
Appl. Math. Inf. Sci. 18, No. 4, 885-893 (2024) 885

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/180417

Surface family mate with Bertrand mate as mutual
curvature lines in Galilean 3-space G3
Maryam T. Aldossary

Department of Mathematics, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Damam, Saudi Arabia

Received: 19 Jan. 2024, Revised: 13 May 2024, Accepted: 17 May 2024
Published online: 1 Jul. 2024

Abstract: The paper is an attempt to resolute the surface family mate (S FM ) with a Bertrand mate (BM ) as mutual curvature
lines in Galilean 3-space G3. The S FM with the symmetry of BM can be specified as linear combinations of the components of the
Serret–Frenet frames in G3. With these parametric representations, we resolved the indispensable and enough events for the specified
BM to be the curvature lines on these surfaces. Afterword, the conclusion to ruled surface (RS ) is also gained.
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1 Introduction

The curvature line (C L ) is curve which is permanently
tangent to a principal direction. There will be two
curvature lines throughout each non-umbilic point and the
lines will meet at right angles. In fact, the C L is
appointed as one of the considerable lines on a surface
(S ) and it plays a paramount part in differential geometry
and its achievements [1–4]. It is an beneficial device in S
screening for displaying of the principal lines. The
consistent curvature line and principal lines are fantastic
and connected with the regular surfaces. Curvature lines
can immediate the investigation of S , placidly exercised
in geometric design, and can appoint uniformity, the
realization and the polygonization of S . There exists a
tremendous literature on the subject, including many
monographs, for instance: Martin [5] defined methodical
S patches limited by curvature lines, which are coined
principal patches. He also offered that the turnout of such
patches was contingently upon certain positions matching
on the patch border lines. Alourdas et al. [6] initiated a
style to emphasize a net curvature lines on a B-spline S .
Maekawa et al. [7] extended a manner to pick out the
common distinctive of free-shape surfaces for derive
examination. They examined the generic feature of the
umbilic and attitude curvature lines that pass meanwhile
an umbilic on a parametric free-shape S . Che and
Paul [8] developed a method to design and compute the
curvature lines and their geometric monarchies pointed on

an implicit S . They also specified a novel gauge for
non-umbilical and umbilical points on an implicit surface.
Zhang et al. [9] proved a schema for enumerating and
visualizing the curvature lines assigned on an implicit S .
Kalogerakis et al. [10] offered a robust construction for
confirming curvature lines by point clouds. Their process
is sensible for surfaces of random genus, with or without
borderlines, and is statistically strong to utilize with
outliers preserving S advantages. They proved the
process to be active on an area of synthetic and real-world
input data combinations via changing quantities of noise
and outliers. In workable operations, however, pivotal
work has concentrated on the backward reconnaissance or
opposite issue: given a 3D curve, how can we pinpoint
these ones surfaces that are countenanced with this curve
as a characteristic curve, if feasible, rather than finding
and providing curves on analytical curved surfaces?.
Wang et al. [11] was the 1st to pick up the trouble of
fabricating a S family with a nominated circumstantial
geodesic line, by which each S can be a nominee for
mode system. They expounded the indispensable and
adequate situations for the coefficients to be fulfilled with
both the isoparametric and the geodesic demands. This
pattern has been utilized by numerous scholars [12–23].

