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Abstract: Developing novel probability distributions holds significant importance in contemporary society across various domains.
In this study, we introduce a distinctive continuous lifespan model characterized by three parameters, achieved through integrating
the Extended-X Exponentiated (NEX) family core with the foundational Exponentiated Inverted Weibull (EIW) distribution. This
amalgamation yields a novel distribution, termed the New Extended-X Exponentiated Inverted Weibull (NEEIW) distribution. Notably,
the NEEIW distribution exhibits favorable attributes facilitated by its straightforward linear representation of hazard rate function,
moments, and moment-generating function, alongside the provision of stress-strength reliability in concise closed forms. Parameter
estimation for the NEEIW model is conducted via conventional methodologies such as maximum likelihood estimation (MLE)
and maximum product of spacing (MPS), supplemented by exploring non-classical Bayesian analytical approaches. The empirical
validation of the proposed distribution is conducted using two distinct carbon datasets, substantiating its superiority and applicability
in modeling real-world data.

Keywords: New Extended-X Exponentiated Inverted Weibull (NEEIW) distribution, quantile function, moments, moment generating
function, estimation of parameters

1 Introduction

Modeling real-world occurrences and natural phenomena
using probability distributions is a critical procedure in
statistics and probability, particularly when these
phenomena are complicated and risky. Scientists have
sought to develop new probability distributions for these
reasons, while old probability distributions continue to
fail to correctly characterize data produced from natural
events [1–4]. These contributions to probability
distribution generalization and modification are
substantial as a result. Generalized probability
distributions have arisen for the regular allowance of
adding additional parameters. By adding a specific
parameter or parameters to an existing probability
distribution, we may increase the quality and suitability of
data derived from natural occurrences, as well as the
representation of the tail shape of the distribution. Also,
merging the two will provide the same results [5–7].

Numerous research initiatives have been done in
recent years to create new distributions by establishing
new families and classes and altering the baseline
distribution by adding additional shape parameters.
Numerous well-known distribution classes have been
reported in the literature. For examples, see
references [6–11].

The main objective and motivation of this paper is to
present a new distribution that fits some specific data sets
more than other distributions can do. This distribution
will be called the New Extended-X Exponentiated
Inverted Weibull distribution.

To study the efficiency of any distribution, we need to
estimate the distribution parameters either by a classical
or a non-classical approach. In this paper, we made point
estimations according to two classical methods, the MLE
and the MPS. We also applied the non-classical Bayesian
methods for estimating the unknown parameters.
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The exponential distribution is one of the most
well-known lifespan distributions and, as such, has
garnered substantial attention from statisticians. Zichuan
et al. [12] presented a better innovative distribution family
termed the new extended-X (NEX) family. It is capable of
modeling data using a variety of various hazard functions,
including growing, decaying, and bathtub. The NEX
family’s cumulative distribution function (CDF) and
probability density function (PDF) are defined as

F(x;Θ) = 1−

{
1− [G(x;Ω)]2

1− (1−θ) [G(x;Ω)]2

}θ

;x > 0,θ > 0, (1)

and

f (x;Θ) =2θ
2g(x;Ω)G(x;Ω){

1− [G(x;Ω)]2
}θ−1

{
1− (1−θ) [G(x;Ω)]2

}θ+1 ; x > 0,θ > 0, (2)

in which Θ indicates the vector of parameters (Ω ,θ) for
the family’s baseline distribution and the addited shape
parameter, accordingly.

The exponentiated inverted Weibull (EIW)
distribution is often used to characterize variables
connected with several events such as cash flow, rainfall,
and hurricanes. EIW was initially introduced by Flaih et
al. [13]. Its CDF and PDF are included below:

G(x;Ω) =
(

e−x−β
)α

;x > 0,α,β > 0, (3)

and

g(x;Ω) = αβx−β−1
(

e−x−β
)α

;x > 0,α,β > 0, (4)

in which the vector of parameters Ω = (α,β ) contains
the shape and scale parameters for the EIW distribution,
accordingly.

The layout of the rest of this article is as follows. In
Section 2, we construct the NEEIW distribution and the
graphical depiction of its PDF and Hazard Rate (HR)
functions. For Section 3, we examined the statistical
features of the NEEIW distribution, where we provided
several essential mathematical aspects of the proposed
distribution and explained their mathematical derivations.
Whereas Section 4 covers three-point estimate
techniques. Then, the confidence interval for the
parameters is estimated in Section 5. In Section 6, we
conducted a numerical simulation to validate the accuracy
of the estimate approaches used in this research. In
Section 7, we analyzed two sets of Carbon data chosen to
illustrate the superiority of the NEEIW distribution over
alternative distributions. Ultimately, Section 8 describes
the conclusions that can be drawn from the paper and the
major findings illustrated by this work.

