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Abstract: Lomax distribution has been studied by many statisticians due to its important role in reliability modeling and 
lifetime testing. The bivariate Lomax distribution is an important lifetime distribution in survival analysis. In this article, a 
bivariate Lomax distribution is constructed based on Clayton copula. The joint probability density function and the joint 
cumulative distribution function are derived in closed forms. Some properties of this bivariate distribution are discussed. The 
maximum likelihood and Bayes estimators for the unknown parameters are derived. Also, the maximum likelihood and 
Bayesian two-sample prediction for the future observations are obtained. The performance of the proposed bivariate 
distribution is examined using a simulation study. Finally, one real data set under the proposed distribution is considered to 
illustrate its flexibility and applicability for real-life applications. 

Keywords: Bivariate Lomax Distribution, Clayton Copula, Maximum Likelihood Estimation, Maximum Likelihood 
Prediction, Bayesian Estimation, Bayesian Prediction, Monte Carlo Simulation. 

 

1 Introduction 

In many situations, the data under study is bivariate in nature. For instance, in survival analysis, the researchers are interested 
in studying the lifetimes of matched human organs such as eyes and kidneys, and also the double recurrence of certain 
diseases. In reliability studies, the bivariate data may consist of survival times for a system whose duration times rely upon 
the durability of two components, for example, the damage of lifetimes of motors in twin-engine airplanes (see Louzada et 
al. [13]). In actual studies, an annuity is a retirement payment for both retiree and his or her spouse which is guaranteed to be 
paid if both or either of them are living (see Denuit and Cornet [7]).  

Pareto Type II distribution is called Lomax distribution which is introduced and studied by Lomax [12]. This distribution is 
commonly used in reliability, many lifetime testing studies and is used to analyze business data. This distribution is useful in 
analyzing ordered contingency tables in which the two dimensions can be regarded as alternative measures of the same thing: 
the injuries to the two drivers in a road accident or the severity of a lesion present in a patient as assessed by two physicians, 
for instance. 

The bivariate Pareto Type II distribution was introduced by Mardia [14] using two dependent gamma variables. Later, Lindley 
and Singpurwalla [11] presented bivariate Pareto Type II distribution which has simple joint survival function with Pareto 
Type II marginals. Sankaran and Nair [21] proposed bivariate Pareto distribution which also has Pareto marginals, and it has 
Lindley-Singpurwalla’s bivariate Pareto model as a special case and Sankaran and Kundu [22] discussed several properties 
of bivariate Pareto distribution. For various other bivariate Pareto distributions and its generalizations, one may refer to 
Arnold [2], [3] and Kotz et al. [10]. Paul et al. [18] studied Bayesian analysis of singular Marshall-Olkin bivariate Pareto 
distribution. They derived three parameter singular Marshall-Olkin bivariate Pareto distribution; considering two types of 
priors, truncated normal prior and gamma prior. They obtained the Bayes estimators for the parameters. Baharith and 
Alzahrani [4] constructed two bivariate Pareto Type II distributions; one is derived from copula and the other is based on 
mixture and copula. A bivariate model based on adaptive progressive hybrid censored has been introduced by El-Sherpieny 
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et al. [25]. Bivariate Chen distribution based on Farlie-Gumbel-Morgenstern (FGM) copula has been obtained by El-
Sherpieny et al. [26]. The bivariate models based on copula function with application of accelerated life testing, has been 
suggested by El-Sherpieny et al. [27].  

Some references in the field of the bivariate distributions based on copulas include Almetwally et al. [28] who proposed 
bivariate distributions called the Farlie-Gumbel-Morgenstern (FGM) bivariate Fr𝑒́chet and Ali-Mikhail-Haq bivariate 
Fr𝑒́chet distributions using FGM, Ali-Mikhail-Haq copulas and univariate Fr𝑒́chet distributions. El-Sherpieny et al. [29] 
proposed the bivariate FGM Weibull- G family, which is a flexible bivariate generalized family of distributions based on the 
FGM copula. Muhammed et al. [30] presented the bivariate inverted Topp-Leone distribution, which is derived from FGM 
copula, Ali-Mikhail-Haq, Plackett and Clayton copulas. Abulebda et al. [31] constructed a bivariate XGamma distribution 
and investigated its statistical properties through examination of real data. Hassan and Chesneau [32] suggested the bivariate 
generalized half-logistic distribution using the FGM copula to assess household financial affordability in the Kingdom of 
Saudi Arabia. Zhao et al. [33] introduced a three-parameter extension of the Lomax distribution via using a class of claim 
distributions. Furthermore, a bivariate extension of the proposed model called the FGM bivariate Lomax-Claim distribution 
is also presented and different shapes for the probability density function (pdf) are plotted. Qura et al. [34] proposed univariate 
power Lomax distribution and bivariate power Lomax distribution based on FGM copula, which is referred to as a bivariate 
power Lomax distribution based on FGM. The statistical properties of the proposed distribution are discussed. The parameters 
of the model can be estimated by applying maximum likelihood (ML) and Bayesian approaches.  

This paper is devoted to construct a bivariate Lomax (BLO) distribution; based on Clayton copula, some properties of BLO 
distribution are studied. The rest of this paper is organized as follows: in Section 2, a construction of the BLO distribution 
with Clayton copula is introduced and some properties are studied. ML estimation and prediction are considered in Section 
3. In Section 4, numerical illustration is given; through applying the results of the ML estimation and prediction to the BLO 
distribution based on simulation and a real data set. In Section 5, Bayesian estimation and prediction is presented for the 
BLO. Finally in Section 6, numerical illustration for Bayesian estimation and prediction; based on simulation and a real data 
set are introduced, applying the results to the BLO distribution.   

2. Bivariate Lomax Distribution Based on Clayton Copula 

Copulas are used to describe the dependence between random variables. Sklar [23] described the functions that join one-
dimensional distribution functions to form multivariate distribution functions and named it copula; the name “copula” was 
chosen to emphasize the way a copula couples a joint distribution function to its univariate margins. 

Copulas are functions that join or couple multivariate distribution functions to their one-dimensional marginal distribution 
functions, i.e., copulas are multivariate distribution functions whose one-dimensional margins are uniform on the interval (0, 
1) (see Nelsen [16] and Joe [9]). 

Copulas are of interest to statisticians for two main reasons: firstly, as a way of studying scale-free measures of dependence; 
and secondly, as a starting point for constructing families of bivariate distributions, sometimes with a view to simulation. 

Archimedean copulas are an associative class of copulas. Archimedean copulas are popular because they allow modeling 
dependence in arbitrarily high dimensions with only one parameter, governing the strength of dependence. There are three 
Archimedean copulas in common use: the Clayton, Frank and Gumbel. The Clayton copula is an asymmetric Archimedean 
copula, exhibiting greater dependence in the negative tail than in the positive. The first application of copula models in 
bivariate survival data was considered by Clayton [6] as he studied the bivariate life tables of fathers and sons. Also, he 
pointed out the random effects interpretation the model which was subsequently developed by Oakes [17]. In this section, 
the BLO is constructed using Clayton copula and some properties are studied. 

