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1 Introduction

For a variety of reasons, rational difference equations
recently caught the attention of many scholars. In one
sense, They provide illustrations of nonlinear problems
that, while occasionally treatable, exhibit new dynamics
as compared to the linear situation. However, because
they are commonly used in various biological models,
rational equations also make for interesting study topics.
Large-scale planar rational systems are quickly
investigated in the study of Camouzis et al. [1] for
systems of equations with nonnegative parameters in this
kind of study:

Qn+1 =
ǫ1 + ǫ2Qn + ǫ3Rn

A1 +B1Qn + C1Rn

Rn+1 =
ǫ4 + ǫ5Qn + ǫ6Rn

A2 +B2Qn + C2Rn











, n = 0, 1, 2, ...,

they offer some results and open questions.
According to the referenced paper, it is possible to

reduce some of these structures to recently explored
second-order rational equations called Ricatti equations.
Additionally, Camouzis et al. came up with an index of
325 non-comparable systems to which emphasis should
be directed because for some parameter selections, one
acquires a system that is the same as the circumstance
plus some additional factors. These systems are listed as
pairs with the notation k, l, where k and l denote the
number of the associated equation. One of many

publications on difference equation structures is one of
many that deals with the periodic positive solutions of
rational difference equations:

Qn+1 =
1

Rn

, Rn+1 =
Rn

Qn−1Rn−1
,

was acquired by Cinar in [2].
The following system of differential equations has

been solved by Elsayed [3]:

Qn+1 =
1

Rn−k

, Rn+1 =
Rn−k

QnRn

.

Elsayed and Gafel [4] dealt with periodic and systems
of difference equations and their solutions:

Qn+1 =
1± (Rn +Qn−1)

Rn−2
, Rn+1 =

1± (Qn +Rn−1)

Qn−2
.

The way the following system’s constructive solutions
behave:

Qn+1 =
Qn−1

1 +Qn−1Rn

, Rn+1 =
Rn−1

1 +Rn−1Qn

.

Kurbanli et al. [5] have examined the subject.
Kurbanli [6] explored how the difference equation

system’s solution behaved:

Qn+1 =
Qn−1

Qn−1Rn − 1
, Rn+1 =

Rn−1

Rn−1Qn − 1
,

Sn+1 =
1

SnRn

.
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Özban [7] has looked into A set of rational difference
formulas’ positive solution:

Qn+1 =
α

Rn−3
, Rn+1 =

βRn−3

Qn−qRn−q

.

The periodicity of the following systems was also
explored by Touafek et al. [8] who provided the form of
the solutions:

Qn+1 =
Rn

Qn−1(±1±Rn)
, Rn+1 =

Qn

Rn−1(±1±Qn)
.

In [9, 10] Yalçınkaya looked into the necessary
conditions for the systems listed below of difference
equations to be globally asymptotically stable:

Sn+1 =
tnSn−1 + α

tn + Sn−1
, tn+1 =

Sntn−1 + α

Sn + tn−1
,

and

Qn+1 =
Qn +Rn−1

QnRn−1 − 1
, Rn+1 =

Rn +Qn−1

RnQn−1 − 1
.

In [11, 12], Global asymptotic stability, persistence,
and boundedness of positive solutions to systems of
difference equations were all topics of study by Zhang et
al.

Qn = A+
1

Rn−p

, Rn = A+
Rn−1

Qn−rRn−s

,

and

Qn+ = A+
Rn−m

Qn

, Rn+1 = A+
Qn−m

Rn

.

Reasonable difference equations in nonlinear
structures and difference equations have both been
researched; more details can be found in [13]- [38].

Definition 1.(Periodicity) If Qn+p = Qn for all n ≥ −k.,
a sequence {Qn}

∞

n=−k is said to be periodic with period

p.

The periodicity and shape of several nonlinear
difference equation systems of order three percent are
examined in this research:

Qn+1 =
QnRn−2

Rn−1 (±1±QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (±1±RnQn−2)
,

with initially requirements that Q−2, Q−1, Q0, R−2, R−1,
and R0 are real, nonzero values.

2 The First System

This section provides the format of the system of
difference equations solutions:

Qn+1 =
QnRn−2

Rn−1 (−1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (−1 +RnQn−2)
,

(1)

in which n = 0, 1, 2, · · · and the initial circumstances
Q−2, Q−1, Q0, R−2, R−1 and R0 are arbitrary
nonzero real numbers with Q0R−2 6= −1, Q−2R0 6= 1.

