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Abstract: This paper presents an innovative approach for hate speech detection on social media platforms utilizing optimized deep

learning algorithms. Capitalizing on the strengths of four machine learning algorithms (Decision Trees, Support Vector Machines,

Naive Bayes, and K-Nearest Neighbors), two deep learning algorithms (Bidirectional Long Short-Term Memory and Recurrent Neural

Networks), and a transformer model (Bidirectional Encoder Representations from Transformers, BERT), this research aims to classify

text as hate speech efficiently. By implementing feature extraction techniques—TF-IDF for machine learning models and embedding

layers for deep learning and transformer models—we leverage two datasets comprising English tweets from Twitter and Facebook. The
results indicate a superior performance of the BERT model, achieving an impressive 95% accuracy on the HSOL dataset and 67% on

the HASOC dataset, thus significantly advancing the hate speech detection methodology. This paper’s methods and findings enhance

the existing body of knowledge and provide a reliable model for improving online social interaction safety. The novelty of our work

lies in the comprehensive preprocessing and the application of BERT in this context, marking a significant scientific contribution with

practical implications for creating a more inclusive online community.

Keywords: Hate Speech, Transformer Models, Social Media Text Analysis , Deep Learning, Transformer Neural Networks,

Bidirectional Encoder Representations from Transformers (BERT), Emotion and Speech Analysis

1 Introduction

In an era dominated by technology, people constantly use
digital platforms to share experiences and express their
opinions. Although social media undoubtedly has many
benefits, it unfortunately provides people with a means to
hide behind a layer of anonymity. As individuals engage
in discussions across different platforms, the risk of being
targeted and exposed to harmful and abusive language
significantly increases. This has a detrimental impact on
users’ emotional and mental well-being [1], ultimately

leading to, in some extreme cases, acts of violence and
hate crimes. To alleviate these repercussions, several
companies, such as YouTube, Facebook, and Yahoo, ban
hate speech by deploying algorithmic solutions to identify
and distinguish hateful content [3]. These hate speech
detection algorithms are crucial for creating a safer online
environment and preserving the well-being of individuals
interacting over the internet.

There are multiple obstacles associated with hate
speech detection. The primary challenge is that hate
speech carries context with it and can have different
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interpretations depending on its use. Another challenge is
that people cannot reach a consensus on what can be
categorized as hate speech, making the creation of a
universal machine-learning algorithm that detects it
difficult. Furthermore, since the datasets are labeled
manually, they generally reflect the opinions of the people
who collected or labeled the data [4].

Artificial intelligence has brought about substantial
advancements over the years. It has evolved from basic
rule-based systems to concepts such as machine learning
(ML), and deep learning (DL). Machine learning models
rely on data patterns to make predictions, while deep
learning, a subset of ML, use complex neural networks to
extract features and patterns from complex data
automatically. While ML models are effective for various
problems, DL models excel at capturing sequential
patterns and text classification tasks as they can
understand and analyze the contextual dependencies
within textual data.

Deep learning models include Recurrent Neural
Networks (RNNs), and Long Short-Term Memory
(LSTM) networks. RNNs are used in tasks that depend on
the order and context of the input data to make
predictions. However, when processing long data
sequences, they face the vanishing gradient problem,
which hinders their ability to effectively capture
information from distant parts of the sequence during
training. LSTM’s architecture addresses this problem,
making it better suited for tasks like natural language
processing (NLP) and text generation. Transformer
models, such as Bidirectional Encoder Representations
from Transformers (BERT), are a type of deep learning
architecture based on a multi-head attention mechanism
that has also made significant achievements in the task of
natural language processing.

Our paper addresses the hate speech detection
problem by employing a comprehensive approach
involving seven distinct models: four ML models, two DL
models, and one transformer model. We aim to conduct a
comparative analysis to determine the model that yields
the best results. These models were applied to two distinct
datasets to better assess each model’s performance.

To summarise, the following represents our
contribution:

–Extensive data preprocessing of tweets entails
removing Twitter labels, URLs, contractions, and
emojis, replacing usernames, lemmatization, and
converting to lowercase. Punctuation, special
characters, and numbers, stop words are also
removed.

–Feature extraction using Term Frequency-Inverse
Document Frequency (TF-IDF) for machine learning
models and embedding layers for deep learning and
transformer models.

–A thorough comparison evaluating decision trees,
Support Vector Machines (SVM), k-nearest
Neighbors (KNN), Naive Bayes (NB), Bidirectional

LSTM (BiLSTM), Recurrent Neural Networks
(RNN), and BERT alongside each other.

–A comprehensive analysis of results when the models
are applied on two different datasets that contain a
significantly large number of tweets.

The rest of the paper is structured as follows. Section
2 presents relevant literature and prior work in the field.
Section 3 introduces our methodology, encompassing
data collection, preprocessing, feature extraction
techniques, data splitting, optimization parameters for
both Machine Learning (ML) and Deep Learning (DL), as
well as the classification based on ML and the DL
methods. Additionally, this section covers the
implementation of a Transformer-based model.
Experimental results are detailed in section 4. Section 5
concludes the paper and provides future work.

