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Abstract: Let G = (V,E) be a graph that is a simple, connected and un-directed graph. We now introduce a new notion of rainbow

vertex antimagic coloring. This is a proper development of antimagic labeling with rainbow vertex coloring. The weight of a vertex

v ∈ V (G) under f for f : E(G) → {1,2, . . . , |E(G)|} is w f (v) = Σe∈E(v) f (e), where E(v) is the set of vertices incident to v. If each

vertex has a different weight, afterwards the function f is also referred to as vertex antimagic edge labeling. If all internal vertices on

the u− v path have different edge weights for each vertex u and v, afterwards the path is assumed to be a rainbow path. The minimum

amount of colors assigned over all rainbow colorings that result from rainbow vertex antimagic labelings of G is the rainbow vertex

antimagic connection number of G, rvac(G). For the purpose of trying to find some new lemmas or theorems about rvac(G), we will

prove the specific value of the rainbow vertex antimagic connection number of a specific family of graphs in this paper. Furthermore,

based on our obtained lemmas and theorems, we use it for constructing an encryption keystream for robust symmetric cryptography.

Moreover, to test the robustness of our model, we compare it with normal symmetric cryptography such as AES and DES.

Keywords: Rainbow vertex antimagic coloring, Encryption keystream construction, Symmetric cryptography

1 Introduction

A graph G is a pair of sets (V (G),E(G)) where V (G) is a
set of finite and non-empty vertices and E(G) is a set of
edges ( edge) which may be empty of ordered pairs {u,v}
with dots u,v ∈ V (G) [11]. The graph G is denoted by
G(V,E). So a graph must have at least one vertex and may
not have edges [13]. One of the topics in graph theory is
rainbow coloring [2]. There are many types of rainbow
coloring, such as rainbow edge coloring, rainbow vertex
coloring, and strong rainbow edge or vertex coloring [9].

Rainbow vertex antimagic coloring combines two
concepts namely rainbow vertex connection and
antimagic labeling [7]. The rainbow connection is first
defined in [3]. A graph G is called a rainbow connection
if there is at least one rainbow path from point u to point v

[6]. Then, [8] developed the rainbow connection concept
into two types, namely rainbow edge-connections and

rainbow vertex-connections. Meanwhile, antimagic
labeling or commonly called antimagic labeling was first
introduced by Hartsfield and Ringel in 1990 [5].

Rainbow vertex antimagic coloring is a combination
of rainbow vertex connections with antimagic labeling
[7]. The f function is called antimagic edge labeling, if
each point has a different weight. A path P on a graph G

labeled as an edge is called a rainbow path if for any two
points u and v, all interiors on the path u − v have
different weights [6]. The rainbow vertex antimagic
connection number of graph G is denoted by rvac(G),
which is the smallest number of colors taken from all
rainbow coloring induced by rainbow vertex antimagic
labeling of graph G [10] .

Confidentiality, authentication, integrity, and
non-repudiation are important are important
cryptographic goals that needed to be achieved in a
cryptosystem. Confidentiality helps authorized parties to
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keep information confidential. The purpose of
confidentiality is to secure information so that it is not
known by adversaries. A well-known method of sendty
information secretly and secure is cryptography. Some
applications of cryptography are to secure content
distribution, improve digital rights management systems,
solve security in mobile computing, etc. [12]. Two old
encryption techniques are the Caesar cipher and the affine
cipher. The development form of the Caesar cipher is the
affine cipher. Affine block cipher uses an affine algorithm
which is divided into blocks. The purpose of the affine
algorithm is to generate [4] encryption and decryption.

Symmetric cryptography, also known as secret key or
shared key cryptography, is a class of cryptographic
algorithms that use a shared secret key for both
encryption and decryption of information. In contrast,
asymmetric cryptography uses different keys for
encryption and decryption. In a monoalphabetic cipher,
each letter in the plaintext is consistently replaced by a
corresponding letter or symbol in the ciphertext. The
substitution is based on a single fixed key or alphabet.
Each occurrence of a particular character in the plaintext
is replaced by the same character or symbol in the
ciphertext throughout the encryption process. In contrast,
in a polyalphabetic cipher, the substitution of letters is not
based on a single fixed key or alphabet. Instead, multiple
alphabets or keys are used during the encryption process.
The key typically consists of a keyword or phrase that
determines which alphabet or set of rules to use for each
letter in the plaintext.