2.1 Construction of the bivariate Lomax distribution 

Sklar [24] introduced the joint pdf and the joint cumulative distribution function (cdf) for two-dimension copula. Considering 
the two random variables 𝑇! and 𝑇", with distribution functions 𝐹(𝑡!) and 𝐹(𝑡"), respectively, then the joint cdf and pdf for 
bivariate copula, respectively, are 

𝐹(𝑡!, 𝑡") = 𝐶[𝐹(𝑡!), 𝐹(𝑡")],		  

and 

𝑓(𝑡!, 𝑡") = 𝑓(𝑡!)𝑓(𝑡")𝑐[𝐹(𝑡!), 𝐹(𝑡")]. 

where 𝐶 is the cdf of the copula and 𝑐 is the pdf of the copula. Nadarajah et al. [15] discussed Clayton in general form as  

𝐶1𝑢!	, 𝑢", … , 𝑢#4 = 5∑ 𝑢$%& − 𝑝 + 1
#
$'! ;%

!
",					𝜃 > 0, 

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Random_variable
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where 𝑝  is a number of variables. This paper considered the 2-dimension of Clayton copula, which was considered by 
Clayton [6], it is an asymmetric Archimedean copula, exhibiting greater dependence in the negative tail than in the positive 
tail. The cdf and pdf of the Clayton copula are defined, respectively, as follows: 

 
𝐶(𝑢	, 𝑣; 𝜃) = (𝑢%& + 𝑣%& − 1)%

!
", 𝜃 > 0,																																																																																														(2.1) 

and   
𝑐(𝑢	, 𝑣; 𝜃) = (1 + 𝜃)(𝑢𝑣)%&%!(𝑢%& + 𝑣%& − 1)%"%

!
"𝑢̀𝑣̀,																																																																										(2.2) 

 
where	𝜃 is the measure of dependence and it is known as an association parameter, 
	𝑢 = 𝐹(𝑡!), 𝑣 = 𝐹(𝑡"), 𝑢̀ = 𝑓(𝑡!)	 and  𝑣̀ = 𝑓(𝑡"). 
The measure of dependence can take on many different values depending on the copula, whereas measures of association 
(see Flores [8]). 
To construct the BLO distribution, suppose that 𝑇! follows LO distribution with the following cdf and pdf, respectively, 
 

𝐹(𝑡!, 𝛼!) = 1 − (1 + 𝑡!)%(! ,									𝑡! > 0, 𝛼! > 0,																																																																																							(2.3) 
and  

𝑓(𝑡!, 𝛼!) = 𝛼!(1 + 𝑡!)%((!*!),					𝑡! > 0, 𝛼! > 0.																																																																																								(2.4) 
 
Similarly, if  𝑇" follows LO distribution with the following cdf and pdf, respectively, 

𝐹(𝑡", 𝛼") = 1 − (1 + 𝑡")%(# ,						𝑡" > 0, 𝛼" > 0,																																																																																										(2.5) 
and 

𝑓(𝑡", 𝛼") = 𝛼"(1 + 𝑡")%((#*!),					𝑡" > 0, 𝛼" > 0.																																																																																							(2.6) 
 
If  𝜃 = 𝛼, 𝑢 = 𝐹(𝑡!, 𝛼!) and  𝑣 = 𝐹(𝑡", 𝛼"), then substituting (2.3) and (2.5) in (2.1), hence the joint cdf is  

𝐹1𝑡!, 𝑡", 𝜔4 = 𝐶5[1 − (1 + 𝑡!)%(!], [1 − (1 + 𝑡")%(#];																																																																																					 

																							= {[1 − (1 + 𝑡!)%(!]%( + [1 − (1 + 𝑡")%(#]%( − 1}
%!$,																																																														 

																																																																		𝑡 > 0, 𝜔 > 0, 𝜔 = (𝛼, 𝛼!, 𝛼"), 𝑡 = (𝑡!, 𝑡")										(2.7) 
If	𝑢 = 𝐹(𝑡!, 𝛼!), 𝑣 = 𝐹(𝑡", 𝛼"), 𝑢̀ = 𝑓(𝑡!, 𝛼!),  𝑣̀ = 𝑓(𝑡", 𝛼"), and substituting (2.4) and (2.6) in (2.2), then the joint pdf of 
BLO distribution is 
 
𝑓1𝑡!, 𝑡", 𝜔4 = (𝛼 + 1)𝛼!𝛼"(1 + 𝑡!)%((!*!)(1 + 𝑡")%((#*!)[1 − (1 + 𝑡!)%(!]%((*!)				     

																	× [1 − (1 + 𝑡")%(#]%((*!){[1 − (1 + 𝑡!)%(!]%( + [1 − (1 + 𝑡")%(#]%( − 1}
%,!%#$$ -

⬚
,		 

																																																																																																														(𝑡!, 𝑡") > 0, (𝛼, 𝛼!, 𝛼") > 0.					(2.8) 
The contour plots of the joint pdf of the BLO distribution for different parameter values are presented in Figure 1 

 
                                    (1.a)                                                                          (1.b) 
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        (1.c)                 (1.d) 
 

Fig. 1: The contour plots of the joint pdf of the BLO distribution for different parameter values: 
(1.a)	(𝛼 = 1, 𝛼! = 2, 𝛼" = 3), (1.b)	(𝛼 = 1, 𝛼! = 2, 𝛼" = 4), (1.c) (𝛼 = 1, 𝛼! = 1, 𝛼" = 1) and (1.d) (𝛼 = 1, 𝛼! =
1, 𝛼" = 4). 
From Figure 1, one can observe that the joint pdf of BLO distribution can take different shapes depending on the values of 
its parameters.  
2.2. The joint reliability and joint hazard rate functions 
The joint reliability function (rf) of BLO distribution is given by 
𝑅1𝑡!, 𝑡", 𝜔4 = 𝑃(𝑇! > 𝑡!, 𝑇" > 𝑡") 
																							= 1 − 𝐹(𝑡!) − 𝐹(𝑡") + 𝐹(𝑡!, 𝑡") 

										= 1 − [1 − (1 + 𝑡!)%(!] − [1 − (1 + 𝑡")%(#]																																																																																																								 
									+{[1 − (1 + 𝑡!)%(!]%( + [1 − (1 + 𝑡")%(#]%( − 1}

%!$.		(𝑡!, 𝑡") > 0, (𝛼, 𝛼!, 𝛼") > 0.														(2.9)		 
The joint hazard rate function (hrf) is defined by 

ℎ(𝑡!, 𝑡") =
𝑓1𝑡!, 𝑡", 𝜔4
𝑅1𝑡!, 𝑡", 𝜔4

,																										(𝑡!, 𝑡") > 0, (𝛼, 𝛼!, 𝛼") > 0		.																																																						(2.10) 

The contour plots for the joint hrf of the BLO distribution for different parameter values are presented  
in Figure 2. 