2 The NEEIW Distribution
The NEEIW distribution was constructed using the NEX
family and the EIW baseline distribution. Utilization of
the distribution and the two equations (1) and (2), We
may easily get the CDF and PDF versions for the NEEIW
distribution by providing the following information:

F(x;Θ) = 1−


1−
(

e−x−β
)2α

1− (1−θ)
(

e−x−β

)2α


θ

;x > 0,α,β ,θ > 0,

(5)

and

f (x;Θ) =2θ
2
αβx−β−1

(
e−x−β

)2α

{
1−
(

e−x−β
)2α

}θ−1

{
1− (1−θ)

(
e−x−β

)2α
}θ+1 ; x > 0,α,β ,θ > 0,

(6)

A random variable X is distributed according to the
NEEIW distribution with PDF (6) denoted by
X ∼NEEIW(α,β ,θ).
Special case of the NEEIW model:
For α = 1, it represents the new extended standard
inverted weibull distribution.
For β = 1, we can get obviously the the new extended
exponentiated standard inverted exponential distribution.
For β = 2, the new extended exponentiated standard
inverted Rayleigh distribution will appear.

The NEEIW distribution’s HR function described in
the following:

h(x;Θ) = 2θ
2
αβx−β−1

(
e−x−β

)2α

{
1−
(

e−x−β
)2α

}−1

1− (1−θ)
(

e−x−β

)2α
.

(7)
To properly investigate the distribution, we varied its

parameters and produced the PDF and HR functions
graphed in Figure 1. As shown in these pictures, the
behavior of the NEEIW’s PDF curve may take on various
forms. It may be skewed (either to the left or to the right)
or having a symmetric or declining form, while the
NEEIW’s HR curves may be constant, diminishing, or
inverted. It indicates that the suggested model is an
appealing lifespan model. As shown in the application
section, the NEEIW distribution has considerable
versatility in its capacity to simulate skewed data. As a
result, it is widely used in various domains such as health,
bio-medicine, durability, and mortality studies.

3 The Properties of the proposed distribution

3.1 Linear Representation
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Fig. 1: PDF and HR plots of NEEIW distribution

the linear representation for the CDF of NEX family (1) is
given by

F(x;Ω) = 1−
∞

∑
i, j=0

(
i+θ −1

θ −1

)(
θ

j

)
(−1) j(1−θ)iG(x;ζ )2(i+ j).

(8)

We obtain the expanded CDF of the NEEIW distribution
as follows by using the prior expansions to the EIW
distribution:

F(x) =1−
∞

∑
i, j=0

(
i+θ −1

θ −1

)(
θ

j

)
(−1) j(1−θ)i

(
e−x−β

)2(i+ j)α
.

By taking the derivative with respect to x for the previous
equation,we can easily obtain the PDF of the NEEIW
distribution in its extended version.

f (x) =αβ

∞

∑
i, j=0

(
i+θ −1

θ −1

)(
θ

j

)
(−1) j(1−θ)i2(i+ j)x−β−1

(
e−x−β

)2(i+ j)α

=
∞

∑
i, j=0

Φi, j(θ) g(x;2(i+ j)α,β ),

We can say that Φi, j(θ) =
(i+θ−1

θ−1

)(
θ

j

)
(−1) j(1− θ)i and

g(x;2(i + j)α,β ) is the EIW density function having
2(i + j)α as scale and β as shape parameters of EIW
distribution.

3.2 Quantile Function (QF)

The QF of the NEEIW distribution may be expressed and
described as an inverse for the CDF mentioned in Equation
(5).

The three quartiles of the NEEIW distribution are
obtained by providing particular values for p; hence,

when we set p = 0.25,0.5, in equation (9), we get the first
and second quartiles, respectively, while setting and
p = 0.75 yields the third quartile.

xi =

{
− ln

({
θ

[
(1− p)

−1
θ −1

]−1
+1
}−1

2α

)}−1
β

,

i = 1,2, . . . ,n.

(9)

3.3 The Moments

The most critical aspect of any distribution is to locate its
moments easily. Thus, as shown in the following stages,
we may determine the rth moments of the proposed
NEEIW distribution:

µ
′
r = E(X r) =

∫
∞

0
xr f (x)dx

=
∞

∑
i, j=0

Φi, j(θ)
∫

∞

0
xrg(x;2(i+ j)α,β )dx

=
∞

∑
i, j=0

Φi, j(θ) [2(i+ j)α]
r
β Γ

(
1− r

β

)
, r < β .

We may derive the moments about the origin from the
previous equation by selecting r = 1,2,3, and 4.

3.4 Moment Generating function (MGF)

The following equation may be used to express the MGF
of the NEEIW distribution.

M(t) =
∫

∞

0
etx f (x)dx

=
∞

∑
i, j=0

Φi, j(θ)
∫

∞

0
etxg(x;2(i+ j)α,β )dx

=
∞

∑
i, j,k=0

tk

k!
Φi, j(θ)

∫
∞

0
xkg(x;2(i+ j)α,β )dx

=
∞

∑
i, j,k=0

tk

k!
Φi, j(θ) [2(i+ j)α]

k
β Γ

(
1− k

β

)
, k < β ,

4 Methods Used To Estimate The Parameters

Here, we explain three estimation strategies to calculate
the values of the estimated NEEIW parameters in this
study. The MLE, which is the most well-known
methodology for assessing parameters, the MPS approach
and the Bayesian estimation method that depends on a
function called the squared error loss function. All are
among the estimation strategies that we will use.
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4.1 The MLE Method

By getting a random sample say it x1, · · · ,xn from the
NEEIW distribution, this would be the probability
function for the NEEIW distribution when vectors
parameter Θ = (α,β ,θ) are included

L(Θ) =2n
θ

2n
α

n
β

ne−2α ∑
n
i=1 x−β

i

n

∏
i=1

x−β−1
i

{
1−
(

e−x−β

i

)2α
}θ−1

{
1− (1−θ)

(
e−x−β

i

)2α
}θ+1 .