In this paper, we develop a research by applying
rainbow vertex antimagic coloring as a cryptosystem. We
apply rainbow vertex antimagic coloring to ladder graph
and composition graph as an affine block cipher key. This
key grows with the number of characters in the plaintext.
To obtain the key, we need to find the function of rainbow
vertex antimagic coloring in ladder graph and
composition graph. To test the performance of this
encryption method, we compare it with other symmetric
type methods such as AES and DES. Below are some
definitions and theorems used in the process of finding the
function.

Definition 1Ladder graph (Ln) is an undirected graph

and is a planar graph with point cardinality 2n and edge

cardinality 3n− 2.

Definition 2Composition graph is a graph that is built by

graphs Pn and P1 with disjoint sets of points V (Pn) and

V (P1) and edges E1 and E2. A Composition graph is a

graph where V (Pn)×V (P1) and v = (v1,v2, ...,vn) are

adjacent to u = (u1,u2) when [v1ad ju1] or

[v1 = u1 and v2ad ju2] and so on. Composition graph is

denoted by Pn[P2].

Theorem 1Suppose G is a connected graph with rest(G),

then rvc(G)≥ still(G)− 1.

Lemma 1[1] The rainbow vertex connection number of

the ladder graph rvc(Ln) is n− 1.

2 Research Methods

Figure 1 shows the flow that we used in this research.
There are three steps in this research: (1) Considering the
rainbow vertex antimagic coloring labels on ladder graphs
and composition graphs, (2) Taking the labeling results as
keystream, (3) applying the keystream in a modified
affine block cipher. At the third step, the plaintext is
divided into four blocks and performs the vigenere cipher
operation. Each encryption and decryption algorithm can
be seen in Algorithm 1 and Algorithm 2.

Algorithm 1. Encryption using RVAC of Graph
Input: plain text, P

Output: cipher text, C

1.Start

2.Input P

3.Define size length P as s

4.Define size of graph as n using

⌈ s

2

⌉

5.Define the keystream from rainbow

vertex antimagic coloring of graph

6.Define the order of alphabetical P

7.Define length of keystream

8.Implementation of affine cipher

method

Block 1 −→ C1 = (keystream + block

1) mod 94

Block 2 −→ C2 = (keystream + block

2) mod 94

Block 3 −→ C3 = (keystream + block

3) mod 94

Block 4 −→ C4 = (keystream + block

4) mod 94

9.Combine every C in each block to

obtain the cipher text

Algorithm 2. Decryption using RVAC of Graph
Input: cipher text, C

Output: plain text, P

1.Start

2.Input C

3.Define size length C as s

4.Define size of graph as n using

⌈ s

2

⌉

5.Define the keystream from rainbow

vertex antimagic coloring of graph

6.Define the order of alphabetical C

7.Define length of keystream

8.Implementation of affine plain text

method

Block 1 −→ Block 1 = (C1 -

keystream) mod 94

Block 2 −→ Block 2 = (C2 -

keystream) mod 94

Block 3 −→ Block 3 = (C3 -

keystream) mod 94

Block 4 −→ Block 4 = (C4 -

keystream) mod 94
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9.Combine every P in each block to

obtain the plain text

3 Research Findings

We obtained the new theorems regarding the rainbow
vertex antimagic connection number. The graphs studied
are ladder (Ln) and composition of path graph (Pn[P2]).
To prove the theorems of rainbow vertex antimagic
connection number, we need theorem rainbow vertex
connection number as lower bound.

Theorem 2 Let Pn[P2] be a composition of path graph. For

every positive integer n ≥ 3, rvc(Pn[P2]) = n− 2

Proof. The composition of path graph Pn[P2] is a
connected graph with vertex set
V (Pn[P2]) = {a j;1 ≥ j ≥ n}∪ {b j;1 ≥ j ≥ n} and edge
set E(Pn[P2]) = {a ja j+1;1 ≥ j ≥ n − 1} ∪ {b jb j+1;1 ≥
j ≥ n − 1} ∪ {a jb j;1 ≥ j ≥ n} ∪ {a jb j+1;1 ≥ j ≥
n − 1} ∪ {a j+1b j;1 ≥ j ≥ n − 1}. The diameter of
composition of path graph is n− 1 and based on Lemma
1, we have rvac(Pn[P2]) ≥ n − 2 as lower bound. We
determine the upper bound of rvac(Pn[P2]) by function of
vertex colors as follows.

