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Abstract: In the realm of sustainability, lifetimes are often modeled with discrete measurements due to finite precision, lacking a

continuous representation. Despite the inherent continuity in device or patient lifetimes, it is reasonable to consider their observations

as stemming from a discretized distribution derived from a continuous model. This study introduces a discrete random probability model

based on non-negative integers, formulated from the established Kumaraswamy family using recognized discretization methods while

preserving the survival function’s structure. The generated discrete model is called the Kumaraswamy discrete inverse Weibull. Various

statistical properties, such as the hazard rate function, moments, dispersion index, skewness, kurtosis, quantile function, L-moments,

and entropies, are explored. The new discrete model’s parameters are estimated using maximum likelihood estimation, followed by a

discussion on its performance in a simulation study. Additionally, three real-world sustainability applications using count data showcase

the importance and versatility of this innovative discrete distribution.

Keywords: Survival discretization technique; Failure analysis; Dispersion index; Maximum likelihood approach; Simulation;

Sustainability Count data; Goodness-of-fit test.

1 Introduction

Sustainability is fundamentally about balancing the needs
of the present without compromising the ability of future
generations to meet their own needs. Discrete probability
distributions, a key concept in probability theory, play a
crucial role in modeling and predicting various
sustainability-related scenarios. These distributions
enable the analysis of uncertain events with distinct
outcomes and probabilities, helping decision-makers
assess risks and make informed choices in areas such as
sustainable resource management, environmental
conservation, and energy planning. For example, discrete
probability distributions can be used to evaluate the
probability of different weather patterns affecting crop
yields or to estimate the likelihood of specific outcomes
in biodiversity conservation efforts. By applying these

mathematical models, policymakers and researchers can
quantify uncertainties, optimize resource allocation
strategies, and design sustainable policies that account for
various possible outcomes, contributing to a more
resilient and environmentally conscious future.

Discretization is the process of converting a
continuous random variable (RV) into a discrete RV by
dividing it into equal intervals. This step is important in
many data analysis and modeling applications for several
reasons. Discretizing continuous RVs can simplify the
data and make it easier to understand. Some statistical
models, such as linear regression, assume continuous
RVs, while others, such as logistic regression, assume
categorical or discrete RVs. Discretization can capture
non-linear relationships between RVs, reduce the
dimensionality of data, and make it easier to visualize and
analyze. Additionally, discretization can help handle
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outliers by transforming them into a smaller number of
intervals. Discrete probability distributions are
foundational in statistics and probability theory, enabling
data modeling, outcome analysis, and prediction. They
are especially useful in fields like finance, business,
marketing, medicine, engineering, and economics, where
decisions often rely on limited data. For instance, in
finance, these distributions model the probabilities of
stock prices and market movements, helping investors
make informed decisions. In business, they model
customer behavior and the likelihood of purchases,
guiding marketing strategies, inventory planning, and
customer relationship management. In engineering,
discrete probability distributions assess the reliability of
designs over time, allowing engineers to model failure
probabilities and enhance system safety. Due to the
significance of these probabilistic models, numerous
statisticians have developed various discrete distributions
for data modeling. Several statistical methods exist for
deriving a discrete probability model, including survival
function discretization, Poisson mixing, binomial mixing,
the T -geometric family of discrete distributions (see [1]),
and utilizing the hazard rate function and its inverse.

In our case, we focus on the Kumaraswamy (Ku) and
discrete inverse Weibull (DIW) models. The cumulative
distribution functions (CDFs) of the Ku and DIW models
can be formualted as

H (x; µ ,σ) = 1− (1− xµ)σ
; 0 < x < 1 (1)

and

G(z;α,β ) = e−[
α

z+1 ]
β

; z = 0,1,2,3, .... (2)

where µ > 0, σ > 0, β > 0 are the shape parameters
whereas α > 0 is the scale parameter. For more
information on the Ku and DIW models, see [2, 3],
respectively. Recognizing the importance of discrete
extensions of the Ku model, numerous researchers have
developed and studied various extensions to model and
analyze different data types across multiple fields. For
instance, [4, 5] introduced the Kumaraswamy-geometric
(KuGeo) distribution with integer support ranging from 0
to ∞. [6, 7] derived the discrete inverted Kumaraswamy
(DIKu) distribution. [8] proposed a discrete
Kumaraswamy Marshall-Olkin exponential
distribution. [9] developed the discrete Kumaraswamy
Erlang-truncated exponential distribution, also with
integer support from 0 to ∞, among others. Discretization
is a crucial step in data pre-processing, and it must be
handled carefully to avoid omitting important information
or introducing bias. The choice of the number of intervals
and the discretization technique can significantly impact
the results of the analysis. While many researchers have
derived and studied numerous continuous probability
distributions, they often do so by discretizing them. This
approach has become a dominant trend in the literature,
despite the lack of extensive works in this vital area of
distribution theory. The importance of discretizing

continuous models stems from the fact that much valuable
data in fields such as medicine, engineering, and actuarial
science cannot be effectively analyzed using continuous
models alone. This necessity drives researchers to focus
on developing discrete models.