Theorem 1.If {Qn, Rn} are differences in the solutions

formula system (1). Then for n = 0, 1, 2, · · · ,:

Q4n−2 =
αnwn

γn−1δn
, Q4n−1 =

βαnwn

γnδn
(−1 + γδ)n

(−1− αw)n
,

Q4n =
αn+1wn

γnδn
, Q4n+1 =

αn+1wn+1(−1 + γδ)n

eγnδn(−1− αw)n+1
,

and

R4n−2 =
γnδn

αnwn−1
, R4n−1 =

eγnδn

αnwn

(−1− αw)n

(−1 + γδ)n
,

R4n =
γnδn+1

αnwn
, R4n+1 =

γn+1δn+1(−1− αw)n

βαnwn(−1 + γδ)n+1
.

with Q−2 = c, Q−1 = b, Q0 = a, R−2 = w, R−1 =
e and R0 = d.

Proof.For n = 0, the conclusion is valid. Let’s assume that
n > 1 and n− 1 are both consistent with our assumption.
Meaning:

Q4n−6 =
αn−1wn−1

γn−2dn−1
,

Q4n−5 =
(βα)n−1wn−1(−1 + γδ)n−1

γn−1dn−1(−1− αw)n−1
,

Q4n−4 =
αnwn−1

γn−1δn−1
,

Q4n−3 =
αnwn(−1 + γδ)n−1

eγn−1δn−1(−1− αw)n
,

(2)

and

R4n−6 =
γn−1δn−1

αn−1wn−2
,

R4n−5 =
eγn−1δn−1(−1− αw)n−1

αn−1wn−1(−1 + γδ)n−1
,

R4n−4 =
γn−1δn

αn−1wn−1
,

R4n−3 =
γnδn(−1− αw)n−1

(βα)n−1wn−1(−1 + γδ)n
.

(3)

Now, it is evident from Eq. (1) that:

Q4n−2 =
Q4n−3R4n−5

R4n−4 (−1−Q4n−3R4n−5)
.
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Uisng Eqs. (3) and (3) to get:

Q4n−2 =

(

αw

(−1− αw)

)

(

γn−1δn

αn−1wn−1

)(

−1−
α

(−1− αw)

)

=
αw

(

γn−1δn

αn−1wn−1

)

(1− αw + αw)

=
αnwn

γn−1δn
,

R4n−2 =
R4n−3Q4n−5

Q4n−4 (−1 + R4n−3Q4n−5)

=

(

γδ

(−1 + γδ)

)

(

αnwn−1

γn−1dn−1

)(

−1 +

(

γδ

(−1 + γδ)

))

=
γδ

(

αnwn−1

γn−1dn−1

)

(1− γδ + γδ)

=
γnδn

αnwn−1
.

Additionally, Eq. (1) shows that:

Q4n−1 =
Q4n−2R4n−4

R4n−3 (−1−Q4n−2R4n−4)

=
αw

(

γnδn(−1− αw)n−1

(βα)n−1wn−1(−1 + γδ)n

)

(−1− αw)

=
αw(βα)n−1wn−1(−1 + γδ)n

γnδn(−1− αw)n−1 (−1− αw)

=
βαnwn(−1 + γδ)n

γnδn(−1− αw)n
,

R4n−1 =
R4n−2Q4n−4

Q4n−3 (−1 + R4n−2Q4n−4)

=
γδ

(

αnwn(−1 + γδ)n−1

eγn−1δn−1(−1− αw)n

)

(−1 + γδ)

=
γδeγn−1δn−1(−1− αw)n

αnwn(−1 + γδ)n−1 (−1 + γδ)

=
eγnδn(−1− αw)n

αnwn(−1 + γδ)n
,

and so,

Q4n =
Q4n−1R4n−3

R4n−2 (−1−Q4n−1R4n−3)

=

αw

(−1− αw)
(

γnδn

αnwn−1

)(

−1−
αw

(−1− αw)

)

=
αnwn−1αw

γnδn (1− αw + αw)
=

αn+1wn

γnδn
,

R4n =
R4n−1Q4n−3

Q4n−2 (−1 +R4n−1Q4n−3)

=

γδ

(−1 + γδ)
(

αnwn

γn−1δn

)(

−1 +
γδ

(−1 + γδ)

)

=
γn−1δnγδ

αnwn (1− γδ + γδ)
=

γndn+1

αnwn
.

Finally, Eq. (1) demonstrates that:

Q4n+1 =
Q4nR4n−2

R4n−1 (−1−Q4nR4n−2)

=
αw

(

eγnδn

αnwn

(−1− αw)n

(−1 + γδ)n

)

(−1− αw)

=
αnwnαw(−1 + γδ)n

eγnδn(−1− αw)n (−1− αw)

=
αn+1wn+1(−1 + γδ)n

eγnδn(−1− αw)n+1
,

R4n+1 =
R4nQ4n−2

Q4n−1 (−1 +R4nQ4n−2)

=
γδ

(

βαnwn

γnδn
(−1 + γδ)n

(−1− αw)n

)

(−1 + γδ)

=
γnδnγδ(−1− αw)n

βαnwn(−1 + γδ)n (−1 + γδ)

=
γn+1δn+1(−1− αw)n

βαnwn(−1 + γδ)n+1
.

