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Abstract: The widespread use of fossil fuels for global energy production significantly contributes to global warming. This study

presents a comparative analysis of various machine learning models, which are the long short-term memory (LSTM) network, support

vector regression (SVR), and gradient boosting method (GBM). Gaussian process regression (GPR) is a benchmark model across

different forecasting horizons. The study uses South African wind speed data from 1 January 2018 to 31 December 2021, sourced

from the Western Cape province. The dataset underwent preprocessing, and diverse feature selection techniques were implemented

to enhance model accuracy. Performance evaluation of the models was done using mean absolute error (MAE), root mean squared

error (RMSE), and mean absolute scaled error (MASE). Results indicate that SVR exhibits superior accuracy to other models for

two distinct forecast horizons (h = 670 and h = 1339), respectively. Additionally, GPR surpasses other models for the forecasting

horizon h = 224. This study provides insights into the comparative strengths and weaknesses of different machine learning models

for wind speed prediction, which could be useful in selecting an appropriate model for future applications in renewable energy and

weather forecasting. Potential areas for future research include improving prediction accuracy via ensemble deep learning algorithms

and incorporating additional meteorological variables. Moreover, investigating temporal dynamics, broadening geographical coverage

and integrating uncertainty quantification methods can improve wind speed prediction, thereby facilitating more effective renewable

energy planning and decision-making processes

Keywords: LSTM; Predictive capability; Renewable energy; SVR; Skill score.

1 Introduction

Accurate wind speed prediction is essential for numerous purposes, including wind energy generation, weather prediction,
and monitoring air quality. Machine learning models have shown great potential for predicting wind speed due to their
ability to learn complex patterns and relationships in data. However, with the increasing number of machine learning
algorithms available, it is challenging to determine which model performs the best for a particular task.

Therefore, in this study, we aim to compare the predictive capabilities of several machine learning models using wind
speed data. Specifically, we will evaluate the performance of multiple models, including Long Short-Term Memory
(LSTM), Support Vector Regression (SVR), Stochastic Gradient Boosting Method (SGBM) and Gaussian Process
Regression (GPR). By comparing the performance of these machine learning models, we aim to identify the most
accurate and reliable model for predicting wind speed on different forecasting horizons. This information can improve
wind energy production efficiency and forecasting accuracy.
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1.1 Background

According to the Council for Scientific and Industrial Research (CSIR), South Africa (SA) is experiencing the worst
year of load-shedding. However, there is a solution to this obstacle: Renewable energy resources (Wind, Sun and Water).
The ongoing dependence on fossil fuels (such as coal, oil, and natural gas) for energy generation worsens environmental
problems such as global warming and associated issues. Burning fossil fuels in energy production has led to adverse
environmental effects, such as adverse climate patterns and impacts on human health (Sun et al. [1]). Patel [2] examined
the environmental and economic implications of fossil fuels. These challenges have spurred numerous researchers to
explore wind energy as a potential alternative electricity source. Wind energy generation relies heavily on meteorological
factors such as wind speed, atmospheric pressure, humidity, and temperature. However, due to the uncontrollable nature
of wind, regulating the amount of electrical energy produced from wind is exceedingly difficult (Patel [2]).

1.2 A survey of related literature

In recent years, there has been a rise in the use of machine learning models for wind speed prediction owing to their
capacity to manage complex data patterns and relationships. Numerous investigations have been conducted to assess the
efficacy of various machine learning models. One notable study conducted by Mishra et al. [3] scrutinised the performance
of five distinct models: Deep Feed Forward (DFF), Deep Convolutional Network (DCN), Recurrent Neural Network
(RNN), Attention mechanism (Attention), and Long Short-Term Memory Networks (LSTM) in predicting wind speed
data. The study’s findings indicated that the Attention and DCN models outperformed others when applied with Wavelet
or FFT signal preprocessing, while some models demonstrated superior performance without any preprocessing. Another
study by Elsaraiti and Merabet [4] compared the predictive capabilities of ARIMA and LSTM models for wind speed
prediction. Their investigation revealed that the LSTM method exhibited greater accuracy than ARIMA, as assessed by
the root mean square error (RMSE) metric.

In a separate study, Dhakal et al. [5] conducted a comparative analysis of various models including Weibull probability
density-based WSP (WEB), Rayleigh probability density-based WSP (RYM), autoregressive integrated moving average
(ARIMA), Kalman filter, support vector machines (SVR), and artificial neural network (ANN), alongside hybrid models,
for short-term wind speed forecasting. The researchers introduced an error correction algorithm for the probability density-
based wind speed prediction model to enhance prediction accuracy. Their findings indicate a notable enhancement in the
performance of wind speed prediction models.