2 Related Work

Many approaches of Hate Speech Detection have been
explored over the years. In [5], Md Saroar et al.
systematically reviewed all of the literature in the hate
speech detection area. In addition, [6] surveys several text
feature extractions, dimensionality reduction methods,
algorithms and techniques, and evaluation methods.
Finally, [7] also examines the five basic baseline
components of hate speech classification using ML
algorithms – data collection and exploration, feature
extraction, dimensionality reduction, classifier selection
and training, and model evaluation. The goals of this
study were to present the critical steps involved in hate
speech detection using ML algorithms and display the
weaknesses and strengths of each method to guide
researchers in the algorithm choice dilemma. For this
project, we were only concerned with the results of
several algorithms in classifying hate speech. Described
below is a summary of the methods used in several papers
to classify hate speech:

–Machine Learning Methods
In [8], compared the performance of Naı̈ve Bayes,
SVC, Logistic Regression, Decision Trees, Random
Forest, SGD, Ridge, Perceptron, and Nearest
Centroids in the Detection of Hate Speech. They
evaluated the algorithms across data collected from
popular OSNs with a web crawler. The labels of the
dataset were hate/not hate. The highest accuracy
(97.59%) was achieved with the Complement Naı̈ve
Bayes method. In [9] , compared Naı̈ve Bayes,
Decision Tree, Multi Level Perceptron (MLP),
Support Vector Machine (SVM), and AdaBoost
Classifier. These algorithms were run on 4,002
samples of data collected by crawling Twitter. The
dataset’s labels were hate / not hate In [10] ,
Compared Naive Bayes, SVM, KNN, Decision Tree,
Random Forest, AdaBoost, MLP, and Logistic
Regression on 14509 tweets collected by a web
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crawler. Each tweet fell into one of the following
categories: hate speech, offensive but not hate speech,
and neither hate speech nor offensive speech. When
used with the support vector machine algorithm,
Bigram features best perform with 79% . In [11] ,
used SVM and a deep learning algorithm to classify
comments from Italian pages on Facebook to strong
hate, weak hate, no hate. The deep learning algorithm
performed better than SVM. In [12] , used logistic
regression, naive Bayes, decision trees, random
forests, and linear SVMs to classify 24,783 tweets
into hate, offensive language, and neither hate nor
offensive language. logistic regression with L2
regularization performed best and yielded an accuracy
of 91%.

–Deep Learning Methods
In [11], Fabio Del Vigna et al. have used SVM and
LSTM to classify comments from Italian pages on
Facebook as strong hate, weak hate, and no hate. The
LSTM algorithm performed better with an accuracy
of 79%. In [13], researchers classified 6,655 tweets
into racism, sexism, both, non-hate. They used CNN
with multiple embedding layers: Random Vectors,
Word2vec, Character n-grams, and Word2vec +
character n - n-grams. The Word2vec model without
character n-grams achieved the best results of all the
compared models, with precision, recall, and F-score
values of 85.66%, 72.14%, and 78.29%, respectively.
Also using a dataset from Twitter, [14] and [15] use
the same dataset of 16k tweets to classify them into
racism, sexism, or neutral. [?] shows applying,
Baseline Methods, DNNs only, and DNNs + GBDT
Classifier to classify 16k tweets into l. The best
method was LSTM+Random Embedding+GBDT
with precision of 93%. On the other hand, [15] uses
Ensembling LSTM models for the task and achieved
an F-score of 0.9517 for the Neutral class, 0.7084 for
the Racism class, and 0.9986 for the Sexism class. In
[16], explored a wider range of algorithms to classify
Arabic tweets in 3 datasets into misogyny, racism,
religious discrimination, abuse, and normal. They
used SG-CNN, SG-CNN-LSTM, SG-BiLSTM-CNN,
and MUSE for the task. The best accuracy was
obtained with the SG-BiLSTM-CNN model
(Accuracy = 80%). In [17] explores the LSTM-CNN
variation more by applying TextCNN, Bi-GRU-CNN
and Bi-GRU-LSTM-CNN to detect Hate Speech in
Vietnamese social media text. The
Bi-GRU-LSTM-CNN achieved the best performance
among the three models with an F score of 70.576%.
Furthermore,In [18] proposed 2 NN models,
CNN-LSTM and LSTM-CNN, to classify text into
positive and negative. The best model was
LSTM-CNN at 75.2% accuracy. The most
comprehensive literature on comparing deep learning
algorithms was by Ryan Ong [19]. He compared 13
different LSTM and CNN variations and produced the
highest accuracy with the GRU model (79%).

–Transformer Methods
–[4] Compared BERT with SVM and ELMO+SVM

to classify text into hate or not hate and classify
the text as hate, offensive, or profane. BERT +
SVM performed better for both tasks, yielding an
accuracy of 88.33% for task 1 and 81.57% for task
2.