The evidence is now complete.

Lemma 1.With the exception of the following scenario,

system (1)’s solution is unlimited.

Theorem 2.If γδ = 2, αw = −2, system (1) has an eight-

period then the periodic solution and it has a subsequent

form:

{Qn} =
{

γ, β, α,
αw

e
,−γ,−β,−α,−αw

e
, γ, β, α, ...

}

,

{Rn} =

{

w, e, γ,
γδ

β
,−w,−e,−δ,−

γδ

β
, w, e, δ, ...

}

.

Proof.Let’s assume that there is a prime period eight
answer first.

{Qn} =
{

γ, β, α,
αw

e
,−γ,−β,−α,−

αw

e
, γ, β, α, ...

}

,

{Rn} =

{

w, e, d,
γδ

β
,−w,−e,−δ,−

γδ

b
, w, e, δ, ...

}

,
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of the system (1), we see from the form of the solution of
system (1) that:

Q4n−2 = ±γ =
αnwn

γn−1δn
,

Q4n−1 = ±β =
βαnwn

γnδn
(−1 + γδ)n

(−1− αw)n
,

Q4n = ±α =
αn+1wn

γnδn
,

Q4n+1 = ±
αw

e
=

αn+1wn+1(−1 + γδ)n

eγnδn(−1− αw)n+1
,

and

R4n−2 = ±w =
γnδn

αnwn−1
,

R4n−1 = ±e =
eγnδn

αnwn

(−1− αw)n

(−1 + γδ)n
,

R4n = ±δ =
γnδn+1

αnwn
,

R4n+1 = ±
γδ

β
=

γn+1dδn+1(−1− αw)n

βαnwn(−1 + γδ)n+1
.

Then we get:

γδ = −αw, −1 + γδ = −1− αw = 1

Thus
γδ = 2, αw = −2.

Second, enumerate γδ = 2, αw = −2. The design of the
System (1) solution demonstrates this to us”

Q4n−2 =
αnwn

γn−1δn
= (−1)nc,

Q4n−1 =
βαnwn

γnδn
(−1 + γδ)n

(−1− αw)n
= (−1)nβ,

Q4n =
αn+1wn

γnδn
= (−1)nα,

Q4n+1 =
αn+1wn+1(−1 + γδ)n

eγnδn(−1− αw)n+1
= (−1)n

αw

e
,

and

R4n−2 =
γnδn

αnwn−1
= (−1)nw,

R4n−1 =
eγnδn

αnwn

(−1− αw)n

(−1 + γδ)n
= (−1)ne,

R4n =
γnδn+1

αnwn
= (−1)nγ,

R4n+1 =
γn+1δn+1(−1− αw)n

βαnwn(−1 + γδ)n+1
= (−1)n

γδ

β
,

As a result, the proof is finished, and we get an eight-
period periodic answer.

We believe that the systems in the next paragraphs are
sound, and the reader is therefore left to prove the
following theorems.

Qn+1 =
QnRn−2

Rn−1 (−1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (−1−RnQn−2)
.

(4)

The definitions of the form of the solutions to system (4)
are the focus of the subsequent theorem Q−2 = c, Q−1 =
b, Q0 = a, R−2 = f, R−1 = e and R0 = d.

Theorem 3.Assume that Qn and Rn are the solutions to

system (4), in which case Q0R−2, Q−2R0 6= −1. Then

for n = 0, 1, 2, · · · ,

Q4n−2 =
αnwn

γn−1δn
, Q4n−1 =

βαnwn

γnδn
(−1− γδ)n

(−1− αw)n
,

Q4n =
αn+1wn

γnδn
, Q4n+1 =

αn+1wn+1(−1− γδ)n

eγnδn(−1− αw)n+1
,

and

R4n−2 =
γnδn

αnwn−1
, R4n−1 =

eγnδn

αnwn

(−1− αw)n

(−1− γδ)n
,

R4n =
γnδn+1

αnwn
, R4n+1 =

γn+1δn+1(−1− αw)n

βαnwn(−1− γδ)n+1
.

Lemma 2.With the exception of the following scenario,

system (4)’s solution is unlimited.

Theorem 4.If γδ = αw = −2 , the system (2) has a

periodical solution with a period of four, and will appear

as depicted below. {Qn} =
{

γ, β, α,
αw

e
, γ, β, α, ...

}

,

{Rn} =

{

w, e, δ,
γδ

b
, w, e, δ, ...

}

.

Proof.Let’s start by assuming that there is a prime period
four answer.

{Qn} =
{

γ, β, α,
αw

e
, γ, β, α, ...

}

,

7{Rn} =

{

w, e, δ,
γδ

β
, w, e, δ, ...

}

.