Similarly, Mutavhatsindi et al.[6] investigated the predictive capabilities of Feed Forward Neural Networks (FFNN),
LSTM networks, and SVR models for short-term solar energy forecasting. Accurate wind speed forecasting is crucial for
effectively implementing wind power generation to uphold power system stability. This paper aims to raise awareness
among government officials regarding the advantages of renewable energy production, aiding governmental authorities
and decision-makers in effectively managing and mitigating the impacts of global warming. In South Africa, Odhiambo
[7] found a correlation between electricity usage and economic expansion that is directly proportional.

Alkesaiberi et al. [8] conducted a comparative examination of Gaussian Process Regression (GPR), Support Vector
Regression (SVR) employing various kernels, and ensemble learning (ES) models, specifically Boosted trees and
Bagged trees, for wind power forecasting. Wind power data from three different locations were utilised to evaluate the
efficacy of these models. Empirical findings from this investigation demonstrated that both ensemble and GPR models
outperformed the other methods. Buturache and Stancu [9] carried out a comprehensive comparative study on predicting
wind energy, examining Artificial Neural Networks, Support Vector Regression, Random Trees, and Random Forest. The
authors also discussed the advantages and disadvantages of the proposed models. In another study, Singh and Rizwan
[10] used machine learning models for short-term wind power prediction, using Support Vector Regression (SVR) and
Gradient Boosting Regression Trees (GBRT). GBRT exhibited superior performance over the SVR model based on
various evaluation metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE).

Tarek et al. [11] developed an optimisation technique named Stochastic Fractal Search and Particle Swarm
Optimization (SFSPSO) to optimise parameters of the Long Short-Term Memory (LSTM) network for short-term wind
power forecasting. They then compared the predictive capabilities of the Deep Neural Network (DNN), K-Nearest
Neighbor (KNN) regressor, LSTM, Averaging model, Random Forest (RF) regressor, Bagging regressor, and Gradient
Boosting (GB) regressor with the proposed SFSPSO method. The SFSPSO method outperformed the base models across
five predictive evaluation metrics. Daniel et al. [12] conducted a related study by comparing short-term prediction of
average wind speed data using statistical and machine learning models. They combined predictions from individual
models using an additive quantile regression averaging method, resulting in significantly improved forecast accuracy.

In summary, the results of these studies suggest that the choice of a machine learning model for predicting wind speed
depends on the specific dataset and the performance metrics of interest. However, none of the studies considered different
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forecasting horizons to assess the models’ predictive abilities. It is this shortcoming that the current study seeks to correct
by considering the predictive skills and capabilities of some machine learning models for forecasting the maximum wind
speed from one location at different forecasting horizons. These models can improve wind energy production efficiency
and forecasting accuracy.

1.3 Research highlights

Based on the insights from the literature review outlined in subsection 1.2, this study offers valuable contributions to
local and global wind speed forecasting for power generation. The Augmented Dickey-Fuller (ADF) test revealed that
the focused period data is constant over time, indicating that its stationary nature is crucial for reliable forecasting. The
Lasso investigation highlighted the significant impact of atmospheric pressure and air temperature on accurate wind speed
prediction. This finding is particularly relevant as wind turbines operate optimally under warm air conditions and low
barometric pressure, facilitating faster rotation. Moreover, across various forecasting models, including LSTM, SVR,
SGBM, and SGB, our study identified SVR as the most effective model across forecasting horizons h=224, 670, and 1339.
These findings highlight the necessity of factoring in atmospheric conditions when developing wind speed prediction
models to improve their precision and suitability for renewable energy systems.

The remainder of the paper is structured as follows: Section 2 outlines the methodologies employed in the study, which
include LSTM networks and support vector regression. Additionally, this section provides an overview of feature selection
techniques and methods for evaluating model predictive performance. Empirical findings are presented in Section 3, with
concluding remarks presented in Section 4.

2 Methods

The section summarises the models, including a benchmark model used in the study.

2.1 Support vector regression

Support vector regression (SVR), an extension of the support vector machines (SVM) model introduced by Drucker et al.
[13], works on the premise of finding a function f (ri) that predicts the output variable q from the input variable r, but in a
higher-dimensional feature space. Given training data with input values (r1,r2, ...,rt) and output values (q1,q2, ...,qt), the
SVR algorithm aims to derive this function. SVM models leverage various fundamental kernel functions, such as sigmoid,
linear, polynomial, normal distribution, radial basis function, and quadratic radial basis function (Zendehboudi [14]). The
formulation of the Support Vector Regression function is presented in equation (1), which is

f (x) = ωφ(r)+ b. (1)

From equation (1), ω represents the weight vector, b represents the bias term, and φ(r) stands for a predetermined mapping
function for inputs r.