     (2.a)                                                                                  (2.b) 
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       (2.c) (2.d) 
 

Fig.2: The contour plots of the joint hrf of the BLO distribution for different parameter values: 
(2.a)	(𝛼 = 6, 𝛼! = 3, 𝛼" = 2.5), (2.b)	(𝛼 = 2.5, 𝛼! = 0.5, 𝛼" = 1.5), 
(2.c) (𝛼 = 0.2, 𝛼! = 0.5, 𝛼" = 3) and (2.d) (𝛼 = 0.8, 𝛼! = 1, 𝛼" = 3). 
2.3. The conditional functions  
The conditional pdf and conditional cdf of 	𝑇!|𝑇"		 are given, respectively, by 
𝑓(𝑡!|𝑡") = (𝛼 + 1)𝛼!(1 + 𝑡!)%((!*!)[1 − (1 + 𝑡!)%(!]%((*!)[1 − (1 + 𝑡")%(#]%((*!)																											 

	× {[1 − (1 + 𝑡!)%(!]%( + [1 − (1 + 𝑡")%(#]%( − 1}
%,!%#$$ -	,																																																																	(2.11) 

and 

𝐹(𝑡!|𝑡") = S 𝑓(𝑡!|𝑡")𝑑𝑡!
0!

1
																																																																																																																																									 

= [1 − (1 + 𝑡")%(#]%((*!){[1 − (1 + 𝑡!)%(!]%( + [1 − (1 + 𝑡")%(#]%( − 1}
%,!%$$ -,																								(2.12) 

where		𝑓(𝑡!|𝑡")  is given by (2.11). 
3. Maximum Likelihood Estimation and Prediction 
In this section, the ML estimators of the vector of the parameters		𝜔 = (𝛼, 𝛼!, 𝛼"), rf and hrf of the BLO distribution are 
derived. Also, the two-sample ML prediction is obtained for new observations from a future sample from the same 
distribution. 
3.1. Maximum likelihood estimation  
Using (2.8), the likelihood function can be written as 

𝐿1𝜔V𝑡4 =W𝑓(
2

$'!

𝑡!$ , 𝑡"$),																																																																																																																																													 

			= (𝛼 + 1)2𝛼!2𝛼"2 			W(1 + 𝑡!$)%((!*!)
2

$'!

(1 + 𝑡"$)%((#*!)[1 − (1 + 𝑡!$)%(!]%((*!)																																																			 

	× [1 − (1 + 𝑡"$)%(#]%((*!)	[[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1]
%,!%#$$ -,																	(3.1) 

where		𝜔 = (𝛼, 𝛼!, 𝛼"). 
Hence, the log likelihood function is given by 
ℓ ≡ 𝑙𝑛𝐿1𝜔V𝑡4 

= 𝑛𝑙𝑛(𝛼 + 1) + 𝑛𝑙𝑛𝛼! + 𝑛𝑙𝑛𝛼" − (𝛼! + 1)\ln(1 + 𝑡!$)
2

$'!

	− (𝛼" + 1)\ln(1 + 𝑡"$)	
2

$'!

																		 

												−(𝛼 + 1)\ln[1 − (1 + 𝑡!$)%(!]
2

$'!

− (𝛼 + 1)\ln[1 − (1 + 𝑡"$)%(#]
2

$'!
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																									− _
1 + 2𝛼
𝛼 `\ln{[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1}

2

$'!

.																						(3.2) 

The ML estimators of the parameters can be obtained by differentiating (3.2) with respect to	𝛼, 𝛼!	and	𝛼" and setting to 
zeros then solving the resulting non-linear system of likelihood equations.  
Hence 
𝜕ℓ
𝜕𝛼 =

𝑛
(𝛼 + 1) −\ln[1 − (1 + 𝑡!$)%(!]

2

$'!

−\ln[1 − (1 + 𝑡"$)%(#] + d_
1 + 2𝛼
𝛼 `																																				

2

$'!

 

					×\ln
[1 − (1 + 𝑡!$)%(!]%(ln[1 − (1 + 𝑡!$)%(!] + [1 − (1 + 𝑡"$)%(!]%(𝑙𝑛[1 − (1 + 𝑡"$)%(#]

[[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1]

2

$'!

e 

						+ f\ln[[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1]
2

$'!

e _
1
𝛼"`,																																															(3.3) 

𝜕ℓ
𝜕𝛼!

=
𝑛
𝛼!
−\ln(1 + 𝑡!$) −

2

$'!

(𝛼 + 1)\
ln(1 + 𝑡!$)

(1 + 𝑡!$)(! − 1

2

$'!

																																																																																	 

+_
1 + 2𝛼
𝛼 `\

𝛼[1 − (1 + 𝑡!$)%(!]%((*!)(1 + 𝑡!$)%(!ln(1 + 𝑡!$)
[[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1]

2

$'!

	,																																																			(3.4) 

and 
𝜕ℓ
𝜕𝛼"

=
𝑛
𝛼"
−\ln(1 + 𝑡"$) −

2

$'!

(𝛼 + 1)\
ln(1 + 𝑡"$)

(1 + 𝑡"$)(# − 1

2

$'!

																																																																																	 

	+ _
1 + 2𝛼
𝛼 `\

𝛼[1 − (1 + 𝑡"$)%(#]%((*!)(1 + 𝑡"$)%(#ln(1 + 𝑡"$)
[[1 − (1 + 𝑡!$)%(!]%( + [1 − (1 + 𝑡"$)%(#]%( − 1]

2

$'!

.																																																				(3.5) 

The invariance property of the ML estimators can be applied to obtain the ML estimators of the rf and hrf by replacing the 
parameters by their ML estimators in (2.9) and (2.10). 
Then  
𝑅g(𝑡!, 𝑡") = 1 − 51 − (1 + 𝑡!)%(3!; 	− 51 − (1 + 𝑡")%(3#; 

						+ h51 − (1 + 𝑡!)%(3!;
%(3 + 51 − (1 + 𝑡")%(3#;

%(3 − 1i
%!$& ,																																																																					(3.6) 

and 

ℎg(𝑡!, 𝑡") =
𝑓1𝑡!, 𝑡", 𝜔j4
𝑅1𝑡!, 𝑡", 𝜔j4

,																																																																																																																																																								(3.7)																			 

𝑅g(𝑡!, 𝑡") and ℎg(𝑡!, 𝑡") can be evaluated numerically. The (1 − 𝛿)100% confidence intervals (CIs) of the parameters 	𝜔 =
(𝛼, 𝛼!, 𝛼"), rf and hrf can be derived by using variance covariance matrix as follows: 

𝜔j$ ± 𝑍!%'#
o𝑣𝑎𝑟r (𝜔j$), 𝑖 = 1,2,3, 

where 𝑍
!%'#

  is the standard normal variate and 𝛿 is the confidence coefficient. 