In this context, a new discrete elastic extension of the
Ku and DIW models has been developed and thoroughly
discussed, resulting in what is known as the KuDIW
distribution. Our motivations for introducing the KuDIW
model can be summarized as follows: The KuDIW model
can be applied to model asymmetric count data, analyze
extreme and outlier observations, discuss dispersed data,
explain different forms of kurtosis, assess various forms
of failure and risk, and model heavy-tailed real data.

The remainder of the paper is structured as follows:
Section 2 introduces the KuDIW model. In Section 3,
various distribution statistics are derived. Section 4 details
the parameter estimation of the KuDIW model using the
maximum likelihood technique. A simulation study is
presented in Section 5. Section 6 analyzes three real
datasets to demonstrate the capability and applicability of
the KuDIW model. Finally, Section 7 offers conclusions
and suggestions for future research.

2 The KuDIW Model

The RV X is said to have the KuDIW distribution if its
CDF can be listed as

F(z) = 1−

(
1−

(
e−[

α
z+1 ]

β
)µ)σ

, (3)

where z = 1,2,3, ... and µ ,σ ,α,β > 0. The corresponding
probability mass function (PMF) of Equation (3) can be
formulated as

f (z) =

(
1−

(
e−[

α
z ]

β
)µ)σ

−

(
1−

(
e−[

α
z+1 ]

β
)µ)σ

.

(4)
Conversely, in reliability theory, an essential statistical
concept known as the hazard rate function (HRF)
warrants study. This concept has demonstrated its
significance in the maintenance process, particularly in
the engineering field. The importance of the HRF extends
beyond engineering, encompassing applications in
insurance, medicine, and economics. The HRF can be
expressed as follows

h(z) = 1−

(
1−

(
e−[

α
z+1 ]

β
)µ)σ (

1−

(
e−[

α
z ]

β
)µ)−σ

.

(5)
Suppose C and D are two independent KuDIW RVs with
parameters (µ1,σ1,α1,β1) and (µ2,σ2,α2,β2),
respectively. Then, the HRF of M = min(C,D) can be
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expressed as

hM(z;Φ) =
Pr(min(C,D) = z)

Pr(min(C,D)≥ z)

=
Pr(min(C,D)≥ z)−Pr(min(C,D)≥ z+ 1)

Pr(min(C,D)≥ z)

then

hM(z;Φ) =ϒ1(z;Φ)−ϒ2(z;Φ); z = 1,2,3, ....,

where Φ = (µ1,σ1,α1,β1,µ2,σ2,α2,β2) and

ϒ1(z;Φ) = h(z; µ1,σ1,α1,β1)+ h(z; µ2,σ2,α2,β2)

ϒ2(z;Φ) = h(z; µ1,σ1,α1,β1)h(z; µ2,σ2,α2,β2) .

Similarly, the HRF of K = max(C,D) can be formulated
as

hK(z;Φ) = 1−
1−Θ1(z;Φ)

1−Θ1(z− 1;Φ)
. (6)

where

Θ1(z;Φ) = F (z; µ1,σ1,α1,β1) F (z; µ2,σ2,α2,β2) .

Figures 1 and 2 illustrate the PMF and HRF of the KuDIW
distribution for specific parameter values.

As evident, the PMF can serve as a probabilistic
model for analyzing and evaluating asymmetric data with
a monomorphic form. Additionally, the associated failure
function can be utilized to model a monotonically
decreasing shape.

3 Distributional Properties

3.1 Moments

Assume the RV X have the KuDIW distribution, then the
rth moment can be expressed as

µ
′

r =
∞

∑
z=1

zr f (z; µ ,σ ,α,β ) ; r = 1,2,3, ...

=
∞

∑
z=1

[zr − (z− 1)r]

(
1−

(
e−[

α
z ]

β
)µ)σ

. (7)

The moment generating function (MGF) can be reported
as

MZ (k) =
∞

∑
z=0

∞

∑
i=0

(xk)i

i!