In order to determine the values of ω and b, it is crucial to minimise the regularised risk function R( f ), which can be
formulated as follows:

R( f ) =
1

2
||ω ||2 + J

1

t

t

∑
i=1

Lε(qi, f (ri)), (2)

In equation (2), ||ω ||2 represents a regularisation term designed to maintain the function’s capability constant, and J

denotes the error in the cost function. Expressing the second term from equation (2), we have:

Lε (qi, f (ri)) = {|qi = f (ri)|= ε, |qi = f (ri)| ≥ ε} . (3)

Equation (2) introduced a method for determining the parameters ω and b by presenting a favourable loose attribute ξi(
∗),

thereby demonstrating the transformation of the fundamental objective function outlined in equation (4).

min
1

2
||ω ||2 + J

1

l

l

∑
i=1

(εi + ξ ∗
i )) (4)
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α(r) =







qi−< ω ,ri >−≥ ε + ξi

< ω ,ri >+b− qi ≥ ε + ξ ∗
i

ξi,ξ
∗
i ≥ 0

(5)

Using Lagrange multipliers can lead to a quicker solution for Equation (2).

2.2 Long short-term memory

The LSTM network, proposed by Hochreiter and Schmidhuber [15], represents a significant advancement in Recurrent
Neural Network (RNN) architecture. Unlike traditional RNNs, which suffer from the loss of past information, leading
to challenges in learning long-distance dependencies, LSTM addresses this limitation by facilitating the retention of
information over extended periods. In practical terms, LSTM retains information over prolonged durations, making it
particularly suitable for tasks requiring long-term memory processing. Moreover, in the context of time series forecasting,
LSTM introduces several gates that enhance memory retention, as demonstrated by Hochreiter and Schmidhuber [15].

Let (x1,x2, ...,xt) represent the input values and (y1,y2, ...,yt) the corresponding output values of historical data to be
forecasted. The following foundational system equations can characterise the LSTM network:

ft = g(Wt .[xt ,ht−1 + b f ]), (6)

it = g(Wi.[xt ,ht−1 + bi]), (7)

Ot = g(Wo.[xt ,ht−1 + bo]), (8)

Ct = ft ct−1 + it tanh(g(Wo.[xt ,ht−1 + bc])), (9)

ht = Ot tanh(ct). (10)

Figure 1 shows the basic architecture of the LSTM network.

Fig. 1: Basic architecture of the LSTM network Yu et al. [16].
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2.3 Stochastic gradient boosting

Stochastic gradient boosting (SGB) is a powerful machine learning method that has become increasingly popular in
recent years, particularly in the context of predictive modelling and data analysis (Friedman [17]). This method is a
variant of gradient boosting, a popular ensemble method combining multiple weak models to create a more accurate
predictive model. The main difference between gradient boosting and stochastic gradient boosting is that the latter
introduces randomness into the algorithm by randomly sampling subsets of the training data for each iteration. This
approach can help reduce overfitting and improve the model’s generalizability, particularly when dealing with large
datasets (Friedman [17]). The SGB model is given in equation (11) as,

F(x) =
M

∑
m=1

βmh(x;γm), (11)

where h(x;γm) ∈ R are functions of x with parameters γm and βm which limit over fitting (Friedman [17], Hastie et al.
[18]).

2.4 Benchmark model: Gaussian process regression

Gaussian process regression (GPR) is an important machine learning technique used extensively across industrial and
academic domains. It is a non-parametric algorithm that can model complex nonlinear relationships between variables
and provides probabilistic predictions. While it can be computationally expensive for large datasets, several techniques
are available to reduce its computational complexity. The key advantage of Gaussian process regression is its ability to
model complex nonlinear relationships between variables without assuming any specific parametric form of the underlying
distribution. This allows the algorithm to handle many data types, including continuous, discrete, and categorical. A GPR
is given in equation (12) as,

f (X)∼ GP(m(x),k(x,x1)). (12)

In (12), X represents a collection of independent variables x1,x2, ...,xn. The function f (X) corresponds to applying the
function f individually to each variable in X , resulting in f (x1), f (x2), ..., f (xn). Two data points within the variable set X

are denoted as x and x1. The function f (X) represents the dependent variable, and m(x) denotes the mean function, where
E( f (x)) equals m(x). The covariance matrix, k(x,x1), referred to as the kernel function, is employed. Various kernel
functions can be utilised in Gaussian Process Regression (GPR), but in this study, we focus on employing the radial basis
kernel function.