Considering system (4), we note from the structure of its
solution that:

Q4n−2 = γ =
αnwn

γn−1δn
,

Q4n−1 = β =
βαnwn

γnδn
(−1− γδ)n

(−1− αw)n
,

Q4n = α =
αn+1wn

γnδn
,

Q4n+1 =
αw

e
=

αn+1wn+1(−1− γδ)n

eγnδn(−1− αw)n+1
,
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and

R4n−2 = w =
γnδn

αnwn−1
,

R4n−1 = e =
eγnδn

αnwn

(−1− αw)n

(−1− γδ)n
,

R4n = δ =
γnδn+1

αnwn
,

R4n+1 =
γδ

β
=

γn+1δn+1(−1− αw)n

βαnwn(−1− γδ)n+1
.

Then we get:

γδ = αw, −1− γδ = −1− αw = 1

Thus
γδ = αw = −2.

Second, assume that γδ = αw = −2. Then we see
from the form of the solution of system (4) that Secondly,
suppose γδ = αw = −2.. The shape of the solution to
System (4) shows us that:

Q4n−2 =
αnwn

γn−1δn
= γ,

Q4n−1 =
βαnwn

γnδn
(−1− γδ)n

(−1− αw)n
= β,

Q4n =
αn+1wn

γnδn
= α,

Q4n+1 =
αn+1wn+1(−1− γδ)n

eγnδn(−1− αw)n+1
=

αw

e
,

and

R4n−2 =
γnδn

αnwn−1
= w,

R4n−1 =
eγnδn

αnwn

(−1− αw)n

(−1− γδ)n
= e,

R4n7 = fracγnδn+1αnwn = γ,

R4n+1 =
γn+1δn+1(−1− αw)n

βαnwn(−1− γδ)n+1
=

γδ

β
.

Since we currently have a periodical solution for period 4,
the proof is finished.

3 The Second System:

The solutions to the set of difference equations are given
in this section.

Qn+1 =
QnRn−2

Rn−1 (−1 +QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1 +RnQn−2)
,

(5)

in which n = 0, 1, 2, · · · and the initial circumstances
Q−2, Q−1, Q0, R−2, R−1 and R0 are random nonzero
real values that have Q0R−2 6= 1.

Theorem 5.If {Qn, Rn} are answers to the system of three

difference equations. Then for n = 0, 1, 2, · · · ,

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1 + (4)jγδ),

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1 + (4j + 1)γδ)

(−1 + αw)n
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1 + (4j + 2)γδ),

Q4n+1 =
αn+1wn+1

eγnδn(−1 + αw)n+1

n−1
∏

j=0

(1 + (4j + 3)γδ),

and

R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

1

(1 + (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

(−1 + αw)n

n−1
∏

j=0

(1 + (4j + 3)γδ)

,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

1

(1 + (4j + 4)γδ)
,

R4n+1 =
γn+1dδn+1

βαnwn(1 + γδ)

(−1 + αw)n

n−1
∏

j=0

(1 + (4j + 5)γδ)

,

where Q−2 = γ, Q−1 = β, Q0 = α, R−2 = w, R−1 =
e and R0 = δ.

Proof.Since n = 0, the conclusion is valid. Let’s now
assume that n > 0 and that n − 1 are consistent with our
assumption. meaning,

Q4n−6 =
αn−1wn−1

γn−1δn−2

n−2
∏

j=0

(1 + (4j)γδ),

Q4n−5 =
(βα)n−1wn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 1)γδ)

(−1 + αw)n−1
,

Q4n−4 =
αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ),

Q4n−3 =
αnwn

eγn−1δn−1

n−2
∏

j=0

(1 + (4j + 3)γδ)

(−1 + αw)n
,

and
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R4n−6 =
γn−1δn−1

αn−1wn−2

n−2
∏

j=0

1

(1 + (4j + 2)γδ)
,

R4n−5 =
eγn−1δn−1

αn−1wn−1

(−1 + αw)n−1

n−2
∏

j=0

(1 + (4j + 3)γδ)

,

R4n−4 =
γn−1δn

αn−1wn−1

n−2
∏

j=0

1

(1 + (4j + 4)γδ)
,

R4n−3 =
γnδn

(βα)n−1wn−1(1 + γδ)

(−1 + αw)n−1

n−2
∏

j=0

(1 + (4j + 5)γδ)

.