–[20] used BERT, RoBERTa, DistilBERT, XLNET,
and LSTM with attention to classify text into hate
speech, offensive, and neither. The best performer
was DistilBERT, with an accuracy of 92%.

3 Methodology

Figure 1 and proposed algorithm illustrate the proposed
framework for Hate Speech Detection (HSD), which
contains mainly seven significant steps:

–Data collection
–Data preprocessing
–Features extraction techniques
–Data splitting
–Optimization parameters for Machine Learning (ML)
and Deep Learning (DL)

–Classification based on ML and the proposed DL
–Transformer-based model
–Prediction and evaluation metrics

3.1 Data collection

Some criteria were defined before the collection of our
data. Our task focused on English, emoticons containing
emojis featuring and hashtags including tweets from
social media platforms. Given such criteria, the time
constraint, and the limited budget, it was impossible to
collect such data from Twitter (especially since the
removal of the free plan of the Twitter API). As a result,
we focused on 2 distinct public English datasets featuring
hate speech data. The data sets are HASOC and Thomas
Davidson’s Hate Speech and Offensive Language
Datasets. The data in those datasets was collected from
Facebook and Twitter Table 1.

1. Thomas Davidson’s Hate Speech and Offensive

Language Dataset (HSOL) [21]: This dataset was
collected in 2017. It includes 24,783 English tweets
annotated with hate speech, offensive, and neither
labels (1,430 hate speech, 19,190 offensive, and 4,163
neither). The authors used a hate speech lexicon
containing words and phrases identified by internet
users as hate speech, compiled by Hatebase.org.
Using the Twitter API, they searched for tweets
containing terms from the lexicon, resulting in a
sample of tweets from 33,458 Twitter users. They
extracted the timeline for each user, resulting in a set
of 85.4 million tweets. From this corpus they took a
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Fig. 1: The Proposed System of Hate Speech Detection.

random sample of about 25k tweets containing terms from the lexicon and had them manually coded by
CrowdFlower (CF) workers.
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Data: Public English datasets (HSOL, HASOC)

featuring hate speech from Twitter and Facebook.

Result: Best performing model and its metrics.

1 // Data Collection

2 Collect data from public English datasets (HSOL,

HASOC) featuring hate speech from Twitter and
Facebook

3 // Data Preprocessing

4 Remove Twitter-specific labels and URLs

5 Replace mentions with ”@user”

6 Remove emojis, punctuation, and numbers

7 Convert all text to lowercase
8 Remove stop words

9 Apply lemmatization

10 // Feature Extraction

11 Use TF-IDF for Machine Learning models

12 Use embedding layers for Deep Learning and

Transformer models
13 Calculate TF-IDF for each term in the document

14 Term Frequency (TF): Calculate the number of times a

term appears in the document divided by the total

number of terms in the document

15 Inverse Document Frequency (IDF): Calculate the log of

the ratio of the total number of documents to the
number of documents containing the term

16 TF-IDF: Multiply TF by IDF for each term

17 // Data Splitting

18 Divide the data into 80% for training, 10% for

validation, and 10% for testing

19 // Hyperparameter Optimization

20 For ML models: Use Random Search and Grid Search

to optimize parameters

21 Optimize parameters like the number of neighbors (K)

for KNN and depth for DT

22 For DL models: Use Keras-tuner to optimize embedding

size, hidden layer units, and dropout rates
23 // Model Training and Classification

24 Train Decision Trees, KNN, SVM, Naive Bayes,

BiLSTM, RNN, and BERT models on the training set

25 Validate models on the validation set

26 // Transformer-Based Model

27 Implement and fine-tune the BERT model for
bidirectional contextual understanding

28 // Evaluation Metrics

29 Compute Accuracy (ACC), Precision (PREC), Recall

(REC), and F1-Score (F1) for each model on the

testing set

30 ACC: Calculate (True Positives + True Negatives) /
(Total Population)

31 PREC: Calculate True Positives / (True Positives + False

Positives)

32 REC: Calculate True Positives / (True Positives + False

Negatives)

33 F1: Calculate 2 * (Precision * Recall) / (Precision +
Recall)

34 // Select Best Model

35 Determine the model with the highest performance

metrics

36 return Best performing model and its metrics

Algorithm 1: Detailed Hate Speech Detection
Methodology

2. Hate Speech and Offensive Content (HASOC)
[22]: The English Dataset for Hate Speech Detection.
During 2019, the dataset was retrieved from Facebook
and Twitter. It includes 5,853 posts labeled as Hate
Speech and Offensive or Not (2,259 Hate Speech
posts, and 3,594 Not Hate Speech or Offensive). This
dataset includes emojis, emoticons, retweets,
mentions, and hashtags.