3.2. Maximum likelihood prediction 
In two-sample prediction, the two samples are assumed to be independent and drawn from the same distribution. In 
bivariate Type II censoring where the first variable in the vector is the ordered observation and the second variable is its 
concomitants, therefore the joint pdf of ordered observations and the concomitants is needed to obtain the joint predictive 
density function of future ordered observations and their concomitants.  
For a future bivariate censored sample of size	𝑚, the joint pdf of the future s-th ordered observation and its s-th 
concomitant denoted by	1𝑦!(4:6), 𝑦"(4:6)4,	𝑠 = 1,2, … ,𝑚, has the joint pdf which is given by (2.8) after replacing 𝑡! by 
𝑦!(4:6) and 𝑡" by 𝑦"(4:6). For simplicity, it can be written as 1𝑦!(4), 𝑦"(4)4 for	1𝑦!(4:6), 𝑦"(4:6)4 (for more details, see AL-
Hossaini [1], Singh et al. [19] and [20]). Then the joint pdf of 1𝑦!(4), 𝑦"(4)4 is given by 
𝑓4:61𝑦!(4), 𝑦"(4); 𝜔4 =																																																																																																																																																	       
																																				 6!

(4%!)!(6%4)!
𝑓1𝑦!(4), 𝑦"(4); 𝜔45𝐹(𝑦!(4), 𝑦"(4));

4%!51 − 𝐹(𝑦!(4), 𝑦"(4));
6%4.          

Using the binomial expansion to simplify the last term in the previous equation, one gets 
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51 − 𝐹(𝑦!(4), 𝑦"(4));
6%4 = \ w

𝑚− 𝑠
𝑗 y (−1)8

6%4

8'1

5𝐹(𝑦!(4), 𝑦"(4));
8 																																																																					 

Thus, the joint pdf of 1𝑦!(4), 𝑦"(4)4 is as follows: 
𝑓4:61𝑦!(4), 𝑦"(4); 𝜔4																																																																																																																																																																		 

																											=
𝑚!

(𝑠 − 1)! (𝑚 − 𝑠)! 𝑓1𝑦!(4), 𝑦"(4); 𝜔4\ w
𝑚 − 𝑠
𝑗 y (−1)8

6%4

8'1

5𝐹(𝑦!(4), 𝑦"(4));
4*8%!,						 

																							= 𝑓1𝑦!(4), 𝑦"(4); 𝜔4\
𝑚!

(𝑠 − 1)! (𝑚 − 𝑠 − 𝑗)! (𝑗)! (−1)
8

6%4

8'1

5𝐹(𝑦!(4), 𝑦"(4));
4*8%!,			 

																																= 𝑓1𝑦!(4), 𝑦"(4); 𝜔4\ 𝐶6,4,8

6%4

8'1

5𝐹(𝑦!(4), 𝑦"(4));
4*8%!,																																																		(3.8) 

where 

																																																	𝐶6,4,8 =
𝑚!

(𝑠 − 1)! (𝑚 − 𝑠 − 𝑗)! (𝑗)! (−1)
8 	.																																																																						(3.9) 

Substituting 𝐹(𝑡!, 𝑡") and  𝑓(𝑡!, 𝑡") given, respectively, in (2.7) and (2.8) after replacing 𝑡! by 𝑦!(4) and 𝑡" by 𝑦"(4), then 
the joint ML predictive density of ordered observations and their concomitants is given by 
 
𝑓4:61𝑦!(4), 𝑦"(4); 𝜔j4 =																																																																																																																																																			 

															(𝛼{ + 1)𝛼{!𝛼{"11 + 𝑦!(4)4
%((3!*!)11 + 𝑦"(4)4

%((3#*!) |1 − 11 + 𝑦!(4)4
%(3!}

%((3*!)
																																							 

								× |1 − 11 + 𝑦"(4)4
%(3#}

%((3*!)
d|1 − 11 + 𝑦!(4)4

%(3!}
%(3
+ |1 − 11 + 𝑦"(4)4

%(3#}
%(3
− 1~

%,!%#$&$& -			

 

									× \ 𝐶6,4,8	 d|1 − 11 + 𝑦!(4)4
%(3!}

%(3
+ |1 − 11 + 𝑦"(4)4

%(3#}
%(3
− 1~

%,(%)*!$& -6%4

8'1

	.																																		 

																																																																																																													1𝑦!(4), 𝑦"(4)4 > 0, (𝛼{, 𝛼{!, 𝛼{") > 0,							(3.10) 
The point predictors of future ordered observation and their concomitants 1𝑌!(4), 𝑌"(4)4, 
	𝑠 = 1,2, … ,𝑚	, can be obtained as given below 
𝑌g!⬚ = 𝐸(𝑦!(4); 𝜔j:;) = ∫ 𝑦!(4) ∫ 𝑓1𝑦!(4), 𝑦"(4); 𝜔j:;4𝑑𝑦"(4)𝑑𝑦!(4),																																																												(3.11)

<
=#(()

<
=!(()'1

  
and 

𝑌g"⬚ = 𝐸(𝑦"(4); 𝜔j:;) = S 𝑦"(4)S 𝑓1𝑦!(4), 𝑦"(4); 𝜔j:;4𝑑𝑦!(4)𝑑𝑦"(4).																																																												(3.12)
<

=!(()

<

=#(()'1
 

The joint point predictors of the future ordered observation is  

𝑌g!⬚, 𝑌g"⬚ = 𝐸1𝑦!(4), 𝑦"(4); 𝜔j:;4 = S S 𝑦!(4)𝑦"(4)𝑓1𝑦!(4), 𝑦"(4); 𝜔j:;4𝑑𝑦"(4)𝑑𝑦!(4)
<

1

<

1
,																																											(3.13) 

which can be evaluated numerically. 

4. Numerical Illustration for the Maximum Likelihood Results 

This section aims to investigate the precision of the theoretical results of ML estimation and prediction based on simulated 
data and real data set. 
4.1. Simulation study 
In this subsection, a simulation study is conducted to illustrate the performance of the presented ML estimates based on 
generated data from the BLO distribution. The ML averages of the parameters, rf and hrf are computed. Moreover, 
confidence intervals (CIs) for the parameters, rf and hrf are calculated. Simulation studies are performed using 
Mathematica 11. Nelsen [16] discussed generating a sample from a specified joint distribution. By conditional distribution 
method, the joint distribution function is as follows: 
𝑓(𝑡!, 𝑡") = 𝑓(𝑡!)𝑓(𝑡"|𝑡!). 
The steps of the simulation procedure are given below 
a) For given values of	𝜔 (where 𝜔 = (𝛼, 𝛼!, 𝛼")), random samples of size n are generated from the BLO distribution. 
b) For each sample size, sort the 𝑡$8

, s, such that	(𝑡!!, 𝑡"!), (𝑡!", 𝑡""), … , (𝑡!2, 𝑡"2). 
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c) Repeat the previous steps N times where N represents a fixed number of simulated samples. 
d) Newton-Raphson method can be applied to obtain the ML averages and the Confidence intervals (CIs) of the 

parameters. Also, the rf, hrf and their CIs are calculated using the ML averages of the parameters. 
e) Evaluating the performance of the estimates is considered through some measurements of accuracy. To study the 

precision and variation of the estimates, it is convenient to use the estimated risk (𝐸𝑅) = ∑ (?@ABCDA?%AEF?	GDHF?)#-
./!