2.5 Feature selection

This section discusses feature selection using Lasso to select only significant features for forecasting wind speed. This
study uses the Lasso feature selection approach, introduced by Bien et al. [19]. Several variable selection strategies exist,
but this study will focus on Lasso. Lasso reduces model complexity by selecting the most significant variables for
predicting the output feature. This is crucial for preventing overfitting, enhancing model clarity, and reducing
computational time. The Lasso formula is represented by equation (13), which is as follows:

Lasso = min
β

1

n
(Y −Xβ )+Γ

m

∑
i=1

||βi||. (13)

In equation (13), n denotes the length of the data points, and Γ ≥ 0 signifies the penalty strength components. As
introduced by Tibshirani (1996), the Lasso technique utilises a subset of predictors, leading to more straightforward and
easily understandable models.

2.6 Evaluation metrics

To evaluate the accuracy of our predictive models, we will employ metrics including the mean absolute error (MAE),
relative MAE (rMAE), root mean square error (RMSE), relative RMSE (rRMSE), mean bias error (MBE), and mean
absolute scaled error (MASE).” The mathematical representation for the above metrics are respectively given as,

MAE =
1

m

m

∑
t=1

|yt − ŷt |, (14)

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1310 K. Makubyane, C. Sigauke: Comparative analysis of the predictive capabilities...

rMAE =
1

m

m

∑
t=1

[
yt − ŷt

yt

], (15)

RMSE =

√

∑m
i=1 (yt − ŷt)

2

m
, (16)

rRMSE =
100

ȳ

√

∑m
t=1 (yt − ŷt)

2

m
, (17)

MBE =
1

m

m

∑
t=1

(yt − ŷt), (18)

MASE =
yt − ŷt

1
m−1 ∑m

i=2 |yi − yi−1|
, (19)

where yt represents the actual values at time t, ŷt denotes the predicted model values at time t, ȳ signifies the mean of
all actual observations, and n stands for the sample size of the total observations. The Mean Bias Error (MBE) shares
the same units as the dependent variable. Positive MBE values indicate underestimation, while negative values indicate
overestimation.

The mean absolute scaled error (MASE) is particularly suitable for analysing time series data, offering insight into
the predictive effectiveness relative to simple naive predictions. A MASE value of 1 signifies that the proposed model
performs as well as the naive model. MASE values less than 1 indicate superior performance compared to the naive
model, while values greater than 1 suggest inferior performance.

2.7 Predictive skill and capability

2.7.1 Predictive skill

In this study, we use MASE as outlined in equation (19) to assess the predictive capability. (PS j, j = 1, ...k) where k is the
number of proposed models. This helps benchmark the quality of the model’s predictions to the benchmark model (the
GPR model in this study). The prediction skill is given in equation (20) as,

PS j =

(

1−
MASE j

MASEbenchmark

)

× 100, (20)

where PS j is a measure of the superiority of the proposed model’s prediction to the benchmark model’s prediction. The
model giving the greatest positive percentage change is considered the superior model.

2.7.2 Assessing the predictive capability using the Giacomini-White test

The Giacomini-White (GW) test generalises the Diebold-Mariano (DM) test (Giacomini [21]). It is a test on equal
conditional predictive ability. The DM and GW tests are applicable to both nested and non-nested models. Nevertheless,
the GW test offers an additional benefit by incorporating uncertainty in parameter estimation (Lago [22]). It evaluates the
conditional predictive ability of competing forecast pairs. The test is based on the regression presented in equation (21),
which can be expressed as follows:

∆
f ,h

d = φ1
Xd−1 + εd, (21)

where Xd−1 has elements from the information set on day d − 1, with the pair of forecasts from models f and h. For a
detailed discussion of the GW test, see Giacomini [21] and Lago [22], among others.

3 Empirical results

This section presents the empirical results and discusses the results obtained from the study. Python and R programming
software were used to obtain the empirical results. The primary libraries used for analysis in R include ggplot2, tseries, and
magic. Ihaka and Gentleman [23] are credited as the creators of the R programming language, which is presently under
development by Team [24]. In Python, the principal packages utilised for analysis include NumPy, pandas, matplotlib,
Seaborn, Keras, and TensorFlow. Van Rossum developed this language [25].
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3.1 Data and study area

The study area WM07 (Beaufort West) with coordinates 32◦58′0.2′′S and 22◦33′23.8′′E is shown in Figure 2.

Fig. 2: WASA High-Resolution Wind Resource Map. Source: https://www.wasaproject.info/.