(10)

The log-likelihood function of NEEIW takes the form

ℓ(Θ) ∝ 2n ln(θ)+n ln(α)−2α

n

∑
i=1

x−β

i − (β +1)
n

∑
i=1

ln(xi)+

(θ −1)
n

∑
i=1

ln
{

1−
(

e−x−β

i

)2α
}
+n ln(β )−

(θ +1)
n

∑
i=1

ln
{

1− (1−θ)
(

e−x−β

i

)2α
}
.

(11)

We will get the first partial derivative of equation (11) for
every parameter partially, so the equations resulting are

∂ℓ(Θ)

∂α
=

n
α
−2

n

∑
i=1

x−β

i +(θ −1)
n

∑
i=1

2x−β

i

(
e−2αx−β

i

)
1−
(

e−x−β

i

)2α
+

2(θ 2 −1)
n

∑
i=1

x−β

i

(
e−2αx−β

i

)
1− (1−θ)

(
e−x−β

i

)2α
,

(12)

∂ℓ(Θ)

∂β
=

n
β
+2α

n

∑
i=1

x−β

i ln(xi)−
n

∑
i=1

ln(xi)−

2(θ −1)α
n

∑
i=1

x−β

i ln(xi)e−2αx−β

i

1−
(

e−x−β

i

)2α

−2α(θ 2 −1)
n

∑
i=1

x−β

i ln(xi)e−2αx−β

i

1− (1−θ)
(

e−x−β

i

)2α
,

(13)

and

∂ℓ(Θ)

∂θ
=

2n
θ

+
n

∑
i=1

ln

{
1−
(

e−x−β

i

)2α
}
−

n

∑
i=1

ln

{
1− (1−θ)

(
e−x−β

i

)2α
}
−

(θ +1)
n

∑
i=1

e−2αx−β

i

1− (1−θ)
(

e−x−β

i

)2α
.

(14)

Since the equations in (12), (13), and (14) are not to be
solved easily, the Newton-Raphson method will be
employed to address these problems.

4.2 The MPS Method

We investigated one of the most well-known classical
estimation strategy in this section, which is the MPS
methodology, known as the first competitive approach for
MLE method. For more information and refernces about
this approch see Ng et al. [14], Almetwally et al. [15] and
Alshenawy et al. [16]. The log-MPS estimates for the
NEEIW distribution takes the form

lS(Θ) ∝ ln

1−


1−
(

e−x−β

1

)2α

1− (1−θ)
(

e−x−β

1

)2α


θ
+

θ ln


1−
(

e−x−β
n
)2α

1− (1−θ)
(

e−x−β
n

)2α

+

r

∑
i=2

ln




1−
(

e−x−β

i−1

)2α

1− (1−θ)

(
e−x−β

i−1

)2α

−


1−
(

e−x−β

i

)2α

1− (1−θ)
(

e−x−β

i

)2α


 .

(15)

The basic steps may be used to calculate the MPS
estimates of distribution parameters:

1.To begin, construct the log-product equation. (15) .
2.Calculate the partial derivative of the given equation

(15), with regard to every current parameter.
3.We are well aware that these equations are incredibly

difficult to solve. Hence, we will use a nonlinear
optimization strategies like the Newton–Raphson
algorithm to solve these types of problems.

4.3 Bayesian Estimation

On the basis of the squared error (SE) loss function of the
NEEIW distribution parameters, this part gives Bayesian
parameter α,β and λ estimates for the NEEIW
distribution parameters. In this case, the previous
distributions of the parameters have been selected as
gamma distributions. Thus

π1(α) ∝ α
b1−1e−αd1 , α > 0, b1,d1 > 0,

π2(β ) ∝ β
b2−1e−βd2 , β > 0, b2,d2 > 0,

and

π3(θ) ∝ θ
b3−1
3 e−θd3 , θ > 0, b3,d3 > 0.
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Assuming the suggested model parameters are
independent, we may get and construct the joint PDF of
the priors as follows.

π(α,β ,θ) ∝ α
b1−1

β
b2−1

θ
b3−1e−(αd1+βd2+θd3). (16)

Therefore, the posterior function of the parameters for
the proposed distribution may be determined using
equation (10) and also equation (16) in the following
manner:

π
∗(Θ |xxx) ∝ L(α,β ,θ)π(α,β ,θ)

∝ θ
2n+b3−1

α
n+b1−1

β
n+b2−1

e−α

(
d1+2∑

n
i=1 x−β

i

)
e−β [d2+∑

n
i=1 ln(xi)]e−θd3

n

∏
i=1

{
1−
(

e−x−β

i

)2α
}θ−1

{
1− (1−θ)

(
e−x−β

i

)2α
}θ+1 .