I
  . 

f) Simulation results of averages of the ML estimates are displayed in Tables 2 and 3, where N = 10000 is the number of 
repetitions and samples of size (n=30, 50, 100) and the population parameter values are (𝛼 = 0.1, 𝛼! = 0.2, 𝛼" =
0.3)	and  (𝛼 = 0.1, 𝛼! = 0.3, 𝛼" = 0.4)						.  

g) Tables 2 and 3 present the ML averages, ERs and CIs of the unknown parameters. While Tables 4 and 5 display the 
ML averages, ERs and CIs of the rf and hrf for different values of time	𝑡1!, 𝑡1". The ML two-sample predictors are 
presented in Table 9. 

4.2. Application of real data 
 American Football Data Set: This data set is obtained from the American Football National Football League (NFL) 
League from the matches on three consecutive weekends in (1986). The data was also available in Csorgo and Welsch [5]. 
They converted the seconds of the data to decimal points. The bivariate data set	(𝑇!, 𝑇") is presented in Table 1; where the 
variable 𝑇! represents the game time to the first point scored by kicking the ball between goal posts and 𝑇" represents the 
game time by moving the ball into the end zone. 

Table 1: American Football League NFL data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kolmogorov–Smirnov goodness of fit test is applied to check the validity of the fitted model. The p values are given, 
respectively, by 0.065 and 0.064. The p values showed that the model fits the data very well.  

Table 6 displays the ML estimates ERs of the unknown parameters for the data set. While Tables 7 and 8 present the ML 
estimates and standard errors (Se) of the rf and hrf for different values of time	𝑡1!, 𝑡1" in two states (𝑡!" = 2, 𝑡!# = 3), (𝑡!" =
3, 𝑡!# = 4) respectively.  Table 10 provides the ML two-sample predictors for the future sample. 

4.3 Concluding remarks 

1. It is noticed, from Tables 2 and 3 that the ML averages are very close to the population parameter values as the sample 
size increases. Also, ERs decrease when the sample size increases as expected, which indicates that the estimates are 
consistent and approaches the parameter values as the sample size increases. 

2. The lengths of the CIs of the parameters become narrower as the sample size increases. 
3. The ML averages are very close to the initial values of the rf and hrf as the sample size increases. Also, ERs decrease 

when the sample size increases. 
4. The length of the first future order statistic is smaller than the length of the last future order statistic (Tables 9 and 10). 
5. The ML interval includes the estimates (between the Lower limit (LL) and Upper Limit (UL)). 

 
 

𝑇!													 𝑇"																		 			𝑇!					 			𝑇"																										 			𝑇!																			 			𝑇"																					 
02.05 
09.05 
00.85 
03.43 
07.78 
10.57 
07.05 
02.58 
07.23 
06.85 
32.45 
08.53 
31.13 
14.58 

03.98 
09.05 
00.85 
03.43 
07.78 
14.28 
07.05 
02.58 
09.68 
34.58 
42.35 
14.57 
49.88 
20.57 

05.78 
13.80 
07.25 
04.25 
01.65 
06.42 
04.22 
15.53 
02.90 
07.02 
06.42 
08.98 
10.15 
08.87 

25.98 
49.75 
07.25 
04.25 
01.65 
15.08 
09.48 
15.53 
02.90 
07.02 
06.42 
08.98 
10.15 
08.87 

10.40 
02.98 
03.88 
00.75 
11.63 
01.38 
10.35 
12.13 
14.58 
11.82 
05.52 
19.65 
17.83 
10.85 

14.25 
02.98 
06.43 
00.75 
17.37 
01.38 
10.35 
12.13 
14.58 
11.82 
1127 
10.70 
17.83 
38.07 
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Table 2: ML averages, estimated risks and 95% confidence intervals  
for the parameters (𝑁 = 10000, 𝛼 = 0.1, 𝛼! = 0.2, 𝛼" = 0.3) 

 

 

 

 

 
 
 
 

Table 3: ML averages, estimated risks and 95% confidence intervals 
 for the   parameters (N = 10000, α = 0.1, α! = 0.3, α" = 0.4) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: ML averages, estimated risks and 95% confidence  
intervals of the reliability and hazard rate functions 
(N = 10000, 𝛼 = 0.1, 𝛼! = 0.2, 𝛼" = 0.3, 𝑡1! = 2, 𝑡1" = 3) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

n parameters Averages ER UL LL Length 

30 
𝛼 0.6899 0.5428 1.4855 0.0000 1.4855 
𝛼! 0.1899 0.0011 0.2507 0.1290 0.1217 
𝛼" 0.2848 0.0024 0.3761 0.1935 0.1826 

50 
𝛼 0.7126 0.4686 1.3113 0.1139 1.1973 
𝛼! 0.1919 0.0006 0.2388 0.1449 0.0938 
𝛼" 0.2878 0.0014 0.3588 0.2174 0.1408 

100 
𝛼 0.6393 0.3050 0.8723 0.4063 0.4660 
𝛼! 0.1908 0.0004 0.2280 0.1536 0.0744 
𝛼" 0.2862 0.0010 0.3420 0.2304 0.1117 

n parameters Averages ER UL LL Length 

30 
𝛼 0.7335 0.6188 1.6474 0.0000 1.6474 
𝛼! 0.2667 0.0040 0.3728 0.1605 0.2124 
𝛼" 0.3555 0.0072 0.4971 0.2139 0.2832 

50 
𝛼 0.6842 0.4614 1.3637 0.0047 1.3590 
𝛼! 0.2945 0.0011 0.3569 0.02319 0.1249 
𝛼" 0.3926 0.0019 0.3569 0.3093 0.1667 

100 
𝛼 0.5899 0.2587 0.8586 0.3212 0.5374 
𝛼! 0.2736 0.0015 0.3281 0.2190 0.1092 
𝛼" 0.3648 0.0026 0.4375 0.2920 0.1455 

n rf and hrf Averages ER UL LL Length 

30 
𝑅(𝑡#!, 𝑡#") 0.5947 0.0013 0.7317 0.4578 0.2738 
ℎ(𝑡#!, 𝑡#") 0.0026 0.0350 0.0037 0.0015 0.0022 