Galilean 3-space G3 is the plainest fashion of a
semi-Euclidean 3-space E 3

1 for which the isotropic cone
decreases to a plane. It is indicated as an edge from
Euclidean space to special relativity. The major spine of
G3 is its specific gravity, that is, it authorize the scholar to
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treat it in detail unaccompanied by employing massive
amounts of energy and time . In other sides, the outlook
of G3 shows its evolution with an humbles inquiry and a
overall spread of a newfangled geometric society is
pivotal for its effective resemblance with Euclidean
3-space E 3. Further, complete growth is functional to
provide the scholar with the psychological assurance of
the constancy of the searched structure [24, 25]. In G3 the
applicable action on surfaces with a curvature lines is
rare. It is a practical and enchanting problem in workable
employments, for example, Dede et al. [26, 27] analyzed
tubular surfaces, the characterizations of the parallel
surfaces. Yuzbasi et al. [28, 29] theorized a surface family
(S F ) via a curve to be a mutual asymptotic and
geodesic lines. Jiang et al. [30] meditated S F couple by
BM couple as common asymptotic line. Almoneef and
Abdel-Baky [31] prepared a surface family via BM to
be geodesic line. AL-Jedani and Abdel-Baky [32]
considered the S F and developable S F with a mutual
geodesic curves, respectively. Alluhaibi and
Abdel-Baky [33] investigated a similar idea but used the
curvature lines instead of geodesic ones. In addition, a
series of investigators, referred to as Li et al. and reported
in [34–49], attitude theoretical works and promotions on
soliton theory, submanifold theory, and other attached
themes. Further mobilization can be found in these
papers. Their attempts have considerable contribution to
the advancement of research in these fields.

In this paper, we embrace a wonderful mode for
resolving surfaces family with BM as mutual curvature
lines. Given allowable curves, we foremost solve the
question on the appropriate and indispensable events for
the assigned curves to be curvature lines. In the execution
of epilogue, the appropriate and indispensable events
when the surfaces are ruled surfaces are also anatomized.
Meantime, diverse curves are chosen to emphasize the
pattern.

2 Basic concepts

The Galilean 3-space G3 is a Cayley–Klein geometry
extended via the projective function of signature
(0,0,+,+) [24, 25]. The utter character of G3 concerning
on the regulated set {π , L , I }, where π is the plane in
the real 3-dimensional projective space P3(R), L is the
line (utter line) in π and L the steady elliptic detour of
points of L . Homogeneous coordinates in G3 are granted
in such a pattern that π is specified by w0 = 0, L by
w0 = w1 = 0 and the points of L is assigned by
(0 : 0 : w2 : w3) → (0 : 0 : w3 : −w2). A plane is coned
Euclidean if it guaranty L , in other respects it is coined
isotropic, that is, planes z=const are Euclidean and so is
the plane π . Other planes are isotropic. However, an
isotropic plane does not include any isotropic direction.

For any t =(t1, t2, t3), and q=(q1,q2,q3) ∈ G3, their
inner product is

< t,e >=

{
t1e1, if t1 ̸= 0∨ e1 ̸= 0,
t2e2 + t3e3, if t1 = 0∧ e1 = 0, (1)

and their vectorial product is

t× e =



∣∣∣∣∣∣
0 n2 n3
t1 t2 t3
e1 e2 e3

∣∣∣∣∣∣ , if t1 ̸= 0∨ e1 ̸= 0,∣∣∣∣∣∣
n1 n2 n3
0 t2 t3
0 e2 e3

∣∣∣∣∣∣ , if t1 = 0∧ e1 = 0,

(2)

where n1 = (1,0,0), n2 = (0,1,0) and n3 = (0,0,1) are
the usual basis vectors in G3.

A curve κ(u) = (κ1(u),κ2(u),κ3(u)) ; u ∈ I ⊆ R,is
coined permissible if it has no inflection points, that is,
.κ × ..κ ̸= 0 and no isotropic tangents

.κ1 ̸= 0. A
permissible (allowable) curve is a comparable of a regular
curve in Euclidean space. For a permissible curve κ:
I ⊆ R→ G3 assigned by the Galilean invariant arc-length
ς , we have:

κ(ς) = (ς ,κ2(ς),κ3(ς)) . (3)

The curvature κ(ς) and torsion τ(ς) of the curve κ(ς) are

κ(ς) =
∥∥∥κ′′

(ς)
∥∥∥=

√(
κ′′

2(ς)
)2

+
(
κ′′

3(ς)
)2
,

τ(ς) =
1

κ2(ς)
det

(
κ

′
,κ

′′
,κ

′′′)
. (4)

Note that a permissible curve has κ(ς) ̸= 0. The
S FF is:

t1(ς) = κ
′
(s) =

(
1,κ

′
2(ς),κ

′
3(ς)

)
,

t2(ς) =
1

κ(ς)
κ

′′
(ς) =

1
κ(ς)

(
0,κ

′′
2(ς),κ

′′
3(ς)