3.2 Data Preprocessing

Data preprocessing is a crucial step for any system that
deals with text data. The main goal of the preprocessing
step is to transform the data into a format easily
understood by machine learning models. Various
preprocessing techniques have been conducted on the
Social Media English datasets before applying the hate
speech detection task ( i.e., ML/DL techniques). The
conducted preprocessing techniques are removing
Twitter-specific labels (i.e, ”RT” and ”VIDEO”),
removing URLs, replacing mentions with ”@user”,
removing contractions, converting text to lowercase,
removing emojis, removing punctuation (including the
”#” sign) and numbers, removing stop words, and finally
lemmatization. These preprocessing methods, including
cleaning and transformation steps, prepare the datasets to
be fitted in the ML/DL models. This removes unnecessary
information in the data which helps achieve better results.
The preprocessing step includes a series of sub-phases
described in the following steps. Table 2 show the Phases
of preprocessing:

–Phase 1: Removing Twitter Labels: In this phase,
Twitter-specific labels such as “RT,” which means
retweet, and “VIDEO,” which indicates a video, are
removed. Also, the ”@username:” that prefixes some
tweets, which indicates the author of the tweet, is
removed (see Table 3)

–Phase 2: Removing URLs In this phase, URLs such
as https://www.twitter.com were removed, including
URLs using http, https or without an http prefix such
as www.twitter.com.

–Phase 3: Replacing usernames In this phase, we
replaced all usernames such as ”@SomePerson” with
”@user”, since the twitter handle itself of the user was
irrelevant to weather a tweet is hate speech or not. It
was decided not to remove hashtags since they
sometimes provide important information in the text,
but the hashtag symbols ”#” were removed.

–Phase 4: Removing Contractions In this phase,
contractions like (I’ll and don’t) were replaced with
their normal form (I will and do not).

–Phase 5: Converting to Lowercase In this phase, all
characters in the tweets were converted to lowercase
to prevent the model from treating the same word with
different casing as different words.
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Table 1: The used Hate Speech Datasets.

Dataset Name Year Dataset Size Hate Speech Non-Hate Speech Source

HSOL 2017 5,593 1,430 4,163 Twitter

HASOC 2019 5,853 2,259 3,594 Twitter, Facebook

Table 2: tweets pre-processing examples

Original Tweet @zachthorpe78: Man @yunglex3 doesn’t even watch baseball! RT @yunglex3 :

what a bunch of trashes #Yankees http://t.co/bL2V1v2n9T

After removing twitter

labels

Man @yunglex3 doesn’t even watch baseball! what a bunch of trashes #Yankees

http://t.co/bL2V1v2n9T

After removing URLs Man @yunglex3 doesn’t even watch baseball! what a bunch of trashes #Yankees

After replacing

usernames

Man @user doesn’t even watch baseball! what a bunch of trashes #Yankees

After removing

contractions

Man @user does not even watch baseball! what a bunch of trashes #Yankees

After converting to

lowercase

man @user does not even watch baseball! what a bunch of trashes #yankees

After removing

punctuation

man @user does not even watch baseball what a bunch of trashes yankees

After removing stop

words

man @user even watch baseball bunch trashes yankees

After lemmatization man @user even watch baseball bunch trash yankees

Table 3: Punctuation and special characters removal

Value To Replace Replace By

. Null

, Null

“ Null

‘ Null

& Null

% Null

$ Null

–Phase 6: Removing Emojis In this phase, all emojis
were removed; it was decided not to replace them
with their respective meaning for two reasons. The
first was that it was difficult to find a library that
would be able to translate all kinds of emojis, and the
second was that, in a lot of cases, the emojis were
spammed and if we were to replace the emojis with
words then the majority of the text in the tweet would
be just the description of the emoji and the important
context of the tweet would be just a tiny portion
which may result in a model whose decision can be
heavily biased when a lot of emojis are used.

–Phase 7: Removing punctuation, special
characters, and numbers In this phase, all
punctuation marks such as (. : “” ; ’), special
characters such as ($ % & | − ...) and numbers

were removed (see Table 3). This step also removes
emoticons since they’re primarily created using
punctuation marks and special characters.

–Phase 8: Removing Stop Words In this phase, stop
words that don’t provide much context to the tweet
were removed. Some of the English stop words are :
a, the, is, are

–Phase 9: Lemmatization After cleaning the dataset,
the lemmatization process was performed to reduce all
words to their original form (see Table 4).

Table 4: Lemmatization

Token Lemmatized Token

go go

goes go

went go

gone go
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3.3 Applying Feature Extraction Techniques for

ML and DL Models

In this step, we implemented Feature Extraction
techniques for Standard ML models and DL/transformer
algorithms as shown in the following subsections:

3.3.1 Machine Learning Feature Extraction Method

The Frequency-Inverted Document Frequency (TF-IDF)
Feature Extraction Technique using unigram has been
used in this step. The TF-IDF is a well-known statistical
Feature Extraction Technique used to evaluate the
importance of words in a certain document. Table 5
shows an example of ML Features Extraction using
TF-IDF.