50 𝑅(𝑡#!, 𝑡#") 0.5412 0.0004 0.6319 0.4507 0.1811 
ℎ(𝑡#!, 𝑡#") 0.0028 0.0289 0.0040 0.0020 0.0020 

100 
𝑅(𝑡#!, 𝑡#") 0.5357 0.0003 0.6214 0.4499 0.1715 
ℎ(𝑡#!, 𝑡#") 0.0029 0.0284 0.0039 0.0019 0.0019 
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Table 5: ML averages, estimated risks and 95% confidence 

intervals of the reliability and hazard rate functions 

(N = 10000, 𝛼 = 0.1, 𝛼! = 0.2, 𝛼" = 0.3, 𝑡1! = 3, 𝑡1" = 4) 
 
 

Table 6: ML estimates and standard errors of the parameters for the data set 
(𝛼 = 1.1, 𝛼! = 1.5, 𝛼" = 2.2) 

 
 
 
 
 
 

Table 7: ML estimates and standard errors for the reliability and hazard rate functions for the real data set 
(𝛼 = 0.1, 𝛼! = 0.2, 𝛼" = 0.3, 𝑡1! = 2, 𝑡1" = 3) 

 
 
 
 
 

Table 8: ML estimates and standard errors of the reliability and hazard rate functions for the real data set 
(𝛼 = 0.1, 𝛼! = 0.2, 𝛼" = 0.3, 𝑡#! = 3, 𝑡#" = 4) 

 
 
 
 
 

Table 9: ML predictive and bounds of the future observation under two-sample prediction 
(N = 10000, 𝛼 = 1.1, 𝛼! = 1.5, 𝛼" = 2.2) 

n s 𝒚2(𝒔) Predictor UL LL Length 

 
 

30 

1 
𝑦4!(') 0.0821 0.2873 0.0140 0.2733 
𝑦4"(') 0.0532 0.1878 0.0044 0.1834 

2 
𝑦4!(') 0.1681 0.4837 0.0463 0.4374 
𝑦4"(') 0.1068 0.3087 0.0021 0.3066 

3 
𝑦4!(') 0.3332 0.5289 0.0964 0.4325 
𝑦4"(') 0.1956 0.3641 0.0651 0.2990 

 
 

n rf and hrf Averages ER UL LL Length 

30 
𝑅(𝑡#!, 𝑡#") 0.6168 0.0006 0.7211 0.5126 0.2085 
ℎ(𝑡#!, 𝑡#") 0.0047 0.0374 0.0066 0.0029 0.0037 

50 
𝑅(𝑡#!, 𝑡#") 0.6098 0.0005 0.7036 0.5161 0.1875 
ℎ(𝑡#!, 𝑡#") 0.0052 0.0366 0.0066 0.0038 0.0028 

100 
𝑅(𝑡#!, 𝑡#") 0.5875 0.0002 0.6979 0.4769 0.2209 

ℎ(𝑡#!, 𝑡#") 0.0054 0.0339 0.0075 0.0033 0.0042 

n Parameters Estimates SE 

42 
𝛼 1.1621 0.0039 
𝛼! 1.2659 0.0548 
𝛼" 1.4091 0.0255 

n rf and hrf Estimates SE 

42 𝑅(𝑡#!, 𝑡#") 0.2009 0.0013 
ℎ(𝑡#!, 𝑡#") 0.0319 0.0272 

n rf and hrf Estimates SE 

42 𝑅(𝑡#!, 𝑡#") 0.1466 0.0009 
ℎ(𝑡#!, 𝑡#") 0.0194 0.0155 
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Table 10: ML predictive and bounds of the future observation under two-sample prediction 
for the real data set  (𝛼 = 1.1, 𝛼! = 1.5, 𝛼" = 2.2) 

n s 𝒚2(𝒔) predictor UL LL Length 

 
 

42 

1 
𝑦4!(') 0.4691 0.6131 0.2402 0.3729 
𝑦4"(') 0.3533 0.3550 0.0025 0.3525 

2 
𝑦4!(') 0.9254 0.9271 0.9226 0.0045 
𝑦4"(') 0.6844 0.6867 0.6803 0.0064 

3 
𝑦4!(') 1.3699 1.6225 0.7307 0.8918 
𝑦4"(') 0.9989 1.1429 0.4899 0.6530 

5. Bayesian Estimation and Prediction 

In this section Bayesian estimation and two-sample prediction of the vector of parameters 
 𝜔 = (𝛼, 𝛼!, 𝛼") for the BLO distribution will be introduced. 
5.1. Bayesian estimation  
 Assuming that the parameters are independent, and each one has an informative prior. The joint prior distribution of the 
three unknown parameters is 

																														𝜋1𝜔4 =W𝜋(𝜔J)
K

J'!

, 𝚤 = 1,2,3,																																																																																																															(5.1) 

where ωL	~ gamma	(aL, bL), where 	aL, bL	are the hyper-parameters of the prior distribution,	aL	is the shape parameter and 
	bL	is the scale parameter. Hence, ωL has the following pdf 

π(ωL) ∝ ωL
	D0%!e%

10
20 	, ωL > 0, 	(aL, bL) > 0,																																																																																																																							(5.2) 

where		ω! = α, 	ω" = α!, ωK = α". 
Then, the joint prior distribution of ω is  

𝜋1𝜔4 ∝ 𝛼	M!%!𝛼!
	M#%!𝛼"

	M3%!𝑒%,
$
4!
*$!4#

*$#43
-, (	𝑎!, 	𝑎", 	𝑎K) > 0, (	𝑏!, 	𝑏", 	𝑏K) > 0.																																																					(5.3) 

The joint posterior density of	ω is given by  
𝜋1𝜔V𝑡!, 𝑡"4 ∝ 𝜋1𝜔4𝐿1𝜔V𝑡!, 𝑡"4.																																																																																																																																										(5.4) 
Using (3.1) and (5.3), one can obtain the joint posterior density   

𝜋1𝜔V𝑡!, 𝑡"4 ∝ (𝛼 + 1)2𝛼	M!%!𝛼!
2*	M#%!𝛼"

	2*M3%!𝑒%,
$
4!
*$!4#

*$#43
-𝑒%∑ ((!*!)HN(!*0!.)*((#*!)HN(!*0#.)

5
./! 												 

	× 𝑒%∑ ((*!)HN[!%(!*0!.)*$!]*((*!)HN[!%(!*0#.)*$#]*,
!%#$
$ -HN[[!%(!*0!.)*$!]*$*[!%(!*0#.)*$#]*$%!]