)
,

t3(ς) =
1

τ(ς)
(0,(

1
κ(ς)

κ
′′
2(ς))

′
,(

1
κ(ς)

κ
′′
3(ς))

′
), (5)

where t(ς), t2(ς), and t3(ς), respectively, are the tangent,
principal normal, and binormal vectors. For every point of
κ(ς), the Serret-Frenet formulae read: t′1

t′2
t′3

=

0 κ(ς) 0
0 0 τ(ς)
0 −τ(ς) 0

 t1
t2
t3

 . (6)

The planes Sp{t1, t2}, Sp{t2, t3}, and Sp{t3, t1},
respectively, are coined the osculating plane, normal
plane, and rectifying plane.

Definition 2.1 [18–21]. Let κ(ς) and κ̂(ς) be two
permissible curves in G 3, t2(ς) and t̂2(ς) are their
principal normal vectors respectively, the pair {κ̂(ς),
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κ(ς)} is coined BM if t2(ς) and t̂2(ς) are linearly
dependent at the conformable points, κ(ς) is named the
BM of κ̂(ς), and

κ̂(ς) = κ(ς)+ rt2(ς). (7)

where r is a steady. Therefore, the consortium of the
S FF of κ(ς) and κ̂(ς) is: t̂1

t̂2
t̂3

=

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 t1
t2
t3

 , (8)

where β is a constant angle [50].
We tick a surface M in G3 by

M : z(ς , t)= (z1 (ς , t) ,z2 (ς , t) ,z3 (ς , t)) , (ς , t)∈D ⊆R2.
(9)

If z j(ς , t) = ∂z
∂ j , the isotropic surface normal is

u(ς , t) = zς ∧ zt , with < zς ,u >=< zt ,u >= 0. (10)

Theorem 2.1. A curve on a surface is a curvature line iff
the surface normals on that curve originate a developable
surface [1, 2].

An iso-parametric curve is a curve κ(ς) on a surface
z(ς , t) that has a constant ς or t-parameter value. In other
words, there exists a parameter t0 such that κ(ς) = z(ς , t0)
or κ(t) = z(ς0, t). Given a parametric curve κ(ς), we call
it an iso-principal line of the surface z(ς , t) if it is both a
principal line and a parameter curve on z(ς , t).

3 Main results

This section prepares a modern side for making a S FM
with a BM as mutual curvature lines in G3. For this
objective, let κ̂(ς) be a permissible curve, κ(ς) be its
BM and {κ̂(ς), τ̂(ς), t̂1(ς), t̂2(ς), t̂3(ς)} is the S FF
of κ̂(ς) as in Eq. (6). The S FM with κ(ς) can be
assumed by

M : z(ς , t) = κ(ς)+a(ς , t)t1(ς)+b(ς , t)t2(ς)+c(ς , t)t3(ς).
(11)

Likwise, the S FM with κ̂(ς) is

M̂ : ẑ(ς , t) = κ̂(ς)+a(ς , t )̂t1(u)+b(ς , t )̂t2(ς)+c(ς , t )̂t3(ς),
(12)

where a(ς , t), b(ς , t), c(ς , t) are all C 1 functions,
and 0 ≤ t ≤ T, 0 ≤ ς ≤ L. If the variable t is marked as
the time, the functions a(ς , t), b(ς , t) and c(ς , t) can then
be cleared as oriented marching spaces of a point at the t
in the orientations t̂1; t̂2; and t̂3, respectively, and the
vector κ̂(ς) is explicate as the initialization of this point.

Our excitations is to deliberate adequate and needful
events for κ(ς) is an iso-parametric curvature line on M .

Firstly, let’s determine a unit vector t(ς) such that
< t, t1>= 0, that is,

t(ς) = cosφ t2(ς)+sinφ t3(ς), with φ = φ(ς). (13)

Suppose that

z(ς , t) = κ(ς)+ tt(ς); t ∈ R, (14)

is a developable surface, that is,

det(κ
′
, t(ς), t

′
(ς)) =

∣∣∣∣∣∣
1 0 0
0 cosφ cosφ

0 −φ
′
sinφ − τ sinφ φ

′
cosφ + τ cosφ

∣∣∣∣∣∣= 0,

which leads to,

φ
′
(ς)+ τ(ς) = 0 ⇒ φ(ς) = φ0(ς)dς , (15)

where φ0 = φ(ς0) and ς0 is the premier amount of arc
length.

