « by returning
all the data associated with the vertices s; 7, at only two

points that represent local extrema of v, € (). Thus,

(depending on each v;) we find a new 2 x 2 matrix Q that
easily replaces the following condition (see [1],[5],[6])

Vie {1,2,..,N}:Qii— iv" |0ij| > 0. 4)
=
Remark. Note that the condition
Vie{l,2,...,N},Vj#i: Qi; <0, (5)

is equivalent to (4), if s; 7 is a strictly interior vertex (cf.
Remark 6.2 in [6]), which is difficult to achieve if the
degree of polynomial approximation exceeds 2. (cf.
example in [5] ).

Notations
N represents the number of all interior centers c; of faces
F; in any triangulation T,.

For every d-simplex T € T, every v, € V;, and every
center ¢; 7 of faces F; v € T, we successively set

vir =v(cir),

Ym,T = min ViT,VM,T = Max v;r,
0<i<d ' 0<i<d

Qi == 17d7L,"T, i= 0, ...,d, (6)

Vnr = Y, (1—o})oir,

oci‘j’;yél
@)
. Vi
Ym,T = Z o T PiT,
a;"}yéo
where

Vi.T —Vm,T
Vh o.__ IN m, .
oY = ——————, if vuT # VT,

b=
YM,T —Vm,T

Vho._
o;7:=0, else.

The truncated interpolation operator If,l « 1s defined by

W e L2(Q) s.1. /F[[vhﬂ =0,

[f,k(") =TV )WY + Ti(vm 7 )W T ®
One can easily check that
d
I (i) = Y (1= o) (V) + 05 T (v 7)) @it
- ©)

Vi(X) = Vi 7 Win,T + VM T WM T (10)
where
(1= o) Tk (vim) + &5 Ti(vmr)| <k, (11)
Your +Wur =1, (12)
and

lllal,T(cj‘,T) = ]l{l/ Vi‘T:Vu,T}(j)’ a E {m,M} (]3)

2 Main results

In this section, we will prove that the main results are
similar to those of [1,6] associated with the new operator
I¢ . Our goal is to prove that all the convergence results
remain valid but without needing condition (4).

Proposition 1. If for some v, € V}, and k > 0, there exists
z€ T s.t. vy (2)| > k; then,
there exists a d-simplex T* C T andy €T s.t.

*
,onT™,

NSRS

[, )] =

where

—

1
T* =y—Sipr + {x* eT, ),io’r(x*) > 1—}

Proof. Letv, € Vy, k>0and T € T,

There exists an element y € T s.t. | I,‘ik(vh)(y) |> k;
indeed,

~if | var.7 |< k, then, by (10)

If,{k (vn) = Vin, T Ym,T + VM. TVYM,T = Vi,
S0,
y=3
-if | v, |> k, it follows that
d _
L (i) (em,r) =k,

and one can take

y=Ccm,T-
On the other hand, it is possible to find iy € {0,1,...d}

S.t.

AigT(y) = v (14)

Therefore, if we consider the d-simplex contained in T
defined as follows:

= {x* €T diy () > %} (15)
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this allows one to see that

Vx*eT* Vx=y—sijr+x" 1xeT,

thanks to
d
Y= Sipr +x* = Z (Air () + Air(x"))sir+
Z
+ (Aig,7 (v) = 1o 7 (x™)) iy 15
and to

Aig 7 (y) = 14 Ay, (x*) > 0,

deducted from (14) and (15).

Then, one can argue that

T CT.

Using (9), we can establish the following identity

(Ihk Vi) :—dZ( (1= o) T (v 1)+

+og Tk(VM,T)) Viir

which, together with (11) and the identity

Vi (s —sigr) = 6i,j(1 = 8 ;)

yields
‘V(lﬁyk(vh))(sjyr - s,»O,T)‘ < 2kd < 6k.
Recalling that
d
x—y=Y (Ajr(x) = A1) (sj7 —sip7)

.

<
S
S o

so, we observe that, Vx € T*

%mm%mwmw=W¢mm&wﬂ

6k Z |2, () = A7 (V)]
J#lo

6k Z ‘ijj(X*)/)‘
=0
Jjééio
6k Z ‘Vk] T\X Sig,T)|
J#lo
6k Z |4, (x
J#lo
6k Z Ajr(x*) <

j=0
J#io

IN

IN

IN

IN

— i1 (Sip,T) ‘

IN
SRS

This completes the proof. |

Now, we will prove the following proposition without
using condition (4) which is imposed in [1,5,6].