5
./! .						(5.5) 

The Bayes estimator for the rf and hrf under squared error loss (SEL) function can be derived using (2.9), (2.10) and (5.5), 
respectively, as given below 

𝑅QR∗ (𝑡!, 𝑡") = 𝐸1𝑅(𝑡!, 𝑡")V𝜔4 = S 𝑅(𝑡!, 𝑡")
⬚

T
𝜋⬚
⬚1𝜔V𝑡!, 𝑡"4𝑑𝜔,																																																													(5.6) 

and 

ℎQR∗ (𝑡!, 𝑡") = 𝐸1ℎ(𝑡!, 𝑡")V𝜔4 = S ℎ(𝑡!, 𝑡")
⬚

T
𝜋⬚
⬚1𝜔V𝑡!, 𝑡"4𝑑𝜔	.																																																														(5.7)	 

Equations (5.6) and (5.7) can be calculated numerically to obtain the Bayes estimators of the rf and hrf based on SEL 
function. 
5.2. Bayesian prediction  
In this subsection, Bayesian two-sample prediction for future ordered observations and their concomitants is considered; 
based on BLO distribution for future bivariate samples of size	𝑚. For given parameters the joint pdf of ordered 
observations and their concomitants is given by (3.8). 
From (2.7) and (2.8) after replacing 𝑡!, 𝑡" by  𝑦!(4), 𝑦"(4) , one gets 

𝑓4:61𝑦!(4), 𝑦"(4); 𝜔4 = (𝛼 + 1)𝛼!𝛼"11 + 𝑦!(4)4
%((!*!)11 + 𝑦"(4)4

%((#*!)51 − 11 + 𝑦!(4)4
%(!;

%((*!)
				 

																	× 51 − 11 + 𝑦"(4)4
%(#;

%((*!)
d51 − 11 + 𝑦!(4)4

%(!;
%(
+ 51 − 11 + 𝑦"(4)4

%(#;
%(3
− 1~

%,!%#$$ -
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						× \ 𝐶6,4,8	 h51 − 11 + 𝑦!(4)4
%(!;

%(
+ 51 − 11 + 𝑦"(4)4

%(#;
%(
− 1i

%,(%)*!$ -
6%4

8'1

	,																					 

																																																																																																					1𝑦!(4), 𝑦"(4)4 > 0, (𝛼, 𝛼!, 𝛼") > 0.														(5.8) 
The joint Bayesian predictive density (BPD) of the future-th ordered observation and its s-th concomitant denoted by 

ℎ1𝑦!(4), 𝑦"(4)|𝜔4 = S 𝑓1𝑦!(4), 𝑦"(4): 𝜔4𝜋1𝜔|𝑦!, 𝑦"4
⬚

T

𝑑𝜔	,																																																																									(5.9) 

where 

	S =
⬚

T

S S S ⬚
⬚

(#

⬚

(!

⬚

(

and				𝑑𝜔 = 𝑑𝛼	𝑑𝛼!𝑑𝛼".																																																																																																				(5.10) 

Substituting (5.5) and (5.8) in (5.9), yields the joint BPD of 1𝑦!(4), 𝑦"(4)4 as  

ℎ1𝑦!(4), 𝑦"(4)|𝜔4 = S 𝐼!𝐼"𝐼K𝐼U𝐼V𝐼W𝑑𝜔
⬚

T

,																																																																																																													(5.11) 

where 
𝐼! = (𝛼 + 1)()!𝛼*X+!𝛼!

()*Y𝛼"
()*Z 	,																																																																																																																									 
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X`Y[
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and 

𝐼W = \ 𝐶6,4,8	 h51 − 11 + 𝑦!(4)4
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+ 51 − 11 + 𝑦"(4)4
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The point predictors of future ordered observation and their concomitants 1𝑌!(4), 𝑌"(4)4,                 
	𝑠 = 1,2, … ,𝑚	, under SEL function can be obtained as follows:   
𝑌!∗ = 𝐸1𝑦!(4)V𝜔4 = ∫ 𝑦!(4) ∫ ℎ1𝑦!(4), 𝑦"(4)|𝜔4𝑑𝑦"(4)𝑑𝑦!(4),																																																																							(5.13)
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and 

𝑌"∗ = 𝐸1𝑦"(4)V𝜔4 = S 𝑦"(4)S ℎ1𝑦!(4), 𝑦"(4)|𝜔4𝑑𝑦!(4)𝑑𝑦"(4)
<

=!(()
.																																																																							(5.14)
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The joint Bayes point predictors for the future ordered observation is 

𝑌!∗, 𝑌"∗ = 𝐸1𝑦!(4), 𝑦"(4)|𝜔4 = S S 𝑦!(4)𝑦"(4)ℎ1𝑦!(4), 𝑦"(4)|𝜔4𝑑𝑦!(4)𝑑𝑦"(4)
<

1

<

1
.																																																								(5.15) 

6. Numerical Illustration for the Bayesian Results 

This section aims to examine the precision of the theoretical results of Bayesian estimation and prediction based on 
simulated data and a data set. 
6.1 Simulation study  
In this subsection, a simulation study is conducted to illustrate the performance of the presented Bayes estimates based on 
generated data from the BLO distribution. Bayes averages of the parameters, rf and hrf are computed. Moreover, credible 
intervals of the parameters, rf and hrf are evaluated. Bayes point predictors for a future observation from the BLO 
distribution are computed, for the two-sample case. All simulation studies are performed using R programming language. 
Simulation algorithm  
1. Several data sets are generated from the BLO distribution for a combination of the population parameter values of  

𝜔 = (𝛼, 𝛼!, 𝛼"). 
2. Also, for samples of size (30, 50 and 100) using N=10000 replications for each sample size. 
3. The population parameter values of 𝛼, 𝛼!	and	𝛼" used in this simulation study are 
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             (𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9) and	(𝛼 = 7.4, 𝛼! = 5.1, 𝛼" = 4.5). 
4. If 𝜔8∗ is an estimate of 𝜔; based on sample  𝑗, 𝑗 = 1,2, … ,𝑁, then the average estimates over the samples are calculated 

by  𝜔b∗���� =
!
c
∑ 𝜔8∗.c
8'!  

5. The ERs of  𝜔∗, over the N samples are computed. 
• Tables 11 and 12 display the Bayes averages, RABs, ERs and credible intervals based on samples of size n and 

N=10000 repetitions with informative prior.  
• Tables 13 and 14 present the Bayes averages, ER and credible intervals of rf and hrf for different values of the time 

𝑡1!, 𝑡1" based on informative priors. 
• The averages of the two-sample Bayes predictors using informative priors are presented in Table 17. 
6.2. Real data set 
In this subsection, the real data set considered was given in Subsection 4.2 and it was analyzed to illustrate the theoretical 
results of applying the Bayesian approach. 
• Tables 15 and 16 display the Bayes estimates of the parameters, rf and hrf, for the real data under informative prior, 

also the standard errors are calculated. 
• Table 18 presents two-sample Bayes predictors. 
6.3. Concluding remarks 
1. The ERs of the estimates are inversely proportional to the sample size.  
2. The lengths of the CIs for the parameters become narrower as the sample size increases. 
3. The Bayes averages are very close to the initial values of the rf and hrf as the sample size increases. Also, ERs 

decrease when the sample size increases. 
4. The results become better as the informative sample size gets larger.  