(17)

The SE loss function is used to estimate the Bayesian
parameters of the NEEIW distribution, and the results are
provided by

α̃SE =
∫

∞

0
α

∫
∞

0

∫
∞

0
π
∗(Θ |xxx) dβ dθ dα, (18)

β̃SE =
∫

∞

0
β

∫
∞

0

∫
∞

0
π
∗(Θ |xxx) dθ dα dβ , (19)

and
θ̃SE =

∫
∞

0
θ

∫
∞

0

∫
∞

0
π
∗(Θ |xxx) dα dβ dθ . (20)

It should be obvious that the integrals in equations
(18),(19), and (20) are difficult. As a result,
approximations for these integrals are obtained using the
Markov Chain Monte Carlo (MCMC) and
Metropolis-Hastings (MH) algorithms.

4.3.1 Markov Chain Monte Carlo

Since we all understand that numerous integrals are hard
to solve analytically or even statistically by hand, this is
especially true for complex problems. We must employ
the MCMC approach to get a set of estimates for these
integrals. It is critical to understand that the MH
algorithm, more generally referred to as the random walk
algorithm, is a necessary component of the MCMC
technique. It is relatively similar to how samples are
accepted and rejected in the estimate steps setup.

5 Estimation of the Parameters Intervals

This section of the article was dedicated to interval
estimation, as we estimated the distribution parameters
using two methods: asymptotic confidence intervals and
credible confidence intervals.

5.1 Asymptotic confidence intervals

Asymptotic confidence intervals (CI) seem to be the most
commonly used strategy for getting approximate
confidence bounds for parameters. This method makes
use of the MLEs to produce the Fisher information
matrix, which is the most frequently used approach.
We can establish the 100(1 − γ)% asymptotic CI for
parameters α , β and θ as follows:

(
Θ̂l , Θ̂u

)
= Θ̂ ±Z1−γ/2

√
V (Θ̂), (21)

where Θ is α, θ or β , and Zq is the 100q− th that is well
known as the percentile of the standard normal
distribution .

5.2 Highest Posterior Density (HPD) interval
algorithm

We need to construct interval estimates for the
distribution’s parameter since Bayesian estimation yields
point estimates. The HPD interval is also known as the
credible interval. For more informatins on how to get the
(1− γ) HPD interval for α,β ,θ , see [17, 18].

6 Simulation Study

As is publicly recognized, we must review the efficiency
of any distribution across a wide range of parameter
values, which involves doing a simulation study using
both whole and partial distributions. Monte Carlo
simulations are used in this section to judge the
effectiveness of the approaches presented in the research
and to identify the parameters using MLEs, MPS, and
Bayesian estimates of the NEEIW parameters using full
samples, as stated in the R studio. Using the following
parameter combinations, a number of 10,000 randomly
selected samples were generated from the NEEIW
distribution.

We used several parameter values and combinations
for experimental procedures, as detailed in Tables 1, 2.In
order to calculate the efficiency and accuracy of the
estimators, we calculated the Relative Absolute Bias
(RAB), Mean Squared Error (MSE), and Confidence
Interval Length (L.CI). Comparing the outcomes of point
estimation is depending on the RAB, MSE, and L.CI
values. Also, we estimated the coverage probability (CP).
Tables 1, 2 depict the varied results of modeling the
various point estimation strategies addressed throughout
this research.
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Table 1: The following table records the results conducted from the estimation methods when the data follows the NEEIW
distribution when fixing parameter α = 0.5

α = 0.5 MLE MPS Bayesian
β θ n RAB MSE L.CI CP RAB MSE L.CI CP RAB MSE L.CI

0.5

0.5

30
α 0.5558 0.6864 3.0610 94.50% 0.4282 0.6485 3.0447 95.00% 0.1688 0.0693 0.8999
β 0.3821 0.2798 1.9346 95.00% 0.2980 0.2655 1.9347 95.20% 0.1080 0.0238 0.5442
θ 0.9644 3.8989 7.5097 96.80% 1.0329 5.5296 8.9974 94.60% 0.0798 0.0323 0.6366

75
α 0.2375 0.2751 2.0036 94.50% 0.2186 0.3037 2.1185 95.90% 0.1121 0.0335 0.6913
β 0.1937 0.1085 1.2348 95.50% 0.1372 0.1048 1.2406 95.25% 0.0549 0.0111 0.3944
θ 0.2904 0.3474 2.2405 94.60% 0.3622 0.4035 2.3878 94.60% 0.0716 0.0174 0.4954

150
α 0.1830 0.1645 1.5498 94.30% 0.2117 0.1978 1.6940 94.90% 0.1125 0.0256 0.5653
β 0.0933 0.0534 0.8872 95.40% 0.0415 0.0522 0.8923 96.30% 0.0199 0.0055 0.2942
θ 0.1781 0.1325 1.3842 93.80% 0.2583 0.1806 1.5879 95.40% 0.0763 0.0144 0.4384