Now, Eq. (5) indicates that:

Q4n−2 =
Q4n−3R4n−5

R4n−4 (−1 +Q4n−3R4n−5)

=

(

αw

(−1 + αw)

)

(

γn−1δn

αn−1wn−1

n−2
∏

j=0

1

(1 + (4j + 4)γδ)

)×

1
(

−1 +

(

αw

(−1 + αw)

))

=
αw

(

γn−1δn

αn−1wn−1

n−2
∏

j=0

1

(1 + (4j + 4)γδ)

)

(1− αw + αw)

=
αn−1wn−1αw

γn−1δn

n−2
∏

j=0

(1 + (4j + 4)γδ)

=
αnwn

γn−1δn

n−1
∏

j=0

(1 + (4j)γδ),

R4n−2 =
R4n−3Q4n−5

Q4n−4 (1 +R4n−3Q4n−5)

=











γδ

(1 + γδ)

n−2
∏

j=0

(1 + (4j + 1)γδ)

n−2
∏

j=0

(1 + (4j + 5)γδ)











(

αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

)×

1










1 +











γδ

(1 + γδ)

n−2
∏

j=0

(1 + (4j + 1)γδ)

n−2
∏

j=0

(1 + (4j + 5)γδ)





















=

γδ

(1 + (4n − 3)γδ)
(

αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

)

(

1 +

(

γδ

(1 + (4n − 3)γδ)

))

=
γδ

(

αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

)

(1 + (4n − 3)γδ + γδ)

=
γn−1δn−1γδ

(

αnwn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

)

(1 + (4n − 2)γδ)

=
γnδn

αnwn−1

n−1
∏

j=0

(1 + (4j + 2)γδ)

.

Moreover, Eq. (5) illustrates that:

Q4n−1 =
Q4n−2R4n−4

R4n−3 (−1 +Q4n−2R4n−4)

=
αw











γnδn

(βα)n−1wn−1(1 + γδ)

(−1 + αw)n−1

n−2
∏

j=0

(1 + (4j + 5)γδ)











(−1 + αw)

=

(βα)n−1wn−1(1 + γδ)αw
n−2
∏

j=0

(1 + (4j + 5)γδ)

γnδn(−1 + αw)n−1 (−1 + αw)

=

βαnwn
n−1
∏

j=0

(1 + (4j + 1)γδ)

γnδn(−1 + αw)n
,

R4n−1 =
R4n−2Q4n−4

Q4n−3 (1 +R4n−2Q4n−4)

=

(

γδ

(1 + (4n− 2)γδ)

)











αnwn

eγn−1δn−1

n−2
∏

j=0

(1 + (4j + 3)γδ)

(−1 + αw)n











×

1
(

1 +

(

γδ

(1 + (4n− 2)γδ)

))
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=
γδ











αnwn

eγn−1δn−1

n−2
∏

j=0

(1 + (4j + 3)γδ)

(−1 + αw)n











×

1

(1 + (4n− 2)γδ + γδ)

=
eγn−1δn−1γδ(−1 + αw)n

αnwn
n−2
∏

j=0

(1 + (4j + 3)γδ) (1 + (4n− 1)γδ)

=
eγnδn(−1 + αw)n

αnwn
n−1
∏

j=0

(1 + (4j + 3)γδ)

.

We can also demonstrate the opposite formula. The
evidence is conclusive.

4 The Third System:

We look into the answers to a set of two difference
equations in this part:

Qn+1 =
QnRn−2

Rn−1 (1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1 +RnQn−2)
,

(6)

in which n ∈ N0 and the initial circumstances Q−2, Q−1,
Q0, R−2, R−1 and R0 are randomly chosen nonzero real
numbers.

Theorem 6.Assuming that the solutions to system (6) are

{Qn, Rn}. Then we observe that the subsequent formula

gives all of the solutions to the system (6) for

n = 0, 1, 2, · · · :

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1 + (4j)γδ)

(1− (4j + 2)αw)
,

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1 + (4j + 1)γδ)

(1− (4j + 3)αw)
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1 + (4j + 2)γδ)

(1− (4j + 4)αw)
,

Q4n+1 =
αn+1wn+1

eγnδn(1 − αw)

n−1
∏

j=0

(1 + (4j + 3)γδ)

(1− (4j + 5)αw)
,

and

R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

(1− (4j)αw)

(1 + (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

n−1
∏

j=0

(1− (4j + 1)αw)

(1 + (4j + 3)γδ)
,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

(1 − (4j + 2)αw)

(1 + (4j + 4)γδ)
,

R4n+1 =
cn+1δn+1

βαnwn(1 + γδ)

n−1
∏

j=0

(1 − (4j + 3)αw)

(1 + (4j + 5)γδ)
,

where Q−2 = γ, Q−1 = β, Q0 = α, R−2 = w, R−1 =
e and R0 = δ.