Table 11: Bayes averages, estimated risks and 95% credible intervals 
for the parameters of BLO (N = 10000, 𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12: Bayes averages, estimated risks and95% credible intervals  
for the parameters (N = 10000, 𝛼 = 7.4, 𝛼! = 5.1, 𝛼" = 4.5) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

n parameters Averages ER UL LL Length 

30 
𝛼 0.3991 1.1087e-06 0.3998 0.3978 0.0019 
𝛼! 0.8001 1.8623e-06 0.8024 0.7985 0.0039 
𝛼" 0.9026 8.0086e-06 0.9041 0.8998 0.0044 

50 
𝛼 0.3995 4.6042e-07 0.4005 0.3983 0.0018 
𝛼! 0.7992 1.3514e-06 0.8009 0.7974 0.0035 
𝛼" 0.8999 4.1675e-07 0.9009 0.8986 0.0023 

100 
𝛼 0.3998 1.2963e-07 0.4003 0.3990 0.0013 
𝛼! 0.7994 4.4998e-07 0.80002 0.7986 0.0014 
𝛼" 0.8996 3.4311e-07 0.9006 0.8987 0.0019 

n parameters Averages ER UL LL Length 

30 

𝛼 7.3992 8.6361e-07 7.4002 7.3981 0.0021 

𝛼! 5.0976 8.8596e-06 5.1002 5.0947 0.0055 

𝛼" 4.5020 6.3005e-06 4.4995 4.4995 0.0049 

50 

𝛼 7.3992 8.2490e-07 7.3999 7.3981 0.0019 
𝛼! 5.1014 2.5689e-06 5.1023 5.0996 0.0027 

𝛼" 4.4981 5.6307e-06 4.4999 4.4953 0.0046 

100 

𝛼 7.4001 5.3946e-07 7.4016 7.3986 0.0029 

𝛼! 5.0989 1.3778e-06 5.0996 5.0979 0.0017 

𝛼" 4.0499 1.3472e-06 4.4997 4.4973 0.0024 
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Table 13: Bayes averages, estimated risks and 95% credible 
intervals for the reliability and hazard rate functions   

(N = 10000, 𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9, 𝑡1! = 3, 𝑡1" = 2) 

 
 

Table 14: Bayes averages, estimated risks and 95% credible 
  intervals for the reliability and hazard rate functions of 

				(N = 10000, 𝛼 = 1.6, 𝛼! = 1.0, 𝛼" = 1.8, 𝑡1! = 2, 𝑡1" = 4) 

 
 Table 15: Bayes estimates and standard errors for  

the parameters for the real data set 	
(𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9) 

 
 
 
 
 
 

 Table 16: Bayes estimates, standard errors for the reliability and 
 hazard rate functions of BLO for the real data set  
(𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9, 𝑡1! = 3, 𝑡1" = 2) 

 

 
 

Table 17: Bayes predictive, estimated risks and 95% credible intervals  
of the future observation under two-sample prediction 
(N = 10000, 𝛼 = 0.3, 𝛼! = 0.8, 𝛼" = 0.9) 

n s 𝒚j(𝒔) Predictor UL LL Length 
 
 

30 
1 

𝑦{!(4) 3.9995 4.0009 3.9966 0.0043 
𝑦{"(4) 6.9994 7.0011 6.9979 0.0031 

12 
𝑦{!(4) 4.001 4.0027 3.9996 0.0003 
𝑦{"(4) 6.9989 7.0003 6.9976 0.0028 

n rf and hrf Averages ER UL LL Length 

30 
𝑅(𝑡1!, 𝑡1") 0.1426 3.0099e-06 0.1442 0.1406 0.0036 

ℎ(𝑡1!, 𝑡1") 0.0546 8.9195e-07 0.0552 0.0538 0.0014 

50 
𝑅(𝑡1!, 𝑡1") 0.1433 1.9819e-06 0.1449 0.1406 0.0043 

ℎ(𝑡1!, 𝑡1") 0.0549 5.3266e-07 0.0557 0.0535 0.0022 

100 
𝑅(𝑡1!, 𝑡1") 0.1444 1.8552e-07 0.1449 0.1436 0.0013 

ℎ(𝑡1!, 𝑡1") 0.0559 4.8041e-07 0.0569 0.0548 0.0021 

n rf and hrf Averages ER UL LL Length 

30 
𝑅(𝑡1!, 𝑡1") 0.0328 7.5963e-06 0.0351 0.0310 0.0040 
ℎ(𝑡1!, 𝑡1") 0.0852 3.9061e-06 0.0871 0.0831 0.0041 

50 
𝑅(𝑡1!, 𝑡1") 0.0357 3.6245e-07 0.0366 0.0344 0.0021 
ℎ(𝑡1!, 𝑡1") 0.0871 1.1231e-06 0.0889 0.0856 0.0034 

100 
𝑅(𝑡1!, 𝑡1") 0.0354 3.1949e-07 0.0366 0.0343 0.0022 
ℎ(𝑡1!, 𝑡1") 0.0865 5.5949e-07 0.0877 0.0849 0.0027 

n Parameters Estimates SE 
 

42 
𝛼 0.2980 0.0008 
𝛼! 0.7992 0.0006 
𝛼" 0.9008 0.0007 

n rf and hrf Estimates SE 

42 
𝑅(𝑡1!, 𝑡1") 0.1434 0.0005 
ℎ(𝑡1!, 𝑡1") 0.0559 0.0006 
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18 
𝑦{!(4) 4.0029 4.0034 3.9999 0.0039 
𝑦{"(4) 7.0013 7.0035 6.9999 0.0035 

 
 

50 
1 

𝑦{!(4) 3.9997 4.0009 3.9975 0.0034 
𝑦{"(4) 6.9995 0.0005 6.9979 0.0025 

12 
𝑦{!(4) 4.0002 4.0018 3.9983 0.0034 
𝑦{"(4) 6.9991 6.9998 6.9984 0.0014 

18 
𝑦{!(4) 3.9989 4.0003 3.9967 0.0036 
𝑦{"(4) 7.0015 7.0023 6.9997 0.0026 

 
 
100 

1 
𝑦{!(4) 4.0006 4.0013 3.9994 0.0019 
𝑦{"(4) 7.0005 7.0016 6.9994 0.0021 

12 
𝑦{!(4) 3.9994 4.0002 3.9976 0.0026 
𝑦{"(4) 6.9994 7.0004 6.9976 00028 

18 
𝑦{!(4) 3.9989 4.0002 3.9976 0.0025 
𝑦{"(4) 69987 7.0000 6.9974 0.0026 

 
Table 18: Bayes predictive and standard errors for  
a future observation under two-sample prediction 

 for the real data set 
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