(
1−

(
e−[

α
z ]

β
)µ)σ

−

(
1−

(
e−[

α
z+1 ]

β
)µ)σ


 , (8)

where k = 1,2,3.... The rth moment can be derived from

the MGF as µ
′

r =
dr

dkr MZ (k) |k=0. Using Equation (7), the

E(Z), Var(Z), Sk(Z), and Ku(Z) can be respectively given
by

E(Z) =
∞

∑
z=1

(
1−

(
e−[

α
z+1 ]

β
)µ)σ

, (9)

Var(Z) =
∞

∑
x=1

(2z− 1)

(
1−

(
e−[

α
z ]

β
)µ)σ

− µ
′2
1 , (10)

Sk(Z) =
µ

′

3 − 3µ
′

2µ
′

1 + 2µ
′3
1

(Var(Z))3/2
, (11)

Ku(Z) =
µ

′

4 − 4µ
′

1µ
′

3 + 6µ
′

2µ
′2
1 − 3µ

′4
1

(Var(Z))2
. (12)

According to the first two moments, an important
descriptive statistical concept is derived in the so-called
index of dispersion (IoD) or variance-to-mean ratio can
be effectively applied to the analysis and evaluation of
actuarial data. The IoD of the KuDHLo distribution can
be proposed as

IoD(Z) =

∑∞
z=1 (2z− 1)

(
1−

(
e−[

α
z ]

β
)a)b

∑∞
z=1

(
1−

(
e−[

α
z+1 ]

β
)a)b

−
∞

∑
z=1

(
1−

(
e−[

α
z ]

β
)a)b

. (13)

After performing numerical computations, it has been
observed that the model is suitable for analyzing
asymmetric dispersion data across various forms of
kurtosis.

3.2 Entropies

Entropy is a scientific concept in statistics and a
measurable physical property often associated with states
of chaos, randomness, or uncertainty. The term and
concept are used across various fields, from classical
thermodynamics where it was first recognized to the
microscopic description of nature in statistical physics,
and the principles of information theory. Entropy has
extensive applications in weather science, physics,
chemistry, economics, biological systems, cosmology,
climate change, and information systems, including
telecommunications. For more detailed properties and
features of entropy, see [10]. This section discusses
different types of entropy (En), such as Rényi entropy
(REn), maximum entropy (XEn), Shannon entropy
(SnEn), minimum entropy (MEn), and collision entropy
(CoEn). All these types of entropy are applicable in
information theory as they measure uncertain variability
(see [11, 12]). For a random variable Z with the KuDIW
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Fig 1. Various shapes for the PMF of the KuDIW distribution.
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Fig 2. Various shapes for the HRF of the KuDIW model.

model, the REn is given as follows

Iσ (Z) =
1

1− γ
log

∞

∑
z=0




(
1−

(
e−[

α
z ]

β
)µ)σ

−

(
1−

(
e−[

α
z+1 ]

β
)µ)σ




ζ

,

(14)
where z ∈ N0, γ ∈ (0,1) and ζ 6= 1. The REn generalizes
the SnEn, CoEn, MEn, and XEn where the SnEn, CoEn,
MEn, and XEn can be derived as a special case of the
REn when γ −→ 1, γ −→ 2, γ −→ ∞, and γ −→ 0,
respectively. Due to the complexity of obtaining a
closed-form expression for En, numerical calculations are
necessary to demonstrate the series’ convergence and to

explore its features. These computations reveal that the
series converges and that En increases as the model
parameters approach infinity.

3.3 Quantile function

In this section, we derive the quantile function (QF) of the
KuDIW model. The QF has applications in various fields,
particularly in hydrology for determining the levels of
lakes and oceans. Additionally, it can be used to generate
random samples for simulation purposes, among other
applications. The uth QF, say zu, of the KuDIW
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distribution is the solution of F(zu; µ ,σ ,α,β )− q = 0;
zu > 0, then

zu=α
(
−µ ln

[
1− (1− u)

1
σ

])−1
β
−1, (15)

where u ∈ (0,1). Setting u = 0.5, the median of the
KuDIW distribution can be derived.