In TF-IDF, the weight is determined by Eq.(1), Eq.(2)
and Eq. (3):

T F(i, j) =
Frequency of term i in tweet j

Total number of terms in tweet j
(1)

IDF(i, j)= log

(

Total number of tweets in the datasets

Number of tweets which include i term

)

(2)

W (i, j) = TF(i, j)× IDF(i, j) (3)

Where T F(i, j) is the frequency of term i in review
j, IDF(i, j) is the frequency of feature with respect to all
reviews. Finally, the weight of feature i in review j , W (i, j)
is calculated by Eq.(3).

3.3.2 The DL Feature Extraction Method

In this step, word embeddings were used to convert words
in the tweets into vectors that the model can work with. In
the DL models, the features were extracted using a Keras
word embedding layer. Word embeddings provide an
efficient and dense representation for words with similar
encoding (the model determines the similarities between
words during training). An embedding is a dense vector
of floating point values (the length of the vector is a
hyperparameter). The embeddings themselves are
trainable parameters in the model (just like how the
weights in a dense layer are trainable). An embedding
with a vector size of 32 was used in the DL models.

3.4 Data splitting

In this step, the data is split into the training set, validation
set and testing set using the holdout method (80% training
10% validation, and 10% testing).

3.5 Hyperparameter Optimization Methods

3.5.1 Hyperparameter Optimization for ML algorithms

Optimizing each model’s hyperparameters is essential to
achieve the best accuracy; we analyzed several
hyperparameters of all the ML algorithms. There are
several options to perform this task. Random Search [23]
and Grid Search [24] are popular methods for tuning
hyperparameters. Unfortunately, they both have
unavoidable downsides. Grid Search works by
exhaustively applying all the possible combinations of all
hyperparameters, which causes the search for optimal
parameters to take too long. In Random Search, a fixed
number of parameter settings is sampled from the
specified values for the hyperparameters. The downside
of this approach is that it might be difficult to find the
global optimum. For this project, we chose to analyze one
hyperparameter at a time while using the default values
for the rest of the hyperparameters. This helps us get an
insight into how every hyperparameter affects the
accuracy. Below are the hyperparameters explored for
each model:

–KNN:
–the number of neighbors (K)

–Decision Tree:
–The maximum depth of the tree
–The minimum samples needed to split a node into

two branches
–The maximum number of leaf nodes
–The minimum samples in each leaf node

–SVM: None
–Naive Bayes: None

3.5.2 Hyperparameter Optimization for DL algorithms

In this phase, the Keras-tuner library is used to find the
best hyperparameters of the embedding layer, the hidden
layer, the dense layer, and the dropout rate for English
hate speech detection in simple Recurrent Neural
Network (RNN) and Bidirectional Long Short-Term
Memory (BiLSTM). Additionally, a dropout layer was
combined with a hidden layer, and the Softmax activation
function and the Adam optimizer are included in the
output layer. The embedding size, hidden layer units,
dense layer units, and the dropout rate for each data set of
the proposed models are optimized using the Keras Tuner
library as shown in Table 6

3.6 Classification based on ML models

In this step, four regular ML algorithms, including (DT),
(KNN), (SVM), and (NB), were used to classify English
tweets as hateful or not.
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Table 5: ML Feature Extraction Technique Example using TF-IDF

Words TF (for A) TF (for B) IDF TF-IDF(A) TF-IDF(B)

Jupiter 1/5 0 In(2/1) = 0.69 0.138 0

is 1/5 1/8 In(2/2) = 0 0 0

the 1/5 2/8 In(2/2) = 0 0 0

largest 1/5 0 In(2/1) = 0.69 0.138 0

planet 1/5 1/8 In(2/2) = 0 0.138 0

Mars 0 1/8 In(2/1) = 0.69 0 0.086

fourth 0 1/8 In(2/1) = 0.69 0 0.086

from 0 1/8 In(2/1) = 0.69 0 0.086

sun 0 1/8 In(2/1) = 0.69 0 0.086

Table 6: Deep Learning optimal hyperparameters for the three Arabic Tweet Datasets

Datasets HASOL HASOC

Models
Embedding

Size

Hidden
Layer

Units

Dense
Layer

Units

Dropout
Embedding

Size

Hidden
Layer

Units

Dense
Layer

Units

Dropout

RNN 32 16 512 0.5 32 16 512 0.5

BiLSTM 16 64 521 0.5 64 32 521 0.4

–Naive Bayes (NB) [25] is a simple yet effective
supervised classification algorithm based on Bayes’
Theorem of conditional probability with the
assumption of independence between features. The
model calculates the probability of each class given a
set of features using the following equation (4), and
assigns the class with the highest probability.

P(C|x) =
P(x|C)P(C)

P(x)
(4)

Where
–P(C|x) is the posterior probability of class C given

input x,
–P(C) is the prior probability of class C,
–P(x|C) is the probability of the input x given class

C,
–P(x) is the prior probability of the input x.