Secondly, since κ(ς) is an iso-parametric curve on M
there exists a value t = t0 such that κ(ς) = z(ς , t0). Then,

a(ς , t0) = b(ς , t0) = c(ς , t0) = 0,
∂a(ς , t0)

∂ς
=

∂b(ς , t0)
∂ς

=
∂ c(ς , t0)

∂ς
= 0.

So,

u(ς , t0) : =
∂z(ς , t0)

∂ς
× ∂z(ς , t0)

∂ t

= −∂ c(ς , t0)
∂ t

t2(u)+
∂b(ς , t0)

∂ t
t3(u), (16)

is the isotropic surface normal. Further, via Theorem 2.1,
κ(ς) is a curvature line on M iff u(ς) ∥ t(ς , t0). Therefore,
from Eqs. (13), and (16) there exists a function β (ς) ̸= 0
such that

−∂ c(ς , t0)
∂ t

= β (ς)cosφ ,
∂b(ς , t0)

∂ t
= β (ς)sinφ , (17)

where φ(ς) is designated by Eq. (15). The functions β (ς)
and φ(ς) are controlling functions.

Hence, we give the following theorem.

Theorem 3.1. κ(ς) is a curvature line on M iff

a(ς , t0) = bς , t0) = c(ς , t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ ς ≤ L,
− ∂c(ς ,t0)

∂ t = β (β )cosφ ,
∂b(ς ,t0)

∂ t = β (ς)sinφ , β (ς) ̸= 0,
φ(ς) = φ0(ς)du, φ0 = φ(ς0), with φ0 = φ(ς0).


(18)

Any surface M : z(ς , t) recognized by Eq. (11) and
matching Theorem 3.1 is a member of the S FM . As
cited in [8], for the objective of determination and
experimentation, we also check the issue when a(ς , t),
b(ς , t) and c(ς , t) can be recognized by

a(ς , t) = l(ς)a(t), b(ς , t) =m(ς)b(t), c(ς , t) = n(ς)c(t). (19)
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Here l(ς), m(ς), n(ς), a(t), b(t), and c(t) are c1 functions
are not identically vanish. Then, from Theorem 3.1, we
gain:

Corollary 3.1. κ(ς) is a curvature line on M iff

a(t0) = b(t0) = c(t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ u ≤ L,
−n(ς)

dc(t0)
dt = β (ς)cosφ , m(ς)

db(t0)
dt = β (ς)sinφ .

φ(ς) = φ0(ς)dς , φ0 = φ(ς0), with φ0 = φ(ς0).

 (20)

Nevertheless, we can write that a(ς , t), b(ς , t) and
c(ς , t) depend only on the variable t; that is,
l(ς) = m(ς) = n(ς) = 1. Then, we address the Eqs. (21)
via the various expressions of φ(ς) as follows:
(i) If τ(ς) ̸= 0, then φ(ς) is a non-steady function of ς

and the Eqs. (21) can be recognized by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = β (ς)cosφ , db(t0)
dt = β (ς)sinφ .

}
(21)

(ii) If τ(ς) = 0, that is, κ(ς) is a planar curve, then φ(ς) =
φ0 is a constant and we have:
(a) If φ0 ̸= 0, the Eqs. (21) can be recognized by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = β (ς)cosφ0,
db(t0)

dt = β (ς)sinφ0.

}
(22)

(b) If φ0 = 0, the Eqs. (20) can be recognized by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = β (ς), db(t0)
dt = 0,

}
(23)

and from Eqs. (16), and (17) we have u(ς , t0) ∥t2. In this
position, κ=κ(ς) is not only a curvature line but also a
geodesic. We also let {M̂ , M } to reference the S FM
with {κ̂(ς), κ(ς)} as mutual curvature lines. In the
distinctive case in Eq. (8) if β = 0, and β = π/2 then the
S FM are coined parallel mate and right mate,
respectively.