3.2 Exploratory data analysis

Testing for stationarity using the Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is used to assess the stationarity of wind speed recorded at location WM07
(Beaufort West) in the Western Cape Province, specifically at 62 meters above sea level. Table 1 presents the summary
statistics for this wind speed data. From 1 December 2021 to 1 January 2022, the wind speed ranged from a minimum of
1.129 to a maximum of 26.598 meters per second at this altitude. The mean wind speed was calculated to be 8.951, while
the median was found to be 8.581, providing insight into the central tendency of the data. Additionally, the skewness
value of 0.331 and the kurtosis value of 2.993 indicate that the wind speed distribution at 62 meters above sea level is
positively skewed and exhibits mesokurtosis, suggesting a departure from normality.

Table 1: Descriptive Statistics.

min 1stQu median mean 3stQu max skewness kurtosis

Wind speed 1.129 6.718 8.581 8.951 11.065 26.589 0.331 2.993

Fig. 3 illustrates the wind speed recorded in the Western Cape Province at 62m above sea level from 1 December 2021 to
1 January 2022. There appears to be no discernible upward or downward trend in the data during this time frame.
However, an observable pattern of approximately a 15% increase occurs approximately every four days, indicating a

seasonal influence. Notably, there is a notable peak in wind speed between December 25th, 2021, and December 29th,
2021, possibly attributable to particularly windy conditions during that period. Furthermore, the graph in Figure 3
illustrates that the average wind speed remains relatively constant at approximately 8m/s.
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Fig. 3: Time series plot for the response (W S 62 max) feature.

Diagnostic plots for wind speed

The figures in Fig. 4 display diagnostic plots for the response variable. In the top left panel, a time series plot is depicted.
The top right panel showcases a density plot indicating a right-skewed distribution with a longer tail on the right-hand side
(RHS) compared to the left-hand side (LHS). Moving to the bottom left panel, a normal Q-Q plot is presented. Notably,
the Q-Q plot points illustrate deviation from a straight line for higher endpoints, while the lower end adheres closely to a
straight line. Additionally, the curve exhibits a significant tail to the right. Finally, the bottom right panel features a box
plot where most points lie within the Interquartile Range (IQR) box, with only a few outliers falling outside the IQR.

3.3 Features selection results

Table 2 presents the feature importance analysis conducted using Lasso, which regulates model features by reducing
certain regression coefficients to zero. The findings indicate that six of the 16 input features significantly forecast wind
speed. These significant features include Pbaro min, Pbaro mean, Tgrad min, Tgrad max, Tgrad stdv, and Pbaro stv, as
they possess notable regression coefficients. This alignment with scientific understanding is logical, as higher atmospheric
pressure typically corresponds to increased wind speeds. Additionally, greater disparities in air temperature contribute
to variations in atmospheric pressure, consequently influencing wind speed. These significant features will be utilised
throughout the subsequent analysis to ensure the generation of accurate predictions.
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Fig. 4: Diagnostic plots for maximum wind speed at 62m (W S 62 max).

Table 2: Feature Importance.

Features Coefficient

RH min 0.003

RH mean 0.042

RH max 0.046

Tair mean 0.070

RH stdv 0.332

Tair min 0.349

Tair max 0.395

Pbaro max 0.547

Tair stdv 0.986

Tgrad mean 1.052

Pbaro min 3.960

Pbaro mean 4.610

Tgrad min 4.879

Tgrad max 5.477

Tgrad stdv 21.337

Pbaro stdv 33.763

3.4 LSTM network results

Feature scaling ensures uniform scales across all variables before fitting the data to the LSTM network, enhancing the
learning algorithm and expediting result generation. The dataset is partitioned into training and testing subsets in a 70%
to 30% ratio. The LSTM network is configured with one feature, a hyperbolic tangent activation function, a batch size of
one, 100 epochs, and a single output layer.
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The predictions from both the training and testing sets are depicted in Figure 5. Predictions for the training set are
highlighted in light grey, while those for the test set are in dark orange. Figure 5 illustrates the LSTM network’s ability to
generate accurate predictions, attributed to its capacity to capture longer-term trends.

Fig. 5: Prediction for the full dataset.

The parameter setting for the LSTM network is given in Table 3.

Table 3: Parameter setting for LSTM network.

Parameters Values

Number features 1

Activation function tanh

Batch size 1

Epochs 100

3.5 SVR results

Various kernels are accessible, and it is crucial to identify the most suitable one for your dataset. In this study, the
anticipation of wind speed at 62m above sea level in the western Cape Province is performed using three kernels: radial
basis function, linear, and polynomial.

Figure 6 presents the results obtained using the radial basis function kernel, which was determined to be the most effective
among the three kernels selected for the analysis. The results indicate that the fitted line fails to encompass the maximum
points along the hyperplane, as indicated by the error margin (ε).
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Fig. 6: Radial basis function plot for SVR.