–K-Nearest Neighbor (KNN) [?] is a simple
supervised classification algorithm that depends on
one parameter: K. It operates by finding the K nearest
data points in the feature space to a given input and
makes predictions based on the majority class or
average among these neighbors.

–Support vector machine (SVM) [27] is a supervised
algorithm that works by finding the hyperplane that
best separates different classes in the feature space,
maximizing the margin between the closest points of
each class, known as support vectors.

–Decision Tree (DT) [28] is mostly used in supervised
ML. It builds a tree-like model of decisions, where
each node represents a feature, each branch a decision
rule, and each leaf node a class label. The algorithm
splits the dataset into subsets based on feature value

comparisons, aiming to create as homogeneous
subgroups as possible.

3.7 The proposed DL models:

The proposed deep neural network architecture is
depicted in Figure 2. The developed models classify hate
speech from English social media datasets. The input for
the models is a vector containing the integer
encoded-words from the text. this input is fed into an
embedding layer, followed by hidden layers that include a
Simple Recurrent Neural Network (RNN) and a
Bidirectional Long Short-Term Memory (BiLSTM); the
output of those is flattened and then fed into a dense layer,
followed by batch normalization, and then finally, an
output layer. The models also use dropout to prevent
overfitting. A Keras Tokenizer encodes the words and
converts tweets into integer vectors. The embedding layer,
hidden layer, dense layer, batch normalization, and output
layer for each DL model is defined as follows:

–Embedding Layer: We used the built-in Embedding
layer in the Keras library [29] to implement the
embedding layer. The arguments of the Keras
embedding layer were configured as follows: 1)
input dim, which defines the size of the dataset’s
vocabulary, was set to 5000, 2) output dim which
defines the size of the embedding vector, was set to
32, and finally 3) input length which defines the
length of the size of the input vector, was set to 50.

–Simple Recurrent Neural Network (RNN): The first
proposed DL model is a simple recurrent neural
network. The basic principle in recurrent networks is
that the input vector and some information from the
previous step (generally a vector) are used to calculate
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Fig. 2: The Proposed DL models Architecture .

the output and information passed to the next step.
The formulas used to calculate the output values in
each step are called units. An RNN with 16 units and
a tanh activation function was used.

–Bidirectional Long Short-Term Memory network
(BiLSTM): The second proposed DL model is a
bidirectional LSTM. First a normal LSTM is a special
type of RNN, that solves the RNN’s problem of
vanishing and exploding gradients, also it is better
than a normal RNN in recognizing relationships
between values at the beginning and the end of the
input sequence. An LSTM consists of three gates,
which are the forget gate (decides how much
information is received from the previous step), the
input gate ( decides what new information to be stored
in the cell state ), and the output gate (decides the
output from the LSTM cell). The definitions of these
gates are shown in the following Equations:

ft = σ

(

Wf . [ht−1,xt ]+ b f

)

(5)

it = σ (Wi. [ht−1,xt ]+ bi) (6)

C̃t = tanh(WC. [ht−1,xt ]+ bC) (7)

Ct = ft ∗Ct−1 + it ∗ C̃t (8)

ot = σ (Wo [ht−1,xt ]+ bo) (9)

ht = ot ∗ tanh(Ct) (10)

In these equations, the W is the weight matrix, σ is a
sigmoid function; f , i, C o h are the forget gate, input
gate, cell state, output gate, and the cell output
respectively.
A bidirectional LSTM is like a normal LSTM, but the
input flows in both directions and can utilize
information from both sides of the input vector. This
is done by using two LSTM layers where the input
sequence flows forward in one layer and backward in
the other layer, and the output from both layers is
combined.

–Dense Layer: The output from the RNN or LSTM is
flattened and then fed into a dense layer with 512
neurons with a Relu activation function and an L1
kernel regularizer.

–Batch Normalization: Before the result from the
dense layer is fed into the output layer, the values are
normalized to have a mean close to 0 and a standard
deviation close to 1. This makes the network more
stable during training, it also allows higher learning
rates, leading to an accelerated convergence.

–Output Layer The output layer generates the model’s
final decision. This layer consisted of 2 neurons (one
for each verdict). This layer used the softmax
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activation function. All DL models used the Adam
optimizer and a dropout of 0.5 during training.

3.8 Transformer-Based Model

The pre-trained BERT transformer model is our third
approach to the hate speech detection problem. BERT,
which stands for Bidirectional Encoder Representations
from Transformers, is a transformer encoder stack that is
trained on large English corpora. BERT’s architecture
consists of 12 transformer layers, a feed-forward network
with 768 hidden units, and 12 attention heads. Since the
corpus BERT is trained on is generic, fine-tuning is
necessary to be able to apply the model. During
fine-tuning, BERT’s parameters are updated when trained
on the labeled hate speech datasets.