Example 3.1. Let κ(ς) be

κ(ς) = (ς ,sinς ,cosς), 0 ≤ ς ≤ 2π.

Then,

κ
′
(ς) = (1,cosς ,−sinς), κ

′′
(ς)

= (0,−sinς ,−cosς), κ
′′′
(ς)

= (0,−cosς ,sinς).

In view of Eqs. (2), (3), (4), (5) we gain κ(ς) =−τ(ς) = 1
and

t1(ς) = (1,cosς ,−sinς),

t2(ς) = (0,−sinς ,−cosς),

t3(ς) = (0,cosς ,−sinς).

Then φ(ς) = −ς +φ0. If φ0 = 0, we acquire φ(ς) = −ς .
For

l(ς) = m(ς) = n(ς) = 1,

a(t) = t, b(t) =−tβ (ς)sinς , c(t) =−tβ (ς)cosς , β (ς) ̸= 0.

The S FM with κ(ς) is

M : z(ς , t) = (ς ,sinς ,cosς)+ t(1,−β sinς ,−β cosς)

×

 1 cosς −sinς

0 −sinς −cosς

0 cosς −sinς

 .

The S FM with κ̂(ς) as mutual curvature line is as
follows: Let r = 2 in Eq. (7), we derive
κ̂(ς) = (ς ,−sinς ,−cosς). The Serret-Frenet vectors of
κ̂(ς) are

t̂1(ς) = (cosβ ,(cosβ + sinβ )cosς ,−(cosβ + sinβ )sinς),

t̂2(ς) = (0,−sinς ,−cosς),

t̂3(ς) = (−sinβ ,(cosβ − sinβ )cosς ,(sinβ − cosβ )sinς .

Then,

M̂ : ẑ(ς , t) = (ς ,−sinς ,−cosς)+ t(1,−β sinς ,−β cosς)

×

 cosβ (cosβ + sinβ )cosς −(cosβ − sinβ )sinς

0 −sinς −cosς

−sinβ (cosβ − sinβ )cosς (sinβ − cosβ )sinς

 .

By β (ς) = 1, −1.5 ≤ t ≤ 1.5, 0 ≤ ς ≤ 2π , then Eq. (19)
is displaced. The parallel S FM is exhibited in Figure
1. Figure 2 exhibit the right S FM . The blue curve
draws κ(ς) on M and the green curve is κ̂(ς) on M̂ .

Fig. 1: Parallel S FM .

Example 3.2. Let

κ(ς) = (ς ,1+ sinς ,sinς), 0 ≤ ς ≤ 2π.
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Fig. 2: Right S FM .

Then,

t1(ς) = (1,cosς ,cosς), t2(ς) = (0,− 1√
2
,− 1√

2
),

t3(ς) = (0,
1√
2
,− 1√

2
),

with κ(ς) =
√

2sinς and τ(ς) = 0 which shows that
φ(ς) = φ0 is a steady. For

l(ς) = m(ς) = n(ς) = 1,
a(t) = t, b(t) = tβ (ς)sinφ0,

−c(t) = tβ (ς)cosφ0, β (ς) ̸= 0.

The S FM on κ(ς) is

M : z(ς , t) = (ς ,1+ sinς ,sinς)+ t(1,−β (ς)sinφ0,β cosφ0)

×

 1 cosς cosς

0 − 1√
2
− 1√

2
0 1√

2
− 1√

2

 .

Likwise, let r =
√

2 in Eq. (7), we acquire
κ̂(ς) = (ς ,sinς ,sinς −1), and

t̂1(ς) = (cosβ ,cosβ cosς +
1√
2

sinβ ,cosβ cosς − 1√
2

sinβ ),

t̂2(ς) = (0,− 1√
2
,− 1√

2
),

t̂3(ς) = (−sinβ ,−sinβ cosς − 1√
2

sinβ ,−sinβ cosς − 1√
2

sinβ ).

Comparably, we have

M̂ : ẑ(ς , t) = (ς ,sinς ,sinς −1)+ t(1,−β (ς)sinφ0,β (ς)cosφ0)

×

 cosβ cosβ cosς + 1√
2

sinβ cosβ cosς − 1√
2

sinβ

0 − 1√
2

− 1√
2

−sinβ −sinβ cosς − 1√
2

sinβ −sinβ cosς − 1√
2

sinβ

 .