Proof.When n = 0, the conclusion is valid. Let’s now
assume that n > 0 and that n − 1 are consistent with our
assumption. meaning,

Q4n−6 =
αn−1wn−1

γn−1δn−2

n−2
∏

j=0

(1 + (4j)γδ)

(1 − (4j + 2)αw)
,

Q4n−5 =
(βα)n−1wn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 1)γδ)

(1 − (4j + 3)αw)
,

Q4n−4 =
αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

(1− (4j + 4)αw)
,

Q4n−3 =
αnwn

eγn−1δn−1(1− αw)

n−2
∏

j=0

(1 + (4j + 3)γδ)

(1− (4j + 5)αw)
,

and

R4n−6 =
γn−1δn−1

αn−1wn−2

n−2
∏

j=0

(1− (4j)αw)

(1 + (4j + 2)γδ)
,

R4n−5 =
eγn−1δn−1

αn−1wn−1

n−2
∏

j=0

(1− (4j + 1)αw)

(1 + (4j + 3)γδ)
,

R4n−4 =
γn−1δn

αn−1wn−1

n−2
∏

j=0

(1− (4j + 2)αw)

(1 + (4j + 4)γδ)
,

R4n−3 =
γnδn

(βα)n−1wn−1(1 + γδ)

n−2
∏

j=0

(1− (4j + 3)αw)

(1 + (4j + 5)γδ)
.

Now, Eq. (6) indicates that:

Q4n−2 =
Q4n−3R4n−5

R4n−4 (1−Q4n−3R4n−5)
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=

(

αw

(1− αw)

n−2
∏

j=0

(1− (4j + 1)αw)

(1− (4j + 5)αw)

)

(

γn−1δn

αn−1wn−1

n−2
∏

j=0

(1 − (4j + 2)αw)

(1 + (4j + 4)γδ)

)×

1
(

1−

(

αw

(1 − αw)

n−2
∏

j=0

(1− (4j + 1)αw)

(1− (4j + 5)αw)

))

=

(

αw

(1 − (4n− 3)αw)

)

(

γn−1δn

αn−1wn−1

n−2
∏

j=0

(1 − (4j + 2)αw)

(1 + (4j + 4)γδ)

)

1
(

1−
αw

(1 + (4n− 3)αw)

)

=
αn−1wn−1αw

γn−1δn (1− (4n− 3)αw − αw)

n−2
∏

j=0

(1 + (4j + 4)γδ)

(1− (4j + 2)αw)

=
αnwn

γn−1δn (1− (4n− 2)αw)

n−2
∏

j=0

(1 + (4j + 4)γδ)

(1− (4j + 2)αw)

=
αnwn

γn−1δn

n−1
∏

j=0

(1 + (4j)γδ)

(1− (4j + 2)αw)
,

R4n−2 =
R4n−3Q4n−5

Q4n−4 (1 +R4n−3Q4n−5)

=

(

γδ

(1 + γδ)

n−2
∏

j=0

(1 + (4j + 1)γδ)

(1 + (4j + 5)γδ)

)

(

αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

(1− (4j + 4)αw)

)×

1
(

1 +

(

γδ

(1 + γδ)

n−2
∏

j=0

(1 + (4j + 1)γδ)

(1 + (4j + 5)γδ)

))

=

(

γδ

(1 + (4n− 3)γδ)

)

(

αnwn−1

γn−1δn−1

n−2
∏

j=0

(1 + (4j + 2)γδ)

(1− (4j + 4)αw)

)×

1
(

1 +
γδ

(1 + (4n− 3)γδ)

)

=
γn−1dn−1γδ

αnwn−1 (1 + (4n− 3)γδ + γδ)

n−2
∏

j=0

(1− (4j + 4)αw)

(1 + (4j + 2)γδ)

=
γnδn

αnwn−1 (1 + (4n− 2)γδ)

n−2
∏

j=0

(1− (4j + 4)αw)

(1 + (4j + 2)γδ)

=
γnδn

αnwn−1

n−1
∏

j=0

(1− (4j)αw)

(1 + (4j + 2)γδ)
.

Additionally, Eqs. (6) show that:

Q4n−1 =
Q4n−2R4n−4

R4n−3 (1−Q4n−2R4n−4)

=

(

αw

(1− (4n− 2)αw)

)

(

γnδn

(βα)n−1wn−1(1 + γδ)

n−2
∏

j=0

(1 − (4j + 3)αw)

(1 + (4j + 5)γδ)

)×

1
(

1−

(

αw

(1− (4n− 2)αw)

))

=
(βα)n−1wn−1(1 + γδ)αw

(γnδn) (1− (4n− 2)αw − αw)

n−2
∏

j=0

(1 + (4j + 5)γδ)

(1− (4j + 3)αw)

=
βαnwn(1 + γδ)

γnδn (1− (4n− 1)αw)

n−2
∏

j=0

(1 + (4j + 5)γδ)

(1 − (4j + 3)αw)

=
βαnwn

γnδn

n−1
∏

j=0

(1 + (4j + 1)γδ)

(1− (4j + 3)αw)
,

R4n−1 =
R4n−2Q4n−4

Q4n−3 (1 +R4n−2Q4n−4)

=

(

γδ

(1 + (4n− 2)γδ)