3.4 L-moment statistic

In statistics, the nth order statistic (OS) of a sample refers
to its nth-smallest value, essentially its minimum. Order
statistics, along with ranking statistics, are fundamental
tools in nonparametric statistics and inference. For the
RVs Z1,Z2,...,Zn, the OS Z1:n ≤ Z2:n ≤ ... ≤ Zn:n are also
RVs. Consider the RV Z have the KuDIW model, then the
CDF of the ith OS can be listed as

Fi:n (z; µ ,σ ,α,β ) =
n

∑
k=i

(
n

k

)[
[Fi (z; µ ,σ ,α,β )]k ×

[1−Fi (z; µ ,σ ,α,β )]n−k

]

=
n

∑
k=i

n−k

∑
j=0

k+ j

∑
l=0

Φ
( j,l)
(n,k)

Si (z; µ ,σ l,α,β ) ,

(16)

where

Φ
( j,l)
(n,k) = (−1) j+l

(
n

k

)(
n− k

j

)(
k+ j

l

)
.

The corresponding PMF of the ith OS can be formulated
as

fi:n (z; .) = Fi:n (z; .)−Fi:n (z− 1; .)

=
n

∑
k=i

n−k

∑
j=0

k+ j

∑
l=0

[
Φ

( j,l)
(n,k)

(
Si (z; .)

−Si (z− 1; .)

)]
, (17)

where Si (z; µ ,σ l,α,β ) is the survival function of the
KuDIW model. Thus, the rth moment of Zi:n can be
expressed as

E(Zr
i:n) =

∞

∑
x=0

n

∑
k=i

n−k

∑
j=0

k+ j

∑
m=0

[
Φ

( j,l)
(n,k)

zr

(
Si (z; µ , .)

−Si (z− 1; .)

)]
.

(18)
According to Equation (18), a significant descriptive
statistic known as L-moments (L-M) is derived.
L-moments can be used to summarize statistics for
probability models (see [13] for more details). For the
random variable Z, the L-moments are given by

Ωα =
1

λ

λ−1

∑
i−0

(−1)i

(
λ − 1

i

)
E(Zλ−i:λ ) . (19)

According to Equation (19), the mean, Sk, and Ku can be

derived as mean = Ω1, Sk =
Ω3
Ω2

, and Ku =
Ω4
Ω2

.

4 Maximum Likelihood Estimation

The maximum likelihood (ML) estimation technique is a
widely used statistical method for estimating unknown
parameters of a population. It is a robust approach for
making inferences about data and has a variety of
applications. ML estimation is based on the principle that
the parameter to be estimated maximizes the likelihood of
the observed data. This method is used to estimate
population parameters such as the mean, standard
deviation, and other characteristics. It is also commonly
applied to determine the probability of specific events or
outcomes given observed data. The technique works by
maximizing the likelihood of the sample data, given
assumed population parameters. This involves converting
the sample data into a probability distribution, which is
then used to calculate the probability of the observed data
given the assumed parameters, ultimately identifying the
most likely parameter values. In this segment, we derive
the estimation of the KuDIW distribution parameters
using the ML method based on a complete sample. Let 1,
Z2, . . . , Zn be a random sample from the KuDIW
distribution. Then, the log-likelihood function, say
L(µ ,σ ,α,β |zi), can be expressed as

L(µ ,σ ,α,β |zi) =
n

∑
i=1

ln




(
1−

(
e
−
[

α
zi

]β
)µ)σ

−

(
1−

(
e
−
[

α
zi+1

]β
)µ)σ



.

(20)
To obtain the ML estimate of the model parameters, one

approach is to maximize the likelihood function
L(µ ,σ ,α,β |zi). Numerous numerical optimization
methods are accessible in different programming
platforms such as R and SAS, which can be employed to
maximizeL(µ ,σ ,α,β |zi). For instance, in R, the ‘optim‘
function and in SAS, the ‘PROC NLMIXED‘ procedure
can be used for this optimization task.

5 Estimator Behaviour: Markov Chain

Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful
simulation technique widely used for sampling from
probability distributions in various contexts like Bayesian
inference, optimization, and machine learning. Its key
advantage lies in its ability to sample and estimate a
distribution without requiring the calculation of the
associated normalization constant, making it efficient and
accurate for inference tasks. MCMC operates by
constructing a Markov chain, which is a sequence of
dependent random variables. Each sample in the chain
depends on the previous one, ensuring that the samples
follow the target distribution. The process begins with a
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random starting point and iteratively updates using a
transition rule, specifying how the chain moves from one
point to another. This iterative simulation continues until
the chain reaches a steady state, converging to the target
distribution. Simulation studies play a vital role in
evaluating estimation techniques in statistics. They offer a
comprehensive examination of different approaches
across various scenarios. One common performance
metric in simulation studies is the mean squared error
(MSE), which measures the accuracy of a statistical
model or estimator. MSE considers both bias and
variance, unlike measures that solely focus on bias or
variance alone, providing a more thorough assessment of
estimation quality. The steps for conducting the
simulation are as follows:

–Conduct a simulation by generating N = 10000
samples, each of size n, where n varies across 20, 80,
150, 300, and 500, from the KuDIW distribution
using different sets of KuDIW parameters outlined in
Table 1 and Table 2 where (Scheme I:
µ = 0.3,σ = 0.6,α = 0.8,β = 0.5; Scheme II:
µ = 0.9,σ = 1.2,α = 0.3,β = 0.8; Scheme III:
µ = 1.1,σ = 1.2,α = 0.1,β = 0.6; Scheme IV:
µ = 1.8,σ = 1.8,α = 1.2,β = 1.6).

–Evaluate the simulation based on bias and mean
squared error (MSE), which serve as the performance
criteria.

–Present the key findings numerically in Table 1 and
Table 2, and visually in Figures 3-6.

–Observations reveal a decreasing trend in bias and
MSE with increasing sample size n. This trend
underscores the consistency property of the maximum
likelihood (ML) approach across all parameter
combinations for estimating the KuDIW parameters,
highlighting its effective applicability.

6 Sustainability Data Analysis

This section delves into the implementations of the
KuDIW distribution across three distinct real datasets.
The competitive distributions can be listed as: Discrete
inverse Weibull (DIW), discrete inverse Rayleigh (DIR),
discrete Rayleigh (DR), three parameters discrete Lindley
(DLi-III), t parameters discrete Lindley (DLi-II), one
parameter discrete Lindley (DLi-I), negative binomial
(NvBi), Poisson (Poi), discrete Pareto (Dpa), discrete
log-logistic (DLogL), discrete Burr (DB), and discrete
Burr-Hatke (DBH). The comparison among the fitted
models is based on several criteria, including negative log
likelihood (−L), Akaike information criterion (AIC),
corrected Akaike information criterion (CAIC),
Hannan-Quinn information criterion (HQIC), and
Chi-square (χ2). Information criteria are statistical tools
used for model selection. They provide a means of
balancing model fit with model complexity, thereby

preventing overfitting. In essence, information criteria
penalize the complexity of a model to ensure that simpler
models are preferred if they explain the data adequately.
The most common information criteria used in statistical
modeling include the Akaike Information Criterion
(AIC), the Corrected Akaike Information Criterion
(CAIC), and the Hannan-Quinn Information Criterion
(HQIC). Each of these criteria has its own specific
formulation and use case, but they all serve the same
fundamental purpose of model comparison and selection.

1. Akaike Information Criterion: The AIC is based on
the concept of entropy, providing a relative measure of the
information lost when a given model is used to represent
the process that generated the data. The formula for AIC
is:

AIC = 2k− 2ln(L)

where k is the number of parameters in the model, and L

is the maximized value of the likelihood function for the
model. A lower AIC value indicates a better-fitting model.

2. Corrected Akaike Information Criterion (CAIC):
The CAIC is an extension of the AIC, adjusted for small
sample sizes. This correction is important because the
AIC can sometimes favor more complex models when the
sample size is not large enough to justify them. The
formula for CAIC is:

CAIC = AIC+
2k(k+ 1)

n− k− 1

where n is the sample size. The CAIC aims to provide a
more accurate estimate of model quality for smaller
samples.

3. Hannan-Quinn Information Criterion (HQIC): The
HQIC is another criterion used for model selection,
providing a more stringent penalty for model complexity
compared to AIC and BIC. The formula for HQIC is:

HQIC =−2ln(L)+ 2k ln(ln(n))

where n is the sample size, L is the maximized likelihood
function, and k is the number of parameters. HQIC tends
to favor simpler models more strongly, making it a useful
criterion in certain contexts.

In practice, these criteria are often used together to
compare models and select the one that offers the best
balance of fit and simplicity. When different criteria
suggest different models, analysts must consider the
specific context and goals of their modeling task to make
the final decision. We will juxtapose the KuDHLo
distribution with other competitive models

6.1 Data set I

This dataset pertains to the count of European corn borer
(ECB) larvae, also referred to as Pyrausta, observed in a
field experiment detailed by [14]. The experiment
entailed a random assessment of 8 hills, each with 15
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Table 1. Simulation results for the KuDIW parameters (Part I).