2

30
α 0.3145 0.6018 2.9793 94.30% 0.0663 0.0316 0.6851 93.50% 0.1201 0.0437 0.7949
β 0.5887 0.3979 2.1879 95.80% 0.0326 0.0124 0.4314 94.60% 0.0422 0.0126 0.4274
θ 0.7520 4.7764 8.3635 95.80% 0.0249 0.2408 1.9148 94.00% 0.1248 0.5686 2.6247

75
α 0.0429 0.1920 1.7164 95.40% 0.0351 0.0161 0.4923 91.70% 0.0815 0.0247 0.6064
β 0.3142 0.1588 1.4362 93.20% 0.0197 0.0061 0.3039 93.90% 0.0261 0.0063 0.3145
θ 0.1119 3.4498 7.2314 96.60% 0.0120 0.1209 1.3602 94.00% 0.0786 0.2645 1.8179

150
α 0.0043 0.0812 1.1176 96.50% 0.0259 0.0089 0.3657 93.30% 0.0435 0.0117 0.4034
β 0.1543 0.0616 0.9254 93.90% 0.0162 0.0033 0.2224 94.30% 0.0180 0.0034 0.2226
θ 0.0169 0.7003 3.2794 96.10% 0.0106 0.0622 0.9743 93.30% 0.0412 0.1026 1.1560

2

0.5

30
α 0.6039 0.7045 3.0714 94.20% 0.0184 0.1069 1.2820 95.10% 0.1637 0.0626 0.8858
β 0.3143 3.7026 7.1325 95.40% 0.0181 0.2894 2.1052 94.90% 0.0996 0.3966 2.3280
θ 1.0335 3.9400 7.5164 97.10% 0.0877 0.0894 1.1599 95.40% 0.0786 0.0290 0.6481

75
α 0.2969 0.3034 2.0802 93.70% 0.0166 0.0634 0.9867 94.70% 0.1512 0.0417 0.7296
β 0.1533 1.4795 4.6164 94.80% 0.0105 0.1762 1.6445 94.50% 0.0409 0.1733 1.6502
θ 0.3368 0.3900 2.3587 95.30% 0.0530 0.0403 0.7805 94.90% 0.0971 0.0232 0.5555

150
α 0.2031 0.1685 1.5600 94.30% 0.0111 0.0344 0.7273 94.80% 0.1132 0.0259 0.5886
β 0.0796 0.7999 3.4517 95.50% 0.0008 0.1184 1.3494 95.60% 0.0229 0.0970 1.2506
θ 0.1994 0.1403 1.4159 94.70% 0.0315 0.0200 0.5513 94.10% 0.0808 0.0148 0.4466

2

30
α 0.2671 0.5792 2.9385 93.90% 0.0858 0.0419 0.7851 95.00% 0.1633 0.0558 0.8901
β 0.5785 5.8660 8.3452 96.20% 0.0526 0.1406 1.4113 95.80% 0.0161 0.1944 1.7234
θ 0.6990 4.0396 8.1512 95.30% 0.0503 0.3163 2.1702 95.50% 0.1705 0.7668 3.0647

75
α 0.0433 0.1645 1.5883 95.80% 0.0800 0.0213 0.5503 96.50% 0.0896 0.0248 0.6017
β 0.2641 2.0146 5.1670 93.60% 0.0437 0.0773 1.0348 96.90% 0.0204 0.1055 1.2703
θ 0.0822 2.0483 5.5759 96.10% 0.0399 0.1542 1.5080 95.90% 0.0788 0.2512 1.8330

150
α 0.0198 0.0854 1.1455 96.40% 0.0592 0.0135 0.4399 96.20% 0.0518 0.0130 0.4278
β 0.1703 1.0349 3.7598 93.50% 0.0309 0.0515 0.8569 97.60% 0.0153 0.0556 0.8815
θ 0.0069 0.7736 3.4490 96.10% 0.0327 0.1015 1.2230 95.60% 0.0450 0.1160 1.2262

6.1 Observation recorded from the results of the
simulation section

The following conclusions may readily be made based on
the simulation findings.

1.The MSE, RAB, and L.CI lengths of each of the
parameters drop as the sample size grows, which is
known as the consistency property.

2.When the sample is constructed using a complete
sample, we found that the credible intervals have the
shortest length of all the L.CIs.

3.In most circumstances, increased θ causes the MSE,
RAB, and L.CI for the parameter α to decrease while
the length for β and θ to increase.

4.In most circumstances, increasing β causes the MSE,
RAB, and L.CI for all parameters to decrease.

5.In most circumstances, increasing α causes the MSE,
RAB, and L.CI for the most parameters to decrease.

6.In most parameter measures, MPS is a good alternative
to MLE.

7.The Bayesian estimation is the best estimation method.

8.The credible intervals HPD are the shortest L.CI.
9.The CP is very high in most runs, meaning the

estimator falls between the lower and upper bounds.

7 Modeling carbon real data sets

In this part, we demonstrate the adaptability and
capability of our proposed model to fit two carbon fiber
real data sets. The first data set consists of 56
observations, which Nichols and Padgett [20] introduced.
The second data set consists of 63 observations and can
be founded in Mahmoud and Mandouh [19].