By β (ς) = 1, φ0 = π/4, −2 ≤ t ≤ 2 and 0 ≤ ς ≤ 2π , then
Eq. (19) is displaced. The parallel S FM is exhibited in
Figure 3. Figure 4 exhibit the right S FM . The blue
curve draws κ(ς) on M and the green curve is κ̂(ς) on
M̂ .

Fig. 3: Parallel S FM .

Fig. 4: Parallel S FM .
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3.1 RS FM with BM as common curvature
lines

Suppose Mi : zi(ς , t) is a RS with the directrix κi(ς) and
κi(ς) is also an iso-parametric curve of zi(ς , t), then there
exists t0 such that zi(ς , t0) =κi(ς). This shows that:

Mi : zi(ς , t)− zi(ς , t0) = (t − t0)gi(ς),
0 ≤ ς ≤ L, with t, t0 ∈ [0,T ], (24)

where gi(ς)(i = 1,2,3) demonstrates the direction along
the rulings. In view of the Eq. (11), we earn

(t − t0)gi(ς) = a(ς , t)t1i(ς)+b(ς , t)t2i(ς)+ c(ς , t)t3i(ς), (25)

where 0 ≤ ς ≤ L, with t, t0 ∈ [0,T ]. In fact, Eq. (24) is a
planning of equations with 3-unknown a(ς , t), b(ς , t), and
c(ς , t). The decisions can be infrared as

a(ς , t) = (t − t0)< gi(ς), t1i(ς)>,
b(ς , t) = (t − t0)< gi(ς), t2i(ς)>,
c(ς , t) = (t − t0)< gi(ς), t3i(ς)> .

(26)

Via Eqs. (17), if κ(ς) is a curvature line on Mi, we acquire

β (ς)sinφ =< gi(ς), t2i(ς)>,
−β (ς)cosφ =< gi(ς), t3i(ς)> .

(27)

The above equations are distinctly the needful and enough
events for which Mi is a RS with a directrix κi(ς); i =
1,2,3.

In G3, there exist only 3-types of ruled surfaces
demonstrated as follows [22, 23]:
Type I . Non-conoidal or conoidal RS for which the
wrist (striction) curve does not lie in an Euclidean 2-plane
E 2.
Type I I . RS for which the wrist curve ∈ E 2.
Type I I I . Conoidal RS for which the absolute line
is oriented line in infinity.

We promptly search if κi(ς) is a principal line on these
3-types:
Type I . κ1(ς) = (ς ,κ2(ς),κ3(ς)) does not lie in E 2 and
g1(ς) = (1,g2(ς),g3(ς)) is non-isotropic. Then,

t11(ς) =
(

1,κ
′
2(ς),κ

′
3(ς)

)
,

t21(ς) =
1

κ(ς)

(
0,κ

′′
2(ς),κ

′′
3(ς)

)
,

t31(ς) =
1

κ(ς)

(
0,−κ

′′
3(ς),κ

′′
2(ς)

)
, (28)

where κ(ς) =

√(
κ′′

2(ς)
)2

+
(
κ′′

3(ς)
)2. From Eqs. (1),

(26), and (28), we find:

a(ς , t) = (t − t0), b(ς , t) = c(ς , t) = 0, (29)

which does not accomplish Theorem 3.1.
Type I I . κ2(ς) = (0,κ2(ς)),z(ς)) in E 2 and g2(u) =

(1,g2(u),g3(u)) is non-isotropic. Then,

t12(ς) =
(

0,κ
′
2(ς),κ

′
3(ς)

)
,

t22(ς) =
1

κ(ς)

(
0,κ

′′
2(ς),κ

′′
3(ς)

)
,

t32(ς) =
1

κ(ς)
(0,0,0) , (30)

where κ(ς) =

√(
κ′′

2(ς)
)2

+
(
κ′′

3(ς)
)2. From Eqs. (1),

(26), and (30), we find:

a(ς , t) = b(ς , t) = c(ς , t) = 0, (31)

which does not accomplish Theorem 3.1.