Scheme I Scheme II

n Parameter Bias MSE Bias MSE

20 0.53934776 0.33273582 0.40376521 0.29947364

80 0.41184635 0.20463381 0.33273583 0.21846394

µ 150 0.25539741 0.12747393 0.24437368 0.12846483

300 0.12846879 0.05538621 0.16383644 0.05294631

500 0.00467821 0.00008463 0.06453822 0.00008746

20 0.37745088 0.18934653 0.28435238 0.24438459

80 0.25548036 0.13329346 0.22162483 0.18849653

σ 150 0.14384622 0.08493613 0.13327469 0.08849632

300 0.09746381 0.00083621 0.07638541 0.00814643

500 0.00074552 0.00000083 0.00014774 0.00000876

20 0.63945232 0.49373897 0.35548682 0.26634832

80 0.48452308 0.31836841 0.23947913 0.16789463

α 150 0.26384268 0.16638936 0.17739464 0.09478585

300 0.12745378 0.07736391 0.08465383 0.00748936

500 0.00346357 0.00007376 0.00078467 0.00008645

20 0.23373950 0.15538362 0.32484625 0.28846391

80 0.17332284 0.10373693 0.26649462 0.18936403

β 150 0.11093878 0.00378931 0.18946452 0.13328469

300 0.00836221 0.00007632 0.11001934 0.01936741

500 0.00008682 0.00000008 0.00084538 0.00000347

Table 2. Simulation results for the KuDIW parameters (Part II).

Scheme III Scheme IV

n Parameter Bias MSE Bias MSE

20 0.73964392 0.55243383 0.32287649 0.21745389

80 0.52093478 0.37745392 0.22053972 0.15339643

µ 150 0.31777344 0.21835824 0.13038254 0.08364863

300 0.17749362 0.10376498 0.05483532 0.00237648

500 0.03324745 0.00483096 0.00008473 0.00000017

20 0.44274782 0.32173584 0.18539638 0.13274834

80 0.28845491 0.19894663 0.12304583 0.09735856

σ 150 0.17735394 0.08428469 0.03263894 0.00763674

300 0.05539201 0.00984764 0.00083664 0.00000847

500 0.00087482 0.00000437 0.00000746 0.00000029

20 0.29936481 0.21034734 0.52483695 0.37453883

80 0.18396434 0.13327459 0.42846309 0.26438649

α 150 0.10746539 0.08746381 0.31084664 0.16285834

300 0.00735482 0.00007481 0.13846332 0.07846383

500 0.00007367 0.00000054 0.0053864 0.00000464

20 0.14439469 0.11638455 0.61047654 0.44273538

80 0.11947644 0.09847572 0.42349452 0.31228358

β 150 0.08846372 0.06184638 0.24438455 0.13964784

300 0.00083774 0.00000548 0.10485934 0.02150468

500 0.00000084 0.00000006 0.00048763 0.00007914

replications, during which the observer recorded the
number of borers per corn hill. The summary statistics for
this dataset are as follows: the mean is 1.326, the variance
is 3.669, the skewness is 1.976, and the kurtosis is 8.984.
Figure 7 illustrates non-parametric infographics to
analyze the behavior of dataset I. It is evident that the data
exhibits right skewness, includes outliers, and displays a
decreasing hazard rate function (HRF) shape. Table 3 lists
the maximum likelihood estimates (MLEs) for the
relevant parameter(s), accompanied by their respective

standard errors and confidence intervals. Additionally,
this table showcases the results of the goodness-of-fit test
for dataset I. At a significance level of 0.05, it’s evident
that both the DIW and DB-XII distributions perform
satisfactorily, alongside the KuDIW distribution.
However, the KuDIW distribution emerges as the
top-performing model among all tested options. Figure 8
displays the observed and expected PMFs for dataset I,
affirming the superiority of the KuDIW model compared
to other tested models.
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Fig 7. Non-parametric infographics for data set I.

6.2 Data set II

This dataset records the counts Kidney stones (a
biochemical marker) in individuals based on steroids, as
detailed by [15]. Before proceeding with an analysis of
the CK data, it is essential to visually inspect the data to
grasp its inherent characteristics. To achieve this,
non-parametric plots were generated, as depicted in
Figure 9. The visualization reveals a positively skewed
distribution of the data, with some extreme observations
present. This initial exploration through visualization
plays a pivotal role in understanding the data’s
distribution, identifying outliers, and uncovering any
anomalous patterns before delving into more extensive
statistical analyses. The ML estimators of the tested
models as well as goodness-of-fit test are listed in Table 4.