The carbon data sets are used to show the flexibility of
the proposed model compared to some well-known
distributions. The compared models, along with their
CDFs, are defined as the follows

–Kumaraswamy Fréchet (KF) distribution [21]

F(x) = 1−
(

1− e−a( α
x )

β
)b

.
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Table 2: The following table records the results conducted from the estimation methods when the data follows the NEEIW
distribution when fixing parameter α = 3

α = 3 MLE MPS Bayesian
β θ n RAB MSE L.CI CP RAB MSE L.CI CP RAB MSE L.CI

0.5

0.5

30
α 0.1325 0.5051 2.3965 96.2% 0.0276 0.0906 1.1806 94.2% 0.0979 0.4145 1.8163
β 0.5177 0.1465 1.1469 95.0% 0.4638 0.1464 1.2417 94.0% 0.3291 0.0605 0.6297
θ 0.1638 0.1014 1.2519 94.7% 0.1501 0.1060 1.2926 93.9% 0.1073 0.0303 0.6809

75
α 0.0086 0.0957 1.2120 96.0% 0.0393 0.1060 1.1930 96.9% 0.0184 0.0913 1.1792
β 0.0518 0.0293 0.6646 94.9% 0.0109 0.0403 0.7883 95.4% 0.0909 0.0176 0.4862
θ 0.0658 0.0417 0.7924 94.1% 0.1563 0.0744 1.0269 94.0% 0.1027 0.0399 0.6520

150
α 0.0402 0.1864 1.6340 95.4% 0.0176 0.0354 0.7115 95.9% 0.0564 0.1581 1.3018
β 0.0021 0.0232 0.6006 96.1% 0.0308 0.0167 0.5052 97.3% 0.0312 0.0078 0.3290
θ 0.1569 0.0597 0.9117 95.1% 0.1370 0.0451 0.7924 94.4% 0.1239 0.0294 0.4794

2

30
α 0.3861 5.5493 7.7831 97.1% 0.9446 4.8334 6.8178 99.6% 0.0932 0.4840 2.1863
β 0.9466 1.1493 3.7726 94.1% 0.8247 1.3507 4.2615 94.7% 0.2221 0.0538 0.6911
θ 0.7167 2.8384 4.5959 96.1% 0.6289 2.2194 5.3694 97.7% 0.0416 0.6073 2.6849

75
α 0.0611 1.7724 5.1717 99.5% 0.0024 4.2910 8.1242 99.8% 0.0250 0.0808 1.0638
β 0.3549 0.2606 1.8772 94.6% 0.2391 0.2361 1.8469 94.5% 0.1240 0.0215 0.4661
θ 0.0957 2.3493 3.9643 96.7% 0.1247 0.9103 3.6022 96.8% 0.0222 0.2605 1.9791

150
α 0.0194 0.1226 1.3544 95.6% 0.0112 0.1047 1.2624 95.6% 0.0115 0.0314 0.6790
β 0.1536 0.0698 0.9911 94.7% 0.0628 0.0512 0.8787 95.3% 0.0715 0.0085 0.3193
θ 0.0335 0.8165 3.5341 96.0% 0.0744 0.7387 3.3200 95.4% 0.0122 0.1219 1.3914

2

0.5

30
α 0.1505 1.3380 4.1768 95.0% 0.1087 0.7725 3.2012 94.8% 0.2014 0.9898 2.8301
β 0.0651 0.4770 2.6602 98.4% 0.0458 0.4721 2.6707 98.4% 0.0612 0.4203 2.4132
θ 0.5404 0.3876 2.1997 92.3% 0.3348 0.2914 2.0127 91.8% 0.0982 0.0432 0.6913

75
α 0.0580 0.5326 2.7798 96.1% 0.0805 0.3837 2.2370 95.1% 0.0510 0.4617 2.0525
β 0.0303 0.3020 2.1420 94.4% 0.0419 0.3015 2.1282 94.8% 0.0733 0.2085 1.6541
θ 0.0829 0.0393 0.7607 96.7% 0.1997 0.1303 1.3607 93.7% 0.0836 0.0278 0.5598

150
α 0.0405 0.2663 1.9671 95.2% 0.0553 0.2106 1.6782 95.0% 0.0617 0.2277 1.6955
β 0.0099 0.2045 1.7719 94.0% 0.0264 0.1885 1.6900 95.1% 0.0438 0.1224 1.3268
θ 0.1358 0.0685 0.9910 94.7% 0.1034 0.0528 0.8780 94.3% 0.0748 0.0177 0.4550

2

30
α 0.0979 0.8910 3.5182 95.7% 0.0447 0.4075 2.4477 95.0% 0.0739 0.4743 2.4499
β 0.2759 1.3721 4.0526 97.7% 0.0549 0.5558 2.8919 96.6% 0.2975 1.2510 3.4432
θ 0.0012 1.2297 4.3492 97.5% 0.0280 0.7340 3.3529 96.7% 0.0103 0.7012 3.0012