)

(

αnwn

eγn−1δn−1(1− αw)

n−2
∏

j=0

(1 + (4j + 3)γδ)

(1− (4j + 5)αw)

)×

1
(

1 +
γδ

(1 + (4n− 2)γδ)

)

=
γδ

(

αnwn

eγn−1δn−1(1− αw)

n−2
∏

j=0

(1 + (4j + 3)γδ)

(1− (4j + 5)αw)

)×

1

(1 + (4n− 2)γδ + γδ)

=
γδγn−1δn−1(1− αw)

αnwn (1 + (4n− 1)γδ)

n−2
∏

j=0

(1 − (4j + 5)αw)

(1 + (4j + 3)γδ)

=
eγnδn

αnwn

n−1
∏

j=0

(1− (4j + 1)αw)

(1 + (4j + 3)γδ)
.

We may also demonstrate the other relationships. The
evidence is conclusive.
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5 Other Systems

Since all of the theorems being proved here are similar
to those in the systems of difference equations discussed
before, they will not all be proved here Q−2 = γ, Q−1 =
β, Q0 = α, R−2 = w, R−1 = e and R0 = δ.

Qn+1 =
QnRn−2

Rn−1 (1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1−RnQn−2)
.

(7)

Qn+1 =
QnRn−2

Rn−1 (−1 +QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1−RnQn−2)
.

(8)

Qn+1 =
QnRn−2

Rn−1 (−1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1 +RnQn−2)
.

(9)

Qn+1 =
QnRn−2

Rn−1 (−1−QnRn−2)
,

Rn+1 =
RnQn−2

Qn−1 (1−RnQn−2)
.

(10)

Theorem 7.The formula below provides the solutions of

the subsequent system (5) n = 0, 1, 2, · · · :

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1 − (4j)γδ)

(1− (4j + 2)αw)
,

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1− (4j + 1)γδ)

(1− (4j + 3)αw)
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1 − (4j + 2)γδ)

(1− (4j + 4)αw)
,

Q4n+1 =
αn+1wn+1

eγnδn(1 − αw)

n−1
∏

j=0

(1 − (4j + 3)γδ)

(1− (4j + 5)αw)
,

and

−

R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

(1 − (4j)αw)

(1− (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

n−1
∏

j=0

(1− (4j + 1)αw)

(1− (4j + 3)γδ)
,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

(1− (4j + 2)αw)

(1− (4j + 4)γδ)
,

R4n+1 =
cn+1δn+1

βαnwn(1 − γδ)

n−1
∏

j=0

(1− (4j + 3)αw)

(1− (4j + 5)γδ)
.

Theorem 8.If {Qn, Rn} are solutions of the difference

equation system (6) where the initial circumstances

Q−2, Q−1, Q0, R−2, R−1 and R0 are arbitrarily

nonzero real numbers with Q−2R0 6= 1. Then, for

n = 0, 1, 2, · · · :

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1− (4j)γδ),

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1− (4j + 1)γδ)

(−1 + αw)n
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1− (4j + 2)γδ),

Q4n+1 =
αn+1wn+1

eγnδn(−1 + αw)n+1

n−1
∏

j=0

(1 − (4j + 3)γδ),

and

R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

1

(1− (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

(−1 + αw)n

n−1
∏

j=0

(1 − (4j + 3)γδ)

,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

1

(1 − (4j + 4)γδ)
,

R4n+1 =
γn+1δn+1

βαnwn(1− γδ)

(−1 + αw)n

n−1
∏

j=0

(1− (4j + 5)γδ)

.

Theorem 9.If {Qn, Rn} are solutions of the difference

equations system (7) where the initial circumstances

Q−2, Q−1, Q0, R−2, R−1, and R0 are arbitrarily

nonzero real numbers with Q−2R0 6= −1. Then, for

n = 0, 1, 2, · · · :

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1 + (4j)γδ),

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1 + (4j + 1)γδ)

(−1− αw)n
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1 + (4j + 2)γδ),

Q4n+1 =
αn+1wn+1

eγnδn(−1− αw)n+1

n−1
∏

j=0

(1 + (4j + 3)γδ),

and
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R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

1

(1 + (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

(−1− αw)n

n−1
∏

j=0

(1 + (4j + 3)γδ)

,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

1

(1 + (4j + 4)γδ)
,

R4n+1 =
γn+1δn+1

βαnwn(1 + γδ)

(−1− αw)n

n−1
∏

j=0

(1 + (4j + 5)γδ)

.