3.6 Predictive skills and capabilities of the models

The predictive capabilities of the models were assessed using the Giacomini-White test, and the results are presented in
Table 4.

We will use the following notation to indicate dominance, M j > Mi,∀i 6= j to mean that M j dominates Mi. From Table
4, for the prediction horizon h = 224, GPR > SVR > SGBM > LSTM meaning that the GPR model has the highest
predictive power since it dominates the other three models. Similarly, for prediction horizon h = 670, SVR > SGBM >

LSTM>GPR meaning the SVR model dominates the other three models.Likewise for h= 1339, SVR> SGBM>GPR>

LSTM implying the SVR dominates the other models.
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Table 4: Model comparisons using the Giacommini-White test for different forecasting horizons.

h = 224

Null hypothesis Test statistic p-value Result

LSTM = SVR 9.6065 0.0226 Sign of the mean of the loss is (+) – SVR dominates

LSTM = SGBM 7.57912 0.7174 Sign of the mean of the loss is (+) – SGBM dominates

LSTM = GPR 10.9873 0.0041 Sign of the mean of the loss is (+) – GPR dominates

SVR = SGBM 2.11035 0.3481 Sign of the mean of the loss is (-) – SVR dominates

SVR = GPR 0.335857 0.8454 Sign of the mean of the loss is (+) – GPR dominates

SGBM = GPR 0.5696 0.7521 Sign of the mean of the loss is (+) – GPR dominates

h = 670

Null hypothesis Test statistic p-value Result

LSTM = SVR 32.192 0.0000 Sign of the mean of the loss is (+) – SVR dominates

LSTM = SGBM 13.7963 0.0010 Sign of the mean of the loss is (+) – SGBM dominates

LSTM = GPR 3.0270 0.2201 Sign of the mean of the loss is (-) – LSTM dominates

SVR = SGBM 17.0841 0.0002 Sign of the mean of the loss is (-) – SVR dominates

SVR = GPR 8.84261 0.0120 Sign of the mean of the loss is (-) – SVR dominates

SGBM = GPR 4.1218 0.1273 Sign of the mean of the loss is (-) – SGBM dominates

h = 1339

Null hypothesis Test statistic p-value Result

LSTM = SVR 174.882 0.0000 Sign of the mean of the loss is (+) – SVR dominates

LSTM = SGBM 244.546 0.0000 Sign of the mean of the loss is (+) – SGBM dominates

LSTM = GPR 23.3371 0.0000 Sign of the mean of the loss is (+) – GPR dominates

SVR = SGBM 13.9561 0.0009 Sign of the mean of the loss is (-) – SVR dominates

SVR = GPR 15.8329 0.0004 Sign of the mean of the loss is (-) – SVR dominates

SGBM = GPR 13.9445 0.0009 Sign of the mean of the loss is (-) – SGBM dominates

The predictive evaluation metrics for three forecasting horizons, h = 224,670 and 1339, are given in Table 5. The
results suggest that the GPR is the best-performing model for prediction horizon h = 224, while for horizons
h = 670 and 1339, the SVR outperforms the other three models. These results are consistent with those from Table 4 on
the comparative analysis of the predictive capabilities of the models using the Giacomini-White test.

Table 5: Predictive evaluation metrics for different forecasting horizons.

h = 224

Model RMSE rRMSE MAE rMAE MASE MBE PS(%)

LSTM 0.2137 0.0265 0.1669 0.0207 0.2274 -0.0114 -3.4

SVR 0.2221 0.0275 0.1644 0.0204 0.2241 0.0183 -1.9

SGBM 0.2210 0.0274 0.1650 0.0204 0.2249 0.0101 -2.3

GPR 0.2071 0.0257 0.1613 0.0200 0.2199 0.0092

h = 670

Model RMSE rRMSE MAE rMAE MASE MBE PS(%)

LSTM 0.3161 0.0395 0.1863 0.0233 0.2515 -0.0260 8.5

SVR 0.2519 0.0314 0.1453 0.0181 0.1962 0.0437 28.7

SGBM 0.2531 0.0316 0.1643 0.0205 0.2218 -0.0053 19.3

GPR 0.6571 0.0820 0.2037 0.0254 0.2750 0.0200

h = 1339

Model RMSE rRMSE MAE rMAE MASE MBE PS (%)

LSTM 0.3793 0.0443 0.2632 0.0307 0.3567 -0.1266 -11.2

SVR 0.2239 0.0261 0.1478 0.0173 0.2003 0.0476 37.6

SGBM 0.3638 0.0425 0.1768 0.0206 0.2396 0.0245 25.3

GPR 0.9015 0.1053 0.2368 0.0277 0.3209 0.0768
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Time series plots of maximum wind speed superimposed with predictions for the best-performing models for the
forecasting horizons h = 224,670 and 1339 are given in Figure 7.
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Fig. 7: Time series plots of maximum wind speed superimposed with predictions for the forecasting horizons h = 224,670 and 1339.