f (a j)=

{

1, ; j = 1,n

j− 1, ; 2 ≤ j ≤ n− 1

f (b j)=

{

1, ; j = 1,n

j− 1, ; 2 ≤ j ≤ n− 1

Since every vertex u ∈ V (Pn[P2]) is assigned with a
color, then internal vertices for every two different
vertices have different weights. For more detail, it can be
seen Table 1. Suppose that u,u′ ∈ V (Pn[P2]), there are five
cases of rainbow paths in Pn[P2] as follows.

From the Table 1, we can concludes that the graph
Pn[P2] has rainbow vertex antimagic coloring. Thus, we
obtain rvc(Pn[P2]) = n− 2. �

Theorem 3 Let Ln be a ladder graph. For every positive

integer n ≥ 3,

rvac(Ln) =

{

n, for n is odd
n+ 1, for n is even.

Proof. The ladder graph Ln is a connected graph with
vertex set V (Ln) = {a j;1 ≥ j ≥ n}∪{b j;1 ≥ j ≥ n} and
edge set E(Ln) = {a ja j+1;1 ≥ j ≥ n− 1}∪{b jb j+1;1 ≥
j ≥ n − 1} ∪ {a jb j;1 ≥ j ≥ n}. The diameter of ladder
graph is n and based on Lemma 1, we have
rvac(Ln)≥ n− 1 as lower bound. We determine the upper
bound of rvac(Ln) by bijection function of edge labels in
two cases.
Case 1. For n is even.

f (a jb j) =

{

2n− 1− j, for 1 ≤ j ≤ n− 1
2n− 1, for j = n

f (a ja j+1) =

{

2n+ j, for 1 ≤ j ≤ n− 2
2n, for j = n− 1

f (b jb j+1) =























n− 1+ j

2
, for 1 ≤ j ≤ n− 1,

j is odd
j

2
, for 1 ≤ j ≤ n− 2,

j is even

We can determined the vertex weight from the edge
label above, such that the function of vertex weight as
follows.

w(a j) =







4n− 1, for j = 1, n

6n+ j− 2, for 2 ≤ j ≤ n− 2
6n− 2, for j = n− 1

w(b j) =

{

5n− 4

2
, for 1 ≤ j ≤ n− 1

3n− 2, for j = n

Case 2. For n is odd.

f (a jb j) =

{

2n− 1− j, for 1 ≤ j ≤ n− 1
2n− 1, for j = n

f (a ja j+1) =

{

2n+ j, for 1 ≤ j ≤ n− 2
2n, for j = n− 1

f (b jb j+1) =











n+ j

2
, for j is odd

j

2
, for j is even

And the function of vertex weight as follows.

w(a j) =







4n− 1, for j = 1, n

6n+ j− 2, for 2 ≤ j ≤ n− 2
7n− 3− j, for j = n− 1

w(b j) =
5n− 3

2
, for 1 ≤ j ≤ n

Based on the function of vertex weight, we get the
vertex weight set W (Ln) = { 5n−3

2
,4n− 1,6n− 2,6n,6n+

1,6n + 2, . . . ,7n − 5,7n − 4} for n is odd and

W (Ln) = { 5n−4
2

,3n − 2,4n − 1,6n − 2,6n,6n + 1,6n +
2, . . . ,7n− 5,7n− 4} for n+ 1 is even. The cardinality of
vertex weight set is |W (Ln)|= n+ 1. Hence, ladder graph
has n+ 1 different weights. Since every vertex u ∈ V (Ln)
is assigned with the color w(u), then internal vertices for
every two different vertices have different weights. For
more detail, it can be seen Table 2. Suppose that
u,u′ ∈ V (Ln), the following are five cases of rainbow
paths in Ln.

From the Table 2, we can concludes that the graph Ln

is rainbow vertex antimagic coloring. Thus, we obtain
rvac(Ln) = n+ 1 for n is even and rvac(Ln) = n for n is
odd. �

Theorem 4 Let Pn[P2] be a composition of path graph. For

every positive integer n ≥ 3, rvac(Pn[P2]) =

rvac(Pn[P2])=

{

n+ 1, for n = 3,4

n+ 2, for n ≥ 5

Proof. The composition of path graph Pn[P2] is a
connected graph with vertex set
V (Pn[P2]) = {a j;1 ≥ j ≥ n}∪ {b j;1 ≥ j ≥ n} and edge
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Fig. 1: A model of keystream generation from graph labeling.