Corollary 3.2. In G3, there are no RS FM of Type I
and Type I I with BM as mutual curvature lines.
Type I I I . Let κ3(ς) = (ς ,κ2(ς),0) /∈ E 2 and
g3(ς) = (0,g2(ς),g3(ς)) is non-isotropic. Then,

t13(ς) =
(

1,κ
′
2(ς),0

)
,

t23(ς) =
1

κ(ς)

(
0,κ

′′
2(ς)0

)
,

t33(ς) =
1

κ(u)

(
0,0,κ

′′
2(ς)

)
, (32)

where κ(ς) =

√(
κ′′

2(ς)
)2. From Eqs. (1), (26), and (31),

we possess:

a(ς , t) = 0, b(ς , t) = ε(t − t0)g2(ς),
c(ς , t) = ε(t − t0)g3(ς),
g2(ς) ̸= 0, g3(ς) ̸= 0, t0 ̸= 0,

 (33)

where

ε =

{
1, if κ′′

2(ς)> 0.
−1, if κ′′

2(ς)< 0.
(34)

Eq. (33) accomplish Theorem 3.1. Suppose at each point
on κ3(ς) the ruling g3(ς) ∈ Sp{t13(ς), t23(ς), t33(ς)},
then

g3(ς) = λ (ς)t13(ς)+σ(ς)t23(ς)+µ(ς)t33(ς), (35)

for some functions λ (ς), σ(ς), and µ(ς). Using it into the
Eqs. (27), we bring

σ(ς) = β (ς)sinφ , µ(ς) =−β (ς)cosφ , λ (ς) = 0. (36)

Then,

g3(ς) = β (ς)sinφ t23(ς)−β (ς)cosφg33(ς). (37)

So, the RS FM of type M3 can be allocated as

z3(ς , t) = κ3(ς)+ tλ t13 + tβ (ς)(sinφ t23(ς)− cosφ t33(ς)),

0 ≤ ς ≤ L, 0 ≤ t ≤ T.
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Then RS FM of Type M̂3 can be allocated as

ẑ3(ς , t) = κ̂3(ς̂)+ tλ t̂13 + tβ (ς)(sinφ t̂23(ς)− cosφ t̂33(ς)),

0 ≤ ς ≤ L, 0 ≤ t ≤ T.

The functions λ (ς) and β (ς) can control the shape of M3

and M̂3

Example 3.3. Via Example 3.1, we have:

M3 : z3(ς , t) = (ς +λ t,sinς + t(λ cosς −β ),

cosς − t(λ sinς +β sin2ς))

and

M̂3 : ẑ3(ς , t)=

 ς + t(λ cosβ −β sinβ cosς)
−sinς + t[λ (cosβ + sinβ )cosς −β sin2

ς −β cos2 ς(cosβ − sinβ )]
−cosς + t[(−λ (cosβ + sinβ )sinς −β sin2ς(1+(sinβ − cosβ )]

 .

By making λ (ς) = β (ς) = ς and −0.3 ≤ t ≤ 0.3, 0 ≤
ς ≤ 2π , the parallel S FM is exhibited in Figure 5.
Figure 6 exhibit the right S FM . The blue curve is on
M and the green curve is on M̂ .

Fig. 5: Parallel RS FM .

4 Conclusion

This paper considered curvature lines and their related
surfaces in Galilean 3-space. Given a 3D curve, we
demand surfaces that are privileged with this curve as a
characteristic curve. The article, in different manner than
thus in [33], displayed the BM as curvature lines and
obtains a S FM with a BM as common curvature
lines. Then, adequate and needful events for an

Fig. 6: Right RS FM .

permissible curve to be an iso-parametric curvature line
on S are latterly extracted in this case. Kinds of the
S FM with a BM as mutual curvature lines are
plotted. Our consequences in this article participate to the
works cited in [26–33]. We aim that the results will be
helpful for investigators operating on production
evolution procedure in the manufacturing industry. The
discernment of align the techniques used here to
numerous spaces such as general relativity theory,
pseudo-Galilean space, and Heisenberg space is already
an investigation topic. We will discuss this problem in the
future.
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