4 Conclusion

In this study, we conducted a comparative analysis of several machine learning models. These models include long- and
short-term memory, support vector regression, stochastic gradient boosting method, and Gaussian process regression. We
used a dataset of wind speed measurements from Beaufort West meteorological station located in the Western province of
South Africa to predict wind speed. Results showed that the support vector regression consistently outperformed the other
models on different forecasting horizons, with the lowest mean absolute scaled error and the other evaluation metrics used.
These findings are consistent with previous studies that have also shown the effectiveness of these models for predicting
wind speed.
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The results of this study have important implications for various applications that require accurate wind speed
predictions, such as wind energy production, weather forecasting, and air quality monitoring. These applications can
improve efficiency and effectiveness using machine learning models with high predictive accuracy, leading to significant
economic and environmental benefits. However, it is important to note that the performance of these machine learning
models is highly dependent on the specific dataset and the performance metrics used. Therefore, carefully selecting the
appropriate model for a particular application and evaluating its performance using appropriate metrics is crucial.

In conclusion, the results of this study demonstrate the potential of machine learning models for predicting wind speed
and provide useful insights for future research in this area. Further research is needed to evaluate the performance of these
models under different weather conditions and to develop more accurate and reliable models for predicting wind speed.

Author Contributions:

Conceptualisation, KM and CS; methodology, KM and CS; software, KM and CS; validation, KM and CS; formal
analysis, KM and CS; investigation, KM and CS; data curation, KM and CS; writing?review and editing, KM and CS;
visualisation, KM; supervision, CS; project administration, CS. The contributions of these authors are equal in this work.
All authors have reviewed and approved the final version of the manuscript for publication.

Funding:

The funding for this study was provided by the National e-Science Postgraduate Teaching and Training Platform
(NEPTTP), administered by the Department of Science and Technology-Council for Scientific and Industrial Research
(DST-CSIR)

Data Availability Statement:

The data was gathered from the USAid Venda station in Limpopo, South Africa. Access to minute-averaged intervals of
the dataset was obtained on 13 August 2021 through the following link: http://wasadata.csir.co.za/wasa1/WASAData.

Conflicts of Interest:

The corresponding author declares that none of the authors have conflicts of interest.

References

[1] S. Sun, S. Wang, G. Zhang, J. Zheng. A decomposition-clustering-ensemble learning approach for solar radiation forecasting.

Solar Energy, 163:189–199, 2018. https://doi.org/10.1016/j.solener.2018.02.006

[2] N. Patel. Environmental and economic effects of fossil fuels. J Recent Res Eng Tech, 1:1–12, 2014.

[3] S. Mishra, C. Bordin, K. Taharaguchi, I. Palu. Comparison of deep learning models for multivariate time series wind power

generation and temperature prediction. Energy Reports, 6(3):273–286, 2020. https://doi.org/10.1016/j.egyr.2019.11.009

[4] M. Elsaraiti, A. Merabet. A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for

Predicting Wind Speed. Energies, 14, 6782, 1–16, 2021. https://doi.org/10.3390/en14206782

[5] R. Dhakal, A. Sedai, S. Pol, S. Parameswaran, A. Nejat, H. Moussa. A Novel Hybrid Method for Short?Term Wind Speed

Prediction Based on Wind Probability Distribution Function and Machine Learning Models. Applied Sciences, 12, 9038:1–19,

2022. https://doi.org/10.3390/app12189038

[6] T. Mutavhatsindi, C. Sigauke, R. Mbuvha. Forecasting hourly global horizontal solar irradiance in South Africa using machine

learning models. IEEE Access, 8:198872-198885, 2020. https://doi.org/10.1109/ACCESS.2020.3034690

[7] N.M. Odhiambo. Electricity consumption and economic growth in South Africa: A trivariate causality test. Energy Economics,

31(5):635–640, 2009. https://doi.org/10.1016/j.eneco.2009.01.005

[8] A. Alkesaiberi, F. Harrou, Y. Sun. Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study.