Table 1: The Rainbow Vertex of u−u′ Path in Pn[P2].

Case u u′ Rainbow Vertex Coloring u−u′ Condition

1 ai a j ai,ai+1,ai+2, . . . ,a j−2,a j−1,a j i < j

2 bi b j bi,bi+1,bi+2, . . . ,b j−2,b j−1,b j i < j

3 ai b j ai,ai+1,ai+2, . . . ,a j−2,a j−1, ,b j i < j

4 ai b j ai,b j i = j

5 ai b j ai,ai−1,ai−2, . . . ,a j+2,a j+1,b j i > j

Fig. 2: Rainbow Vertex Coloring P10[P2] is 8.

set E(Pn[P2]) = {a ja j+1;1 ≥ j ≥ n − 1} ∪ {b jb j+1;1 ≥
j ≥ n − 1} ∪ {a jb j;1 ≥ j ≥ n} ∪ {a jb j+1;1 ≥ j ≥
n − 1} ∪ {a j+1b j;1 ≥ j ≥ n − 1}. The diameter of
composition of path graph is n− 1 and based on Lemma
1, we have rvac(Pn[P2]) ≥ n − 2 as lower bound. We
determine the upper bound of rvac(Pn[P2]) by bijection
function of edge labels in two cases.

Case 1. For n = 3,4.

Based on the bijection function of edge labels and the
function of vertex weight on figure above, we get the
vertex weight set W (P3[P2]) = {16,17,18,32} and
W (P4[P2]) = {21,23,27,42,47}. The cardinality of vertex
weight set is |W (Pn[P2])| = n+ 1. Hence, composition of
path graph has n+ 1 different weights.

Case 2. For n ≥ 5.

f (a jb j) = 2n+ j− 3; for 1 ≥ j ≥ n

f (a ja j+1) =











































9n−7
2

+ j, for 1 ≤ j ≤ n−1
2
,

n is odd
9n−8

2
+ j, for 1 ≤ j ≤ n

2
,

n is even
7n−5

2
+ j, for n+1

2
≤ j ≤ n− 1,

n is odd
7n−6

2
+ j, for n+2

2
≤ j ≤ n− 1,

n is even

f (b jb j+1) =







































j

2
, for j ≡ 0 mod 2

n+ j

2
, for j ≡ 1 mod 2,

n is odd
n+ j− 1

2
, for j ≡ 1 mod 2,

n is even

f (a jb j+1) = 4n− j− 3; for 1 ≥ j ≥ n− 1

f (a j+1b j) =

{

4n− 3, for j = 1
2n− j− 1, for 2 ≤ j ≤ n− 1
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Table 2: The Rainbow Vertex of u−u′ Path in Ln.

Case u u′ Rainbow Vertex Coloring u−u′ Condition

1 ai a j ai,ai+1,ai+2, . . . ,a j−2,a j−1,a j i < j

2 bi b j bi,bi+1,bi+2, . . . ,b j−2,b j−1,b j i < j

3 ai b j ai,ai+1,ai+2, . . . ,a j−2,a j−1,a j,b j i < j

4 ai b j ai,b j i = j

5 ai b j ai,ai−1,ai−2, . . . ,a j+2,a j+1,a j,b j i > j

Fig. 3: Rainbow Vertex Antimagic Coloring on L3

Fig. 4: Rainbow Vertex Antimagic Coloring on L4

We can determined the vertex weight from the edge
label above, such that the function of vertex weight as
follows.