Proposition 2. For every v, € V), and every k > 0,
"™ (v, — I (o) I (V) > 0. (16)
Proof. Since
Vi (X) = Vi, T Yo, 7 (X) + Vit 7 W7 (%),
and
I v) (%) = TV ) Wn,7 (%) + Tic(va,r) Wi, 7 (%),

it follows that

a;wzp(Vh - Ih k(Vh) I]’l k Vh ]].T Z ZVh
ie{mM}
where

Z" = (it — Te(vir)) (Tk(Vi,T)éii,T + Tk(Vj,T)éij,T) (j#1),

QUT =a," (‘I’zﬂ%r 1r).
Fixing i € {m, M}, there are two possibilities:
- if |V,'!T| < k, then ViT — Tk(V,"T) =0and,

Zh=0

1

-if |v; 7| > k, note that v; 7 — T (v; 7) has the same sign
as Ty (vir); therefore,

ir = T (vir)) Tk (vir) = k|vir — Ti(viT)]-
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The above identity combined with
Qi —|Qijr| = Qi + Qijr = 0,0, j € {m,M} (i # ).
leads to

Z;)h > k|Vi,T - Tk(vt T |(Qu T—

Hence, in both cases, we claim that

|sz T|

Z">0,i€ {m,M}.
Therefore, the inequality (16) is deduced. O

Proposition 3. Let k > 0; the following bound holds for
any v, € Vy,

I vn)[|oo < k(d* = 1). (17)

Proof. Let vy, € V, and k > 0, so from (9)

1k (vl < il(l = o) T (vin,r) + 0 1 Te(va.1)|
< lk:((Zl2 —1),
since
Of;ll?gdmﬂ =d-1.
Therefore, (17) is obtained. O

We now prove the following main result, which is a
piecewise affine variant according to the result of L.
Boccardo & T. Gallouét [4,8].

Theorem 2. For every k > 0 and every h > 0, the unique
renormalized solution uy, of (2) satisfies

|1 Valieun) Pdx < kG F ey (8)

where the constant C| is independent of h.

Proof. The use of I,‘fj «(up) as atest function in (2) combined
with (16) leads us to

aZWi”(Ii (up) Ihk up))

/ f[hk up)d (19)

Based on the coercivity hypothesis of A (Theorem 2.2
in [1]), one can write

1 Valtiatun)) P dx <

<ot [ 1AV 0)Va(Ham) | dn
<a [ I (un) | Byips

together with (17), (19)} and the discrete coercivity of the
SWIP bilinear form a,""” (Lemma 4.51 in[3]), we see that

d 2 wip ¢ rd d
|| T i () Nswip < C ™ P (I i (un) 1y 4 ()
d
< C | L) Mlool] £ 1151 ()

allows us to deduce the estimate (18),

1
where C* := Lz and C; :=a~'C". O
n_(d+])Ctr

1
Theorem 3. Let v, € V). Foreverygs.t. 1 <g< 1+d—]
it holds that

”uh”swzpq <G || f ||IL](.Q) : (20)

where the constant Cy is independent of h.

Proof. (cf. [1,6])
Let A > 0and k > 0. If max |uy, | <k, then

I (up) ), = )y

Combined with (18), this implies

’ U {xET:|thh|2/'{}‘§
TeT),
max\uthKk

<| U frer: vt =2}
TeT),
max [up . |[<k

1
<3 1Vl P dx

k
< <7 Il

e \ 5=
L@\
< [ 2= Y
_( : ) ,
for
1 -
k= — 2+2/)4 2 2 21
& YA @1

1 *
C—|T|
0

Hence,

Y 1= )
TeT), TeT),
max\uh‘T\zk max |uy, . |>k

12\
< (7)) [ |
T;r,, Co (k) 7o "
max |uy,. | >k
1 /o\% . o
<_— (= I dx
<z (3) [l

2*
1 2072+ 1+C5 *
< [P G 9, ) I

where C; := C(0,d) (see Lemma 3.2 [1]).