Energies, 15, 2327:1–24, 2022. https://doi.org/10.3390/en15072327

[9] A.-N. Buturache, S. Stancu. Wind Energy Prediction Using Machine Learning. Low Carbon Economy, 12:1–21, 2021.

https://doi.org/10.4236/lce.2021.121001

c© 2024 NSP

Natural Sciences Publishing Cor.

http://wasadata.csir.co.za/wasa1/WASAData
https://doi.org/10.1016/j.solener.2018.02.006
https://doi.org/10.1016/j.egyr.2019.11.009
https://doi.org/10.3390/en14206782
https://doi.org/10.3390/app12189038
https://doi.org/10.1109/ACCESS.2020.3034690
https://doi.org/10.1016/j.eneco.2009.01.005
https://doi.org/10.3390/en15072327
https://doi.org/10.4236/lce.2021.121001


J. Stat. Appl. Pro. 13, No. 4, 1305-1319 (2024) / www.naturalspublishing.com/Journals.asp 1319

[10] U. Singh, M. Rizwan. Analysis of wind turbine dataset and machine learning based forecasting in SCADA?system. Journal of

Ambient Intelligence and Humanized Computing, 14:8035–8044, 2023. https://doi.org/10.1007/s12652-022-03878-x

[11] Z. Tarek, M.Y. Shams, A.M. Elshewey, E.M. El-kenawy, A. Ibrahim, A.A. Abdelhamid, M.A. El-dosuky. Wind Power

Prediction Based on Machine Learning and Deep Learning Models. Computers, Materials & Continua, 74(1):1–18, 2023.

https://doi.org/10.32604/cmc.2023.032533

[12] L.O. Daniel, C. Sigauke, C. Chibaya, R. Mbuvha. Short-term wind speed forecasting using statistical and machine learning

methods. Algorithms, 13(6), 132:1–30, 2020. https://doi.org/10.3390/a13060132

[13] H. Drucker, C.J. Burges, L. Kaufman, A.J. Smola, V. Vapnik. Support vector regression machines. Advances in Neural Information

Processing Systems, 9:155–161, 1996. https://proceedings.neurips.cc/paper files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper

[14] A. Zendehboudi, Z. Huan, C.C. Enweremadu. Evaluation of global solar radiation using multiple weather parameters as predictors

for South African provinces. Journal Cleaner Prod., 199:272–285, 2018

[15] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

https://doi.org/10.1162/neco.1997.9.8.1735

[16] Y. Yu, X. Si, C. Hu, J. Zhang. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation,

31(7): 1235–1270, 2019. https://doi.org/10.1162/neco a 01199

[17] J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189–1232, 2001.

https://doi.org/10.1214/aos/1013203451

[18] T. Hastie, R. Tibshirani, J. Friedman, J. Franklin. The elements of statistical learning: data mining, inference and prediction. Math.

Intell., 27, 83–85, 2005.

[19] J. Bien, J. Taylor, R. Tibshirani. A lasso for hierarchical interactions. Annals of Statistics, 41(3):1111–1141., 2013.

https://doi.org/10.1214%2F13-AOS1096

[20] R. Tibshirani. 1996. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B

(Methodological), 58(1):267?288, 1996. https://www.jstor.org/stable/2346178

[21] R. Giacomini, H. White. Tests of conditional predictive ability. Econometrica, 74(6), 1545-1578, 2006.

https://doi.org/10.1111/j.1468-0262.2006.00718.x

[22] J. Lago, G. Marcjaszd, B. De Schuttera, R. Weron. Forecasting day-ahead electricity prices: A review of state-

of-the-art algorithms, best practices and an open-access benchmark. Applied Energy, 293, 116983:1–21. 2021.

https://doi.org/10.1016/j.apenergy.2021.116983

[23] R. Ihaka, R. Gentleman. R: a language for data analysis and graphics. Journal of computational and graphical statistics, 5(3),

299-314, 1996. https://doi.org/10.2307/1390807

[24] Team, RC, 1999. Writing R extensions. Version 4.3.3. R Foundation for Statistical Computing. Available online (Accessed on 27

September 2023) https://cran.r-project.org/doc/manuals/R-exts.html

[25] G. Van Rossum. Python Programming Language. In USENIX annual technical conference, 41(1):1–36), 1989.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
https://doi.org/10.1007/s12652-022-03878-x
https://doi.org/10.32604/cmc.2023.032533
https://doi.org/10.3390/a13060132
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214%2F13-AOS1096
https://www.jstor.org/stable/2346178
https://doi.org/10.1111/j.1468-0262.2006.00718.x
https://doi.org/10.1016/j.apenergy.2021.116983
https://doi.org/10.2307/1390807
https://cran.r-project.org/doc/manuals/R-exts.html

	Introduction
	Methods
	Empirical results
	Conclusion