75
α 0.0414 0.2355 1.8396 95.1% 0.0199 0.1411 1.4545 95.2% 0.0252 0.0948 1.0833
β 0.1738 0.9807 3.6368 95.7% 0.0064 0.3021 2.1551 94.7% 0.1561 0.4716 2.1287
θ 0.0441 0.9885 3.8839 95.0% 0.0606 0.4638 2.6283 96.7% 0.0090 0.2681 2.0468

150
α 0.0114 0.0807 1.1059 94.2% 0.0167 0.0651 0.9808 94.6% 0.0075 0.0258 0.6317
β 0.0913 0.3722 2.2830 95.3% 0.0054 0.1681 1.6076 95.3% 0.0822 0.1453 1.2201
θ 0.0043 0.3702 2.3861 97.9% 0.0418 0.2740 2.0265 95.9% 0.0014 0.1194 1.3095

–Exponentiated Fréchet (EF) distribution [22]

F(x) = 1−

(
1− e−

(
β

x

)λ
)α

.

–Marshall-Olkin Fréchet (MOF) distribution [23]

F(x) =
e−(

a
x )

β

(
− be−(

a
x )

β

(1−α)e−(
a
x )

β

+α

+b+1

)
(1−α)e−(

a
x )

β

+α

.

–Modified Fréchet (MF) distribution [24]

F(x) = ee−λx
(
−( α

x )
β
)
.

–Modified Kies–Fréchet (MKF) distribution [25]

F(x) = 1− e
−
(

1

eαx−λ −1

)β

.
–odd Lindely Fréchet (OLF) distribution [26]

F(x) = 1−

(
λ+

(
1−e−(

α
x )

β
))

e
− λe−(

α
x )

β

1−e−(
α
x )

β

(λ+1)
(

1−e−(
α
x )

β
) .

–Fréchet-Weibull mixture exponential (FWME)
distribution [27]
F(x) = a

a+( x
λ
)

α(−k) .

–Fréchet-Weibull (FW) distribution [28]

F(x) = e−β α( λ
x )

αk

.
In comparing between models, we applied widely

used and essential measures like the Akaike information
criterion (AIC), the correct Akaike information criterion
(CAIC), the Bayesian information criterion (BIC), and
the Hannan information criterion (HQIC). Also, we used
some statistics such as Cramér–Von Mises (W ),
Anderson–Darling (A), and Kolmogorov–Smirnov (K-S)
statistics with its corresponding p-value.

Tables 3 and 4 introduce the numerical results
obtained by analyzing the carbon data sets, respectively.
The values in these tables show that the NEEIW
distribution is a close fit to the modeled data sets
compared to other competing distributions. Estimated
PDF, CDF, SF, and P-P plots for our proposed model for
the two real data sets are presented in Figures 4 and 5.
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Fig. 2: Graphical representation for some plots of the first
real data set.
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Fig. 3: Graphical representation for some plots of the
second real data set.

Some graphical representations of the two real data sets
are presented in Figures 2 and 2. The results in these
tables were obtained using Mathematica Wolfram
Software version 12.0. Also, we used the NMaximize
function to get the estimated parameters of all models;
this function attempts to find a global maximum solution.
Again, we provided Figures 6 and 7, which show the

behavior of the log-likelihood function with the estimated
parameters of the NEEIW model for the carbon data sets,
respectively, which give a maximum value of the function
with the values of the estimated parameters.
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Fig. 4: Histogram of first data set with the estimated
NEEIW PDF, CDF, SF and P-P plot.
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Fig. 5: Histogram of second data set with the estimated
NEEIW PDF, CDF, SF and P-P plot.
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Fig. 6: Behavior log-likelihood function with estimated parameters of NEEIW model for the first data set.

0 2 4 6 8 10
-250

-200

-150

-100

-50

α

P
ro
fil
e
lo
g
-
lik
el
ih
oo
d

0 2 4 6 8 10

-400

-300

-200

-100

0

β

P
ro
fil
e
lo
g
-
lik
el
ih
oo
d

0 1 2 3 4 5
-350

-300

-250

-200

-150

-100

-50

0

θ

P
ro
fil
e
lo
g
-
lik
el
ih
oo
d

Fig. 7: Behavior log-likelihood function with estimated parameters of NEEIW model for the second data set.

Table 3: Numerical Values by analyzing first data set for all compared models.

Distribution AIC CAIC BIC HQIC A W K-S (stat) K-S (p-value) Estimates

NEEIW 178.688 179.075 185.257 181.284 0.521042 0.0915272 0.0862444 0.710149 α̂ = 27.3376 (2.77759)
β̂ = 0.0670846 (0.00965365)
θ̂ = 1.03816×1011 (2.87865×1011)

KF 183.763 184.419 192.522 187.224 0.751943 0.140918 0.104905 0.461909 α̂ = 28.7403 (10.92168)
β̂ = 0.286123 (0.0520963)
â = 5.9227 (3.94303)
b̂ = 80103.8 (154201)

EF 187.142 187.529 193.711 189.738 1.22991 0.232108 0.130307 0.212375 λ̂ = 0.484053 (0.149947)
α̂ = 389.71 (462.779)
β̂ = 119.92 (190.227)

MOF 189.29 189.678 195.859 191.886 1.1527 0.157235 0.0938397 0.606408 α̂ = 888660 (1.45627×108)