Theorem 10.Consider that {Qn, Rn} are solutions of the

system (8) with the initial circumstances Q−2, Q−1, Q0,

R−2, R−1, and R0 are arbitrarily nonzero real numbers

with Q−2R0 6= −1. Then, for n = 0, 1, 2, · · · :

Q4n−2 =
αnwn

γnδn−1

n−1
∏

j=0

(1 − (4j)γδ),

Q4n−1 =
βαnwn

γnδn

n−1
∏

j=0

(1− (4j + 1)γδ)

(−1− αw)n
,

Q4n =
αn+1wn

γnδn

n−1
∏

j=0

(1− (4j + 2)γδ),

Q4n+1 =
αn+1wn+1

eγnδn(−1− αw)n+1

n−1
∏

j=0

(1− (4j + 3)γδ),

and

R4n−2 =
γnδn

αnwn−1

n−1
∏

j=0

1

(1− (4j + 2)γδ)
,

R4n−1 =
eγnδn

αnwn

(−1− αw)n

n−1
∏

j=0

(1− (4j + 3)γδ)

,

R4n =
γnδn+1

αnwn

n−1
∏

j=0

1

(1− (4j + 4)γδ)
,

R4n+1 =
γn+1δn+1

βαnwn(1− γδ)

(−1− αw)n

n−1
∏

j=0

(1− (4j + 5)γδ)

.

6 Numerical Examples

In this section, we take a look at several fascinating
numerical examples in order to support our theoretical

talks and to explain the findings of the other sections.
These illustrations show several qualitative behaviors of
nonlinear difference equation solutions.

Example 1.We take into account a numerical example of
the difference system (1) with the initial values Q−2 =
0.5, Q−1 = 4, Q0 = 0.2, R−2 = 0.7, R−1 = 8, and
R0 = 0.2, (See Fig. 1).
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Fig. 1: Example 1.

Example 2.We consider a fascinating example for the
difference system (1) with the beginning circumstances.
Q−2 = 5, Q−1 = −4, Q0 = −2/7, R−2 = 7, R−1 = 8,
and R0 = 0.4, (See Fig. 2).
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Fig. 2: Example 2.

Example 3.With the initial circumstances, we investigate
an intriguing numerical example for the difference system
(5), Q−2 = 0.15,Q−1 = −0.24,Q0 = 0.13,R−2 = 0.17,
R−1 = 0.18, and R0 = 0.2, see Fig. 3.
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Fig. 3: Example 3.

Example 4.If we consider system (2) with the initial
conditions: Q−2 = 5, Q−1 = −4, Q0 = −2/7, R−2 = 7,
R−1 = 8, and R0 = −0.4, we get Fig. 4.
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Fig. 4: Example 3.

Example 5.When we input the beginning conditions:
Q−2 = 0.15, Q−1 = −0.24, Q0 = 0.13, R−2 = 0.17,
R−1 = 0.18, and R0 = 0.2. We presume the difference
equations system (6), see Fig. 5.
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Fig. 5: Example 5

Example 6.Fig. 6 depicts the behavior of the difference
system’s solution under its initial conditions:
Q−2 = 0.11, Q−1 = −0.14, Q0 = −0.13, R−2 = 0.14,
R−1 = −0.128, and R0 = 0.22.
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Fig. 6: Example 6

Example 7.When we set the initial circumstances
Q−2 = 0.41, Q−1 = 0.6, Q0 = 0.13, R−2 = 0.14,
R−1 = 0.38, and R0 = −0.22, we take the system of
difference equations (7) into consideration, see Fig. 7.
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Fig. 7: Example 7.

Example 8.Fig. 8 depicts the behaviour of the difference
system’s solution under the initial conditions: Q−2 = 1.9,
Q−1 = −0.6, Q0 = −0.3, R−2 = −0.4, R−1 = −0.3
and R0 = 0.2.
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Fig. 8: Example 8.

7 Conclusion

In this article, the solvability of systems of third-order
rational difference equations has been discussed.
Consequently, according to their nonzero initial
conditions, several systems are introduced concerning
their periodicity. In addition, each system is examined
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and presented as associated with its theoretical existence
and uniqueness. Finally, several numerical examples are
depicted to ensure the theoretical studies of the presented
and developed systems of third-order rational difference
equations.
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of positive solutions of the system of rational difference

equations, Math. Comput. Mod., 53, 1261-1267 (2011).

[6] A. S. Kurbanli, On the behavior of solutions of the system

of rational difference equations, Adv. Differ. Equ., 2011, 40

(2011).

[7] A. Y. Ozban, On the system of rational difference equations

Qn+1 = a/Rn−3, Rn+1 = bRn−3/Qn−qRn−q, Appl.

Math. Comp., 188(1), 833-837 (2007).

[8] N. Toufek and E. M. Elsayed, On the periodicity of some

systems of nonlinear difference equations, Bull. Math. Soc.

Sci. Math. Roumanie, Tome, 55(103), 217-224 (2012).

[9] I. Yalcinkaya, On the global asymptotic stability of a second-

order system of difference equations, Disc. Dyn. Nat. Soc.,

2008, 860152 (2008).
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