Each encoder layer in BERT processes the input
bidirectionally, capturing contextual information. The
classification token [CLS], the output from the last
transformer layer, represents the entire input sequence.
This output token is passed on to a classification layer
which consists of a dense neural network and a softmax
activation function. The classification layer is responsible
for predicting which class the tweet belongs to. [4]

3.9 Performance metrics

The performance of the suggested models is assessed
using four common performance metrics: Accuracy
(ACC), Precision (PREC), Recall (REC), and F1-score
(F1); they are computed in the manner described below:

ACC =
T P+TN

T P+TN +FP+FN
(11)

PREC =
T P

T P+FP
(12)

REC =
T P

TP+FN
(13)

F1 =
2.PREC

PREC + REC
(14)

4 Experimental Results and Discussion

To examine the efficiency of Machine Learning (ML
methods), Deep Learning models (DL), and Transformer
Methods (T) over Hate Speech Detection, we have
assessed two datasets: the Davidson dataset and the
HASOC dataset. It is important to highlight that the
extraction of features in ML methods (DT, KNN, SVM,
and NB) is realized by TF-IDF. However, Deep Learning
and Transformer models utilized embedding layers as an
input for the three models, i.e., RNN, BiLSTM, and
BERT.

4.1 Case Study I (HSOL Dataset )

Table. 7 shows the values of four metrics including
Accuracy (ACC), Recall (REC), Precision (PREC) and
F1-score (F1). Out of the four machine learning
classifiers, SVM represents the best classifier in terms of
(ACC, 94%, REC 93%, PREC 90% and F1 91%). This
performance is due to the effectiveness of SVM in
high-dimensional spaces. The NB classifier obtains the
lowest performance with (ACC of 74%, PREC of 69%,
REC of 73%, and F1 of 70%). Due to NB’s assumption of
feature independence, this behavior is evident and logical
as it struggles to capture the complex dependencies
between features, especially in the context of hate speech
detection. By inspecting the results of DL and BERT over
the HSOL dataset, the transformer-based model BERT
achieved an improvement in accuracy, precision, recall,
and f1 score of 1%, 1%, 3%, and 2% respectively. This is
because, in comparison to some deep learning models and
traditional machine learning, BERT performs better at
detecting hate speech because it can grasp word context
in both directions, pre-train on large amounts of data to
capture complex language relationships, and fine-tune on
specific hate speech datasets to enable it to learn and
adapt to the complexities of hate speech.

4.2 Case Study II (HASOC Dataset)

Based on Table. 8 results, it can be concluded that SVM is
the best machine learning model for ACC (67%), REC
(62%), and F1 (62%). The SVM’s kernel technique,
which converts the inputted data (tweets) into a
higher-dimensional space and allows for finding a
non-linear decision boundary, can be used to understand
this performance. Once more, the Naive Bayes Classifier,
which obtained (ACC (51%), PRES (57%), REC (56%),
and F1 (50%), is the weakest machine learning classifier
out of the four classifiers. Because NB is a simplistic
model, it cannot capture intricate relationships between
the input data, which accounts for the low outcomes in
both scenarios. Once again, the BERT model is the best of
all three (ML, DL, and Transformer). Its recall and
F1-score have improved by 3% and 4%, respectively.
BERT outperforms more conventional models like SVM,
DT, KNN, RNNs, BiLSTMs, and NB in hate speech
identification because of its transformer design,
bidirectional contextual awareness, and significant
pre-training on data. BERT is a better option for tasks
requiring context-aware and complicated language
understanding because of its capacity to capture nuanced
language, handle terms that are not in the lexicon, and
utilize transfer learning. Compared to more conventional
and straightforward machine learning models, BERT’s
all-encompassing approach frequently yields
state-of-the-art performance in hate speech detection. In
contrast, model efficacy varies depending on particular
use cases.
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Table 7: The performance results of Machine Learning, Deep Learning, and Transformer methods for HSOL dataset.

Type Classifiers Extraction methods
Results

ACC PREC REC F1

Machine Learning

DT TF-IDF 0.85 0.91 0.70 0.74

KNN TF-IDF 0.88 0.91 0.77 0.81

SVM TF-IDF 0.94 0.93 0.90 0.91

NB TF-IDF 0.74 0.69 0.73 0.70

Deep Learning
RNN Embedding layer 0.90 0.87 0.88 0.87

BiLSTM Embedding layer 0.91 0.89 0.88 0.88

Transformer Model BERT Embedding Layers 0.95 0.94 0.93 0.93

Table 8: The performance results of Machine Learning, Deep Learning, and Transformer methods for HASOC dataset.