2*
dx
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So, by (18), one can see that

*

2* 27
Ik (TP b
- Co k

TeTy,
max \uth [>k

(22)
Combining the above result with (21) yields

22
1 2 i) | 77
Z |T| < — {262’2*C1 \/ 1+C3:| %
TET, Co

max\umr\zk

it follows that

IVurlll 22 . < CallfllLiq)
L Q)

242

where

-+

Bl—
-

Cy =

(262,2*6‘] V14 C3)2*
Co +1

using Lemma 3.2 (in [1]) and the embedding inequality

11l o) < (@, 1QD) V9l
We infer

[l gwipg < C(q:0,d, |A]|p=(gyixa )||Vh”h||m%(9)’

whence the assertion (20). O

Theorem 4. Under the assumptions of (Theorem 2.2 in
[1]), the solution uy of (2) satisfies for every q with
1
1<g<1l+—
<q + I_1

up — u  strongly in LY(Q),
Vi, — Vu  strongly in [L4(Q)]?,

ltnlypq — 0,

when h tends to zero, where u is the unique
renormalized solution of (1).

Proof. Letn € N, p >0 and f, = T1 (f). If u;,, denotes
)

the unique solution of the problem

Upp € Vy,
(23)

SWip _
YW € Vi, ay, “(upp,vi) = /prvh dx.
So, one can see that

Vv, € Wy, af,mp(uh —Upp,Vp) = /Q (f = fp)vn dx.

It is known (see [9]) that

upp — up strongly in L2 (Q), (24)
Viutpp — Vup  strongly in [ILZ(.Q)]d, (25)
gl —0, 2

when h tends to zero, where u, is the unique
renormalized solution of the problem

—div(AVuy) = fp in Q,

(27)
up=0 ondQ.
The estimate (see Theorem 2.1 in [1])
ity — g po(0) < @ 121.0) 1o~ Tl
yields
||AH]LN Q)dxd C(d7| Q |7q)
| tp =i S | fo—F iy
(28)

Therefore, from the inequality (20) together with (25),
(26) and (28), we see that

limsup || wp — u lswip,g< Cs || f = fo ll1 (@)
h—0

1
forevery p >0andeverygs.t. 1 <g< 1+ 1 with

C5 = a71C*C(d7| Q |7q765 HA“]L“’(Q)dXd)'
Again, from Theorem 2.1 in [1],

gig}) | f=r ”]L'(.Q): 0.

This completes the proof.
O

Proposition 4. Under the assumptions of (Theorem 2.2 in
[1]), the solution uy, of (2) satisfies

11 () = T (un) | = O(h). (29)
Proof. Let us consider the set % (v) defined by

= s mi < >kt
PBrs (v) U{T eTy .mT1n|v| < s,m;lx|v| >k} (30)

Using Lemma 3.5 in [1], one can write

hZ .
B0 < s [P ey

combining (31) with (18), yields

|Bis (I (wn)| = O(h). (32)
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Furthermore, from (22), we observe that

Y |T|=0(h?). (33)
TGT;,
max . |>

Finally, since

1
AT € Bus(un), max |uy, | > E} C f%}k,s(l;i% (un)),

it follows that

| Brs )| < |Bes (I i)+ Y |7
B TPy (un)
max\uthK%

Therefore, through (32) and (33), we can see that

|‘%}k,s (uh)| = 0(/’1),

2
where — > 2.

This allows us to deduce that
| Bres (up)| — 0. (34)
h—0
Fix k > 0 and € > 0 such that € < k and let us consider
e = {x €Q: ‘I,‘f’k (up (%)) — Ty (up (x))‘ > 8} .
Letx € % and T € T, with x € T. It is easily checked that
Iy (un)y, # Tic (wn)

what implies that max [vi| > k. So there are four possible

cases.
i) min(uyp, ) = 0 or min(lf,{k(uh)‘r) = 0: then,

be © B () U B (Iialmn))
for every s € ]0,4] .
(1) 0 < wmr <uyg <kor —k <upr <upyr <0,s0
d
Tk (“h)\r = Up|y,

then
Se C Bryex (Ig,k ().