β̂ = 4.89582 (0.513683)
â = 0.165217 (5.52977)

MF 192.97 193.357 199.539 195.566 1.82109 0.320396 0.143032 0.134309 α̂ = 2.92362×107 (1.07398×108)

β̂ = 0.141525 (0.0313508)
λ̂ = 1.01202 (0.0900319)

MKF 179.803 180.19 186.372 182.399 0.5633 0.104402 0.0933388 0.613233 α̂ = 0.830679 (0.0936299)
β̂ = 14.9524 (9.50064)
λ̂ = 0.162931 (0.101981)

OLF 179.99 180.377 186.559 182.586 0.628665 0.112893 0.0930215 0.617562 α̂ = 0.521397 (0.258958)
β̂ = 2.29667 (0.211233)
λ̂ = 0.0374918 (0.0434638)

FWME 191.291 191.946 200.049 194.751 1.15257 0.157234 0.0938391 0.606417 α̂ = 1.54959 (6.07464)
λ̂ = 2.99225 (1.832563)
k̂ = 3.15944 (3138.15)
â = 1.62149 (1.63855)

FW 250.39 251.046 259.148 253.851 6.50403 1.15621 0.230263 0.00182595 α̂ = 1.08573 (570.361)
β̂ = 1.15779 (927.169)
k̂ = 1.51792 (797.403)
λ̂ = 1.84819 (1012.32)
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Table 4: Numerical Values by analyzing second data set for all compared models.

Distribution AIC CAIC BIC HQIC A W K-S (stat) K-S (p-value) Estimates

NEEIW 45.3862 45.793 51.8156 47.9149 0.420494 0.0508308 0.0650183 0.952729 α̂ = 3.36302 (0.473157)
β̂ = 3.5687 (1.40975)
θ̂ = 1.74191 (0.877988)

KF 47.8663 48.556 56.4389 51.2379 0.4746 0.059182 0.0715026 0.904138 α̂ = 1.50069 (1818.54)
β̂ = 1.31395 (4.77259)
â = 0.912467 (5277.2)
b̂ = 1.2828 (0.639307)

EF 45.8663 46.2731 52.2957 48.395 0.4746 0.059182 0.0715026 0.904138 λ̂ = 4.77259 (1.31395)
α̂ = 1.2828 (0.639307)
β̂ = 1.47217 (0.137606)

MOF 46.0295 46.4363 52.459 48.5583 0.482735 0.058807 0.0726242 0.893862 α̂ = 1.93866 (3.36547)
β̂ = 6.2198 (2.08586)
â = 1.31646 (0.225456)

MF 46.1269 46.5337 52.5563 48.6556 0.527521 0.0694782 0.0771355 0.847667 α̂ = 1.42506 (0.508015)
β̂ = 5.38126 (2.04808)
λ̂ = 0.0375776 (1.31546)

MKF 57.0627 57.4694 63.4921 59.5914 1.92364 0.326409 0.165964 0.0621973 α̂ = 17.84 (6.80249)
β̂ = 0.375057 (0.0728259)
λ̂ = 5.93688 (0.854428)

OLF 65.4658 65.8725 71.8952 67.9945 2.08947 0.321705 0.135566 0.197217 α̂ = 2.95834 (0.79311)
β̂ = 1.55599 (0.300425)
λ̂ = 9.96719 (6.35689)

FWME 52.6507 53.3404 61.2233 56.0223 0.561021 0.0463413 0.0751462 0.868942 α̂ = 3.46384 (16.0117)
λ̂ = 5.45667 (1.88173)
k̂ = 2.39563 (663.762)
â = 5.47024 (3773.9)

FW 48.1277 48.8174 56.7003 51.4993 0.529087 0.0698934 0.0772243 0.846687 α̂ = 1.85751 (640.099)
β̂ = 2.89635 (1180.26)
k̂ = 2.92752 (1008.82)
λ̂ = 0.981082 (99.4793)

8 Conclusion

This study suggested the NEEIW distribution, a novel
combination of the NEX family and the EIW baseline
distributions. We have examined its statistical features
and produced a linear representation for its CDF, which
efficiently predicted the linear representations of the PDF,
moments, moment-generating function, and
stress-strength reliability. To get the point estimates for
the undetermined NEEIW parameters α , β , and θ , several
conventional and non-classical Bayesian estimation
techniques were examined. Using the R program, a
simulated study was conducted to investigate the efficacy
of several estimating techniques. Using the MCMC
technique, we concluded that the Bayesian strategy beats
all traditional methods investigated. Two distinct Carbon
data sets were evaluated. It was determined that NEEIW
”fit” the data ”better” than the majority of competing
distributions. The existence and uniqueness of the
log-likelihood function have been shown.
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the transmuted Fréchet distribution. Journal of Applied
Sciences Research, 9(10), 5553-5561.

[20] Nichols, M. D., & Padgett, W. J. (2006). A bootstrap
control chart for Weibull percentiles. Quality and reliability
engineering international, 22(2), 141-151.

[21] Mead, M. E. A. (2014). A note on Kumaraswamy Fréchet
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