w(a j) =























































21n− 17

2
, for j = 1, n is odd

21n− 18

2
, for j = 1, n is even

19n− 13, for j = 2, n is odd
19n− 14, for j = 2, n is even

17n+ j− 14, for 3 ≤ j ≤ n−1
2
,

n is odd
17n+ j− 15, for 3 ≤ j ≤ n

2
,

n is even

w(a j) =























































33n− 25

2
, for j = n+1

2
,

n is odd
33n− 26

2
, for j = n+2

2
,

n is even

15n+ j− 12, for n+3
2

≥ j ≥ n− 1,
n is odd

15n+ j− 13, for n+4
2

≥ j ≥ n− 1,
n is even

w(an) =











17n− 13

2
, n is odd

17n− 14

2
, n is even

w(b1) =











13n− 9

2
, n is odd

13n− 10

2
, n is even

w(b j) =























17n− 13

2
, for 2 ≤ j ≤ n− 1,

n is odd
17n− 14

2
, for 2 ≤ j ≤ n− 1

n is even

w(bn) =

{

13n− 11

2
, n is odd

7n− 6, n is even

Based on the function of vertex weight, we get the
vertex weight set W (Pn[P2]) =
{ 13n−11

2
,

13n−9
2

,
17n−13

2
,

21n−17
2

,
31n−21

2
,

31n−19
2

,
31n−17

2
, . . . ,

16n − 13, 33n−25
2

,17n − 11,17n − 10, . . . , 35n−29
2

,19n −
13} for n is odd and

W (Pn[P2]) = { 13n−10
2

,7n − 6, 17n−14
2

,
21n−18

2
,

31n−22
2

,
31n−20

2
,

31n−18
2

, . . . ,16n − 14, 33n−26
2

,

17n − 10,17n − 11, . . . , 35n−30
2

,19n − 14} for n is even.
The cardinality of vertex weight set is
|W (Pn[P2])| = n + 2. Hence, composition of path graph
has n+ 2 different weights.

Since every vertex u ∈ V (Pn[P2]) is assigned with the
color w(u), then internal vertices for every two different
vertices have different weights. For more detail, it can be
seen Table 3. Suppose that u,u′ ∈ V (Pn[P2]), there are five
cases of rainbow paths in Pn[P2]. There are as follows.
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Fig. 5: Rainbow Vertex Antimagic Coloring on P3[P2] = 4

Fig. 6: Rainbow Vertex Antimagic Coloring on P4[P2] = 5

Fig. 7: Rainbow Vertex Antimagic Coloring on P11[P2] = 13

Table 3: The Rainbow Vertex of u−u′ Path of Pn[P2].

Case u u′ Rainbow Vertex Coloring u−u′ Condition

1 ai a j ai,ai+1,ai+2, . . . ,a j−2,a j−1,a j i < j

2 bi b j bi,bi+1,bi+2, . . . ,b j−2,b j−1,b j i < j

3 ai b j ai,ai+1,ai+2, . . . ,a j−2,a j−1,b j i < j

4 ai b j ai,b j i = j

5 ai b j ai,ai−1,ai−2, . . . ,a j+2,a j+1,b j i > j

From the Table 3, we can concludes that the graph
Pn[P2] is rainbow vertex antimagic coloring. Thus, we
obtain rvac(Pn[P2]) = n + 1 for n = 3,4 and
rvac(Pn[P2]) = n+ 2 for n ≥ 5. �

4 Results and Disscusion

4.1 Constructed Key

In this research, the modification of the affine block cipher
lies in the order of the block selection. Illustrations of the
encryption process can be seen in Figures 6 and 7.

There are two process that we carried out in building
this cryptosystem, namely the encryption process and the
decryption process. An illustration of the encryption
process is shown in Table 4. In this table we use the
plaintext ”CGANTUNEJ”. The plaintext is converted into
number representation of each letter based on (mod 26).
The key that we use is obtained from the RVAC labeling
of a ladder graph with n = 10. Then we add Pi to K to
produce a cipherext character (Ci). To generate ciphertext
we use mod 26 on Ci.

The illustration of the encryption process is shown in
Table 4. It shows the result of the encryption process is
”EJGWBZUON”. The chipertext is converted into number
representation of each letter based on (mod 26). The key

c© 2024 NSP
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Fig. 8: Encryption Process by using Ladder graph

Fig. 9: Encryption Process by using Composition graph
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Fig. 10: Encryption Process by using Ladder and Composition graph

Table 4: Illustration of Encryption with Modified Affine Block

Cipher Algorithm

P C G A N T U N E J

Pi 2 6 0 13 19 20 13 4 9

K 2 3 6 9 8 5 7 10 4

Ci 4 9 6 22 27 25 20 14 13

C E J G W B Z U O N

Table 5: Illustration of Decryption with Modified Affine Block

Cipher Algorithm

C E J G W B Z U O N

Ci 4 9 6 22 27 25 20 14 13

K 2 3 6 9 8 5 7 10 4

Pi 2 6 0 13 19 20 13 4 9

P C G A N T U N E J

that we use is obtained from the RVAC labeling of a ladder
graph with n = 10. Then we subtract Ci and K to produce
a cipher (Ci). To generate ciphertext we use mod 26 on Ci.