Both the KuDIW and DIW models demonstrate
effective performance in modeling dataset II, with the
KuDIW model standing out as the top-performing model
among the competitors. The outcomes listed in Table 4
are depicted in Figure 10.

6.3 Data set III

The data retrieved from the Worldometer website presents
the daily new deaths attributed to COVID-19 in South
Korea, spanning from February 15, 2020, to December
12, 2020 (source: https://www.worldometers.

info/coronavirus/country/south-korea/ ). To effectively
analyze and interpret COVID-19 data, several key metrics

and concepts are typically considered, including
confirmed cases (total positive tests broken down by
demographics), active cases (currently infected
individuals), recoveries (individuals who have recovered
based on regional criteria), deaths (fatalities attributed to
the virus), testing rates (number of tests conducted),
positivity rate (percentage of positive tests),
hospitalizations (number of hospitalized individuals),
vaccination rates (number of vaccinated individuals by
dose), variants (circulating COVID-19 variants and their
impact on transmission and vaccine efficacy), and public
health measures (interventions like mask mandates and
lockdowns), with data analysis often involving tracking
these metrics over time to identify trends, assess the
effectiveness of interventions, and make informed
decisions about resource allocation and policy measures,
using visualization tools like graphs and charts for clear
presentation. In this analysis, we derived the ML
estimators for the parameters of the KuDIW distribution
based on the this data. To delve deeper into the
characteristics of this dataset, non-parametric plots were
created, as depicted in Figure 11. The visualization
highlights a positively skewed distribution in the data,
along with the presence of some extreme observations.

The ML estimators of the competitive distributions as
well as goodness-of-fit are discussed in Table 5. The
KuDIW distribution stands out as the top-performing
model among all the models tested. This conclusion is
reinforced by Figure 12, which corroborates the findings
listed in Table 5.
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Fig 8. The observed and expected PMFs for data set I.
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Figure 9. Non-parametric plots for data set II.
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Table 3. The ML and goodness-of-fit test for data set I.

ExFr

X ObFr KuDIW DIW DR DIR DBH DB-XII NvBi DPa

0 43 42.38 41.37 15.92 38.28 68.07 43.84 30.12 64.45

1 35 35.34 41.85 36.17 51.90 21.97 39.61 38.87 20.15

2 17 18.79 15.42 34.58 15.51 10.51 15.62 27.61 9.69

3 11 9.98 7.17 21.03 6.04 5.98 7.20 14.26 5.65

4 5 5.47 3.94 8.89 2.91 3.75 3.91 5.99 3.68

5 4 3.11 2.42 2.70 1.61 2.51 2.37 2.17 2.58

6 1 1.82 1.61 0.60 0.98 1.75 1.59 0.70 1.90

7 2 1.10 1.13 0.09 0.64 1.26 1.09 0.21 1.46

8 2 2.01 5.09 0.02 2.14 4.20 4.80 0.06 10.44

Total 120 120 120 120 120 120 120 120 120

µ̂ 25.356 − − − − − 0.870 −
σ̂ 112.417 − − − − − 9.956 −
α̂ 0.002 0.345 0.867 0.319 0.865 0.519 − 0.329

β̂ 0.246 1.541 − − − 2.358 − −
−L 200.379 204.812 235.227 208.439 214.053 204.293 211.522 220.618

AIC 408.758 413.624 472.453 418.878 430.106 412.587 427.056 443.236

CAIC 409.106 413.727 472.487 418.912 430.139 412.689 427.143 443.270

HQIC 413.286 415.888 473.585 420.010 431.238 414.851 427.086 444.368

χ2 0.442 5.511 60.059 14.274 27.05 4.664 20.367 32.462

DF 1 3 3 4 2 3 3 4

P-value 0.506 0.138 < 0.0001 < 0.0001 < 0.0001 0.198 0.0001 < 0.0001

Table 4. The ML and goodness-of-fit test for data set II.

ExFr

X ObFr KuDIW DIW DLi-I Poi DLi-II DLi-III DR DIR

0 65 63.39 63.91 40.29 27.39 46.03 46.01 10.89 60.89

1 14 18.94 20.69 29.83 38.08 26.79 26.77 26.62 33.99

2 10 9.13 8.05 18.36 26.47 15.57 15.57 29.45 8.12

3 6 5.25 4.23 10.34 12.26 9.05 9.06 22.29 3.00

4 4 3.33 2.56 5.52 4.26 5.27 5.27 12.63 1.42

5 2 2.25 1.75 2.85 1.19 3.06 3.07 5.54 0.78

6 2 1.59 1.26 1.44 0.27 1.78 1.78 1.91 0.47

7 2 1.17 0.95 0.71 0.05 1.04 1.04 0.53 0.31

8 1 0.88 0.74 0.35 0.00 0.60 0.60 0.12 0.21

9 1 0.68 0.59 0.17 0.00 0.35 0.35 0.02 0.15

10 1 0.53 0.48 0.08 0.00 0.20 0.20 0.00 0.11

11 2 2.86 4.79 0.06 0.03 0.26 0.28 0.00 0.55

Total 110 110 110 110 110 110 110 110 110

µ̂ 10.504 − − 1.390 − 0.581 − −
σ̂ 72.839 − − − − 358.728 − −
α̂ 0.005 1.049 0.436 − 0.581 0.001 0.901 0.554

β̂ 0.1615 0.581 − − 0.001 − − −
−L 169.284 172.935 189.110 246.210 178.767 178.767 277.778 186.547

AIC 346.569 349.870 380.220 494.420 361.534 363.533 557.556 375.094

CAIC 346.949 349.982 380.257 494.457 361.646 363.759 557.593 375.131

HQIC 350.950 352.060 381.316 495.515 363.724 366.819 558.651 376.189

χ2 1.767 6.445 34.635 89.277 19.091 19.096 306.515 40.456

DF 1 3 4 3 3 2 4 2

P-value 0.185 0.092 < 0.001 < 0.001 0.0003 < 0.0001 < 0.001 < 0.001
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Figure 10. The observed and expected PMFs for data set II.
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Fig 11. Non-parametric plots for data set III.
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Table 5. The ML and goodness-of-fit test for data set III.

ExFr

X ObFr KuDIW DIW DIR DLogL DBH DPa DB Poi

0 89 84.98 82.35 69.89 80.93 166.60 149.39 92.89 45.41

1 79 83.99 103.70 140.61 92.78 54.59 50.50 97.79 86.34

2 49 52.32 44.39 47.69 51.43 26.67 25.48 42.68 82.07

3 29 31.35 22.32 19.13 27.34 15.54 15.38 21.17 52.01

4 19 18.89 12.93 9.33 15.56 10.02 10.31 12.17 24.73

5 17 11.57 8.25 5.19 9.52 6.89 7.39 7.75 9.40

6 9 7.21 5.64 3.16 6.19 4.95 5.53 5.31 2.98

7 6 4.58 4.05 2.09 4.25 3.68 4.41 3.83 0.81

8 6 2.96 3.03 1.43 3.06 2.81 3.47 2.88 0.19

9 1 6.15 17.34 5.48 12.94 12.25 32.14 17.53 0.06

Total 304 304 304 304 304 304 304 304 304

µ̂ 20.239 0.271 0.229 1.716 0.904 0.377 0.591 1.901

σ̂ 258.176 1.411 − 1.878 − − 2.466 −
α̂ 0.005 − − − − − − −

β̂ 0.210 − − − − − − −
−L 567.207 586.855 606.870 577.011 620.466 633.531 587.652 621.098

AIC 1142.414 1177.711 1215.740 1158.023 1242.932 1269.061 1179.304 1244.195

CAIC 1142.548 1177.751 1215.754 1158.063 1242.945 1269.075 1179.344 1244.208

HQIC 1148.362 1180.684 1217.227 1160.997 1244.419 1270.548 1182.278 1245.682

χ2 4.785 41.868 92.204 25.019 109.333 128.631 44.784 115.896

DF 3 6 6 6 6 6 6 4

P-value 0.188 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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Fig 12. The observed and expected PMFs for data set III.
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7 Concluding Observations and Future Work

In this article, a novel probabilistic mass function was
introduced for analysis over the range (0,∞). Through a
detailed examination of its statistical properties, it was
observed that this discrete model was well-suited for
evaluating monotonically decreasing hazard rate
functions. Moreover, the proposed probabilistic mass
function emerged as a robust choice for modeling
positively skewed data across various kurtosis shapes.
These capabilities, however, were just part of the model’s
strengths, as it also extended to enhancing the dispersion
of real data. To complete the framework of this study, a
maximum-likelihood approach was employed to derive
optimal estimators for analyzing real-world data.
Additionally, a simulation scheme was discussed to
validate the efficacy of these estimators. Furthermore, the
article explored three applications of real count
sustainability data, showcasing the versatility and
significance of this new discrete distribution. Looking
ahead, future work would delve into univariate and
bivariate extensions of time series using the proposed
model, particularly for forecasting studies.
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