(i) 0 < Un,T < k< Up,T Or Uy, 7 < —k < Upm.t <0,so

S TF |12 (x))‘ — | Ty (up (x))| > €, we distinguish 3
cases:
1¥ case : |uy, (x)| > k so,

Ee C Brye (Iif,k (”h)) :
€
2" case : |uy (x)| < k— 5 then

Ee C By g (un)

€
3t case : k— > <up (x)| <k, so

€
i (s ()| = k4 5.

then,
&g C ’%)kJr%,k (un) s

I T (0, ()| = |1 (0 ()| = 50

’If,k (up (x))’ <k-—g,
therefore,
be € Brice (Iia (w))
(29) is then a consequence of (18), (31) and (34). O

Theorem 5. Under the assumptions of (Theorem 2.2 in
[1]), the solution uy, of (2) satisfies

Iik(uh) n Ti(u) strongly in ]LZ(.Q), (35)
’ —
. d
Vh(lf’k(uh)) m VT.(u) strongly in [ILZ(.Q)] , (36)

I¢ ’ —0 37
’ h’k(uh) JA h—=0 @7
for every k > 0.

Proof. From the assertion (18 together with (29) and
(Theorem 5.7 in [3]) it follows that

Iik (up) = T (u) strongly in L2 (), (38)

Gg(l,j’,k(uh))hjovn(u) Weakly in [L2(2)]¢, (39)

for every k > 0.

On the other hand, following (17), discrete
Rellich-Kondrachov’s compactness theorem (theorem 5.6
in [3]) and Lebesgue’s dominated convergence theorem,
we observe that,

/Q Pl ) dx — /Q FT (w) dx.

Combining the above result with (19) yields

limsupaflmp(],‘fk(uh),Ifflk(uh)) §/ fTi(u)dx.
h—0 ’ ’ Q

Furthermore, according to Proposition 4.36 in [3] (take
v = I (up)), it follows that

/!‘21“ Gl (I (un)) Gl (I (un)) < @™ (I (un) I ().
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Hence,

limsup A G (I} (up)) G (I (up)) / FTi(u
h—0 JQ
(40)

Therefore, owing to Definition 1.1 in [6] for the
renormalized solution u, of (1), we see that

A VT (u)VTi(u fTi(u (41)
J, =,

which, combined with (40), leads us to claim that
limsup | A Gj,(Ij 1 (un)) Gy (Ij 1 ()
h—0 J& ’

and using (39)

Gh(lj (1) — Vi (u)  strongly in [2(Q)]". (42)

We also claim by (Proposition 4.36 in [3]), that
for all v, € Vj, and all > (d 4 1)C2

2 1

’Ig”‘(u}‘)’ = W{ " (03 ) T () +

JA T

- HA% Giz(lg,k(uh))HELz(Q)]d] : (43)

Since the right-hand side tends to zero, the assertion
(37) follows.

Finally, combining (Proposition 4.34 in [3]) with the
triangle inequality yields

ey VAT

+ | Gh i un)) = V)

|Vl ) = Vi)

d
Ih,k(“h)‘JA +

y

2@
The proof of (36) is then completed. O

3 Example
Let us consider Poisson’s equation:

*AM:f,

with Q = [—1,1]”1 (d=2 or 3), where f is a point source
according to the Dirac delta distribution.

From Proposition 4 and (Proposition 3.2 in [1]), we
observe that

|2 i (1an) — I (un)| = O(h)

where If (u;,) is the usual operator used in [1].

In particular, the solution u; in this example, is
symmetrical with respect to the zero center of Q.

Indeed, this symmetry results from the following
factors:

< [ AVE@VT @),

e a uniform triangulation which is symmetrical with
respect to the center o,

e the symmetry of the Dirac distribution. It can be
approximated for example by using Gaussian
functions,

o the stiffness matrix Q is symmetrical by construction,

e the set  is symmetrical with respect to its center o,

e the Dirichlet conditions are also symmetrical with
respect to the point o,

e and the matrix A is symmetrical since A = id for a
Poisson’s equation.
Then, one can easily see that on the 241 diagonals

I () = I (up).

4 Conclusion and perspectives

The advantage of this work is that it approaches the
solution of linear elliptic problems with L' data by
searching for the optimal unconstrained triangulation in
our discontinuous affine case [1]. We try to increase the
degree of approximation in this same case. However, the
constraint (4) for the conformal quadratic approximation
[5] is difficult, and it is necessary to look for an
alternative in parallel to make examples for an analysis of
the convergence rate and error.
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