4.2 Brute Force Attack

Brute force attacks are aimed at finding key combinations
of all possibilities. We assume each key search results in
10−5 time. Brute force looks for possible key
combinations by generating random numbers ranging
from 1 to 76. There are n!

r!(n−r)! possible key combinations

that appear. After more than 24 hours and no keystream
can be found, the system will automatically lock and the
message will be blocked for decryption.

4.3 Applying the Modified Robustness

Cryptosystem

We compared the performance of our proposed robust
cryptosystem with Advanced Encryption System (AES)
and Data Encryption System (DES). The performance
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Table 6: Comparison of Encryption Result Size (bytes)

Ciphertext Length

Encryption Type 16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes

Graph (Ladder and

Composition)

191 210 239 342 399 470

AES 48 64 80 192 256 352

DES 32 48 72 176 248 336

Table 7: Comparison of Encryption Process Runtime (seconds)

Encryption Length

Encryption Type 16 bytes 32 bytes 64 bytes 128 bytes 256 bytes 512 bytes

Graph (Ladder and

Composition)

0.0013 0.0017 0.0025 0.0035 0.0034 0.0040

AES 0.0019 0.0025 0.0029 0.0032 0.0039 0.0040

DES 0.0010 0.0019 0.0022 0.0033 0.0035 0.0039

Fig. 11: The Comparison of Size Encryption

comparison that we use is the size of the ciphertext and
the runtime of the encryption process. The purpose of this
comparison is to examine the complexity of our proposed
algorithm when compared to existing cryptosystem
methods. Algorithm complexity can be divided into two
types, namely storage space complexity and time
complexity. We use several test scenarios with plaintext
sizes of 16 bytes, 32 bytes, 64 bytes, 256 bytes, and 512
bytes. The purpose of this experiment is to see the effect
of encryption when using increasing bytes length.

The comparison of the ciphertext size of the robust
cryptosystem algorithm that we propose with other
algorithms can be seen in Table 6. Based on Table 6, it
can be seen that the size of the encryption results of the

algorithm that we propose is larger than AES and DES. In
this comparison the DES algorithm has the smallest
ciphertext. This is possible because the key size for our
proposed robust cryptosystem algorithm follows the
length of the plaintext. So that during the encryption
process there is a size that exceeds the existing standards.
More detail we also show this comparison in Figure 9.

The next comparison is from the time it takes to run
the algorithm. We present the results of this comparison
in Table 7. Based on the table it can be seen that the
robust cryptosystem algorithm that we propose can
compete with AES and DES. Even in some conditions the
algorithm that we propose can outperform the AES and
DES algorithms. These results indicate that in terms of
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Fig. 12: The Comparison of Runtime Encryption

Fig. 13: On MATLAB GUI of the RAC and VC algorithm combination

the required time complexity the algorithm we propose is
efficient. In more detail, we also show this comparison in
Figure 10. We also design our proposed algorithm using a
graphical user interface (GUI) as shown in Figure 11.

5 Conclusion

We have implemented the concept of rainbow vertex
antimagic coloring (RVAC) on keystream construnction
of cryptography. The results show that the combination
between rainbow antimagic coloring and vegenere
chipper algorithm gives a robust encryption key
construction. The advantage of this method is that the
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length of the keystream can be adjusted by the length of
plaintext. We tested several RAC of graphs of any order,
the results show that the edge colors of RAC can be used
for modified block affine chipper, and this algorithm has
competed with the standard symmetric encryption,
namely Data Encryption Standard (DES), Advanced
Encryption Standard (AES).

The challenging future work of integrating strong
cryptography based on graph labeling with established
symmetric encryption algorithms such as AES and DES
can provide a balanced and comprehensive solution for
securing information. This hybrid approach takes
advantage of the efficiency and industry acceptance of
AES and DES while incorporating the unique security
features provided by graph labeling. The result is a more
robust and adaptable cryptographic system suitable for a
wide range of applications where security and efficiency
are important considerations.
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