Type Classifiers Extraction methods
Results

ACC PREC REC F1

Machine Learning

DT TF-IDF 0.64 0.79 0.54 0.46

KNN TF-IDF 0.65 0.68 0.56 0.52

SVM TF-IDF 0.67 0.65 0.62 0.62

NB TF-IDF 0.51 0.57 0.56 0.50

Deep Learning
RNN Embedding layer 0.62 0.59 0.58 0.58

BiLSTM Embedding layer 0.65 0.62 0.61 0.61

Transformer Model BERT Embedding Layers 0.67 0.66 0.65 0.66

4.3 Graphical analysis

For the two Hate Speech Tweets datasets, HSOL and
HASOC, Figure 3 summarized the best values of metrics
in terms of ACC, PREC, REC, and F1, produced by the
ML methods, DL models, and T approaches. BERT
surpassed all ML and DL algorithms for the HSOL
dataset regarding F1, accuracy, recall, and precision.
BERT surpassed all competing DL and ML-based
algorithms for the HASOC dataset regarding F1,
accuracy, recall, and precision.

5 Conclusion and future work

Hate speech detection is essential in maintaining
inclusivity in social networking sites. This paper used
seven classification algorithms to specify whether input
text is hate speech or not. We selected two datasets to test
these classification algorithms on. For the four Machine
Learning algorithms, we used the TF-IDF method to
extract features from the provided text. We used the Keras
word embedding layer for the remaining three Deep
Learning and Transformer Algorithms to extract features.

The best-performing algorithm for the HSOL Dataset
was the BERT transformer model, which achieved

accuracy of 95% . Of the Machine Learning Models used,
SVM yielded the best accuracy (94% ).

Regarding the HASOC Dataset, the BERT
Transformer Model also yielded the best results, with an
accuracy of 67% . In terms of the Machine Learning
Models used, SVM yielded the best accuracy (67Also,
We can see that the performance of the models in the
second dataset is much less than that of the first dataset.
This is because of the abundance of informal language in
the second dataset.

For both datasets, the worst-performing classifier is
Naive Bayes. This is because Naive Bayes assumes that
all features (words) are independent, but words often have
contextual dependencies in language.

In the future, we would like to compare even more
deep learning and transformer algorithms. In addition, use
grid search in tuning hyperparameters.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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Performance results for the HSOL dataset

Performance results for the HASOC dataset

Fig. 3: The performance metrics for HSOL and HASOC Datasets using ML, DL and T methods

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 4, 811-825 (2024) / www.naturalspublishing.com/Journals.asp 823

References

[1] J. B. Walther, ”Social media and online hate,” Current

Opinion in Psychology, vol. 45, art. no. 101298, 2022, doi:

https://doi.org/10.1016/j.copsyc.2021.12.010
[2] N. Djuric et al., ”Hate speech detection with comment

embeddings,” in Proceedings of the 24th International

Conference on World Wide Web, pp. 29-30, 2015.
[3]
[4] S. Dowlagar and R. Mamidi, ”Using BERT and Multilingual

BERT models for Hate Speech Detection,” CEUR Workshop

Proceedings, vol. 2826, pp. 180-187, CEUR-WS, 2021.

https://arxiv.org/abs/2101.09007v1
[5] M. S. Jahan and M. Oussalah, ”A systematic

review of hate speech automatic detection using

natural language processing,” Neurocomputing,
vol. 546, pp. 126232, Elsevier, August 2023.

https://doi.org/10.1016/J.NEUCOM.2023.126232
[6] K. Kowsari et al., ”Text Classification Algorithms: A

Survey,” Information, vol. 10, no. 4, art. no. 150, 2019.

www.mdpi.com/journal/information
[7] N. S. Mullah et al., ”Advances in Machine Learning

Algorithms for Hate Speech Detection in Social Media:
A Review,” IEEE Access, vol. 9, pp. 88364-88376,

Institute of Electrical and Electronics Engineers Inc., 2021.

https://doi.org/10.1109/ACCESS.2021.3089515
[8] A. Omar, T. M. Mahmoud, and T. Abd-El-Hafeez,

”Comparative Performance of Machine Learning and

Deep Learning Algorithms for Arabic Hate Speech
Detection in OSNs,” Advances in Intelligent Systems

and Computing, vol. 1153 AISC, pp. 247-257, Springer,

2020. https://doi.org/10.1007/978-3-030-44289-7 24
[9] T. T.A. Putri et al., ”A comparison of classification

algorithms for hate speech detection,” IOP Conference

Series: Materials Science and Engineering, vol.
830, no. 3, pp. 032006, IOP Publishing, May 2020.

https://doi.org/10.1088/1757-899X/830/3/032006
[10] S. Abro et al., ”Automatic Hate Speech Detection using

Machine Learning: A Comparative Study,” International

Journal of Advanced Computer Science and Applications

(IJACSA), vol. 11, no. 8, 2020. www.ijacsa.thesai.org
[11] F. Del Vigna et al., ”Hate me, hate me not: Hate speech

detection on Facebook,” 2017. http://www.alexa.com/topsites
[12] T. Davidson, D. Warmsley, M. Macy, and I. Weber,

”Automated Hate Speech Detection and the Problem of

Offensive Language,” 2017. www.